
DSBA6100 Big Data Analytics for Competitive Advantage©2015-2025. Reproduction or usage prohibited without
permission of authors (Dr. Hansen or Dr. Zadrozny) Slide ‹#›

DATA MINING WITH HADOOP
AND HIVE

Introduction to Architecture

Dr. Wlodek Zadrozny
(Most slides come from Prof. Akella’s class in 2014)

DSBA6100 Big Data Analytics for Competitive Advantage©2015-2025. Reproduction or usage prohibited without
permission of authors (Dr. Hansen or Dr. Zadrozny) Slide ‹#›DSBA6100 Big Data Analytics for Competitive Advantage©2015-2025. Reproduction or usage prohibited without
permission of authors (Dr. Hansen or Dr. Zadrozny) Slide ‹#›

Data Science

Source: http://www.dataists.com/2010/09/the-
data-science-venn-diagram/

Hadoop
& Hive

DSBA6100 Big Data Analytics for Competitive Advantage©2015-2025. Reproduction or usage prohibited without
permission of authors (Dr. Hansen or Dr. Zadrozny) Slide ‹#›DSBA6100 Big Data Analytics for Competitive Advantage©2015-2025. Reproduction or usage prohibited without
permission of authors (Dr. Hansen or Dr. Zadrozny) Slide ‹#›

Hadoop, Map-reduce, Hive, …

• A few slides today (with some updates by WZ).

• Full PDF of Prof. Akella’s slides on Moodle (104 slides)

• You’ll use it in your projects

• We’ll review and expand in future lectures (time permitting)

DSBA6100 Big Data Analytics for Competitive Advantage©2015-2025. Reproduction or usage prohibited without
permission of authors (Dr. Hansen or Dr. Zadrozny) Slide ‹#›

MapReduce and Hadoop

MapReduce
• MapReduce programming paradigm for clusters of

commodity PCs
• Map computation across many inputs

• Fault-tolerant
• Scalable

• Machine independent programming model
• Permits programming at abstract level
• Runtime system handles scheduling, load balancing

• First Google server
~1999

Computer History Museum

Data Centers
Yahoo data center

Google data center layout

Harpers, 3/2008

Motivation: Large Scale Data Processing
• Many tasks: Process lots of data to produce other data
• Want to use hundreds or thousands of CPUs

... but this needs to be easy

• MapReduce provides:
– Automatic parallelization and distribution
– Fault-tolerance
– I/O scheduling
– Status and monitoring

Example Tasks
• Finding all occurrences of a string on the web
• Finding all pages that point to a given page
• Data analysis of website access log files
• Clustering web pages

Functional Programming
• MapReduce: Based on Functional Programming paradigm that treats computation as

evaluation of math functions

• Map
• map result-type function sequence &rest more-sequences
• The function must take as many arguments as there are sequences provided; at least one

sequence must be provided. The result of map is a sequence such that element j is the
result of applying function to element j of each of the argument sequences.

• Example: (map 'list #'- '(1 2 3 4)) => (-1 -2 -3 -4)

• Reduce
• reduce function sequence &key :from-end :start :end :initial-value
• The reduce function combines all the elements of a sequence using a binary operation; for

example, using + one can add up all the elements.
• Example: (reduce #'+ '(1 2 3 4)) => 10

MapReduce Programming Model
• Input and Output: each a set of key/value pairs

• Programmer specifies two functions:

• map (in_key, in_value) -> list(out_key, intermediate_value)
– Processes input key/value pair
– Produces set of intermediate pairs

• reduce (out_key, list(intermediate_value)) -> list(out_value)
– Combines all intermediate values for a particular key
– Produces a set of merged output values (usually just one)

• Inspired by similar primitives in LISP and other languages

Example: Count word occurrences

MapReduce Operations
• Conceptual:

– Map: (K1, V1) -> list(K2, V2)
– Reduce: (K2, list(V2)) -> list(K3, V3)

• WordCount example:
– Map: (doc, contents) -> list(word_i, 1)
– Reduce:

(word_i, list(1,1,…)) -> list(word_i, count_i)

Execution Overview
Dean and Ghemawat, 2008

Parallel Execution
• 200,000 map/5000 reduce tasks w/ 2000 machines (Dean and

Ghemawat, 2004)
• Over 1m/day at FB last year

Model has Broad Applicability
MapReduce Programs In Google Source Tree

Example uses:

distributed grep distributed sort web link-graph reversal

term-vector per host web access log stats inverted index construction

document clustering machine learning statistical machine
translation

Usage at Google

Hadoop
• Open Source Apache project
• Written in Java; runs on Linux, Windows, OS/X, Solaris
• Hadoop includes:

– MapReduce: distributes applications
– HDFS: distributes data

Hadoop Design Goals
• Storage of large data sets
• Running jobs in parallel
• Maximizing disk I/O
• Batch processing

Job Distribution
• Users submit mapreduce jobs to jobtracker
• Jobtracker puts jobs in queue, executes on first-come, first-served

basis
• Jobtracker manages assignment of map and reduce tasks to

tasktrackers
• Tasktrackers execute tasks upon instruction from jobtracker, and

handle data transfer between map and reduce phases

Hadoop MapReduce

Data Distribution
• Data transfer handled implicitly by HDFS
• Move computation to where data is: data locality
• Map tasks are scheduled on same node that input data

resides on
• If lots of data is on the same node, nearby nodes will

map instead

Hadoop DFS (HDFS)

Map Reduce and HDFS

http://www.michael-noll.com/wiki/Running_Hadoop_On_Ubuntu_Linux_(Multi-Node_Cluster)

Data Access
• CPU and transfer speed, RAM and disk size double every

18-24 months
• Disk seek time is nearly constant (~5% per year)
• Time to read entire disk is growing

• Scalable computing should not be limited by disk seek
time

• Throughput more important than latency

Original Google Storage

Source: Computer History Museum

HDFS
• Inspired by Google File System (GFS)
• Follows master/slave architecture
• HDFS installation has one Namenode and one or more Datanodes (one per

node in cluster)
• Namenode: Manages filesystem namespace and regulates file access by

clients. Makes filesystem namespace operations (open/close/rename of files
and directories) available via RPC

• Datanode: Responsible for serving read/write requests from filesystem
clients. Also perform block creation/deletion/replication (upon instruction
from Namenode)

HDFS Design Goals
• Very large files:

– Files may be GB or TB in size
• Streaming data access:

– Write once, read many times
– Throughput more important than latency

• Commodity hardware
– Node failure may occur

HDFS
• Files are broken into blocks of 64MB (but can be user

specified)

• Default replication factor is 3x

• Block placement algorithm is rack-aware

• Dynamic control of replication factor

HDFS

Source: http://lucene.apache.org/hadoop/hdfs_design.html

Example HDFS Installation
• Facebook, 2010 (Largest HDFS

installation at the time)
• 2000 machines, 22,400 cores
• 24 TB / machine, (21 PB total)
• Writing 12TB/day
• Reading 800TB/day
• 25K MapReduce jobs/day
• 65 Million HDFS files
• 30K simultaneous clients.

2014: Facebook generates 4 new
petabyes of data and runs 600,000
queries and 1 million map-reduce jobs
per day.

Hive is Facebook's data warehouse, with
300 petabytes of data in 800,000 tables
More at:
https://research.facebook.com/blog/15226929279
72019/facebook-s-top-open-data-problems/

1B users per day
(http://fortune.com/2015/08/28/1-billion-facebook/)

Companies to first use MapReduce/Hadoop
• Google LinkedIn
• Yahoo Disney
• Microsoft NY Times
• Amazon Ebay
• Facebook Quantcast
• Twitter Veoh
• Fox interactive media Joost
• AOL Last.fm
• Hulu

Any company with
enough data

Hadoop Vendors
• Cloudera

• Hortonworks

• MapR

• IBM BigInsights

Hive
• Apache Hive is a data warehouse infrastructure built on top of Hadoop for

providing data summarization, query, and analysis.
• Developed at Facebook to enable analysts to query Hadoop data
• MapReduce for computation, HDFS for storage, RDBMS for metadata

• Can use Hive to perform SQL style queries on Hadoop data
• Most Hive queries generate MapReduce jobs
• Can perform parallel queries over massive data sets

Apache Pig
• Pig: High-level platform for creating MapReduce

programs
• Developed at Yahoo
• Pig Latin: Procedural language for Pig

• Ability to use user code at any point in pipeline makes it
good for pipeline development

Traditional Data Enterprise Architecture

Hortonworks, 2013

Emerging Big Data Architecture

1. Collect data
2. Clean and process using Hadoop
3. Push data to Data Warehouse, or use directly in Enterprise applications

Hortonworks, 2013

• Data flow of meter done manually

Awadallah and Graham

• Automatic update of meter readings every 15 mins

Awadallah and Graham

DW and Hadoop Use Cases

Awadallah and Graham

