DATA MINING WITH HADOQOP
AND HIVE
Introduction to Architecture

Dr. Wlodek Zadrozny
(Most slides come from Prof. Akella’s class in 2014)

I\ “l“l 7 : = f\ [l . , N\ | .) f\ [l R , N\ |) . I\ I 303 ° i “‘\\)
oy [l DSBAG100 Big Data Analytics for Competitive Advantage .;°§oi‘j‘ WY

Data Science

Machine
Learning

Substantive
Expertise

Source: http://www.dataists.com/2010/09/the-
data-science-venn-diagram/

| f\ A . . i\ 1 \ i [l I Y
©2015-2025. Reproduction oriusage prohibited without > T

permission of authors (Dr.'Hansen or Dr. Zadrozny)

) DSBA6100 Big Data Analytics for Competitive Advantage :;3;’0; -'é'l.ide".«,"#s--"';

o

Hadoop, Map-reduce, Hive, ...

* A few slides today (with some updates by WZ).
* Full PDF of Prof. Akella’s slides on Moodle (104 slides)
* You’ll use it in your projects

* We’ll review and expand in future lectures (time permitting)

o o J'\,

DSBA6100 Big Data Analytics for Competitive Advantage ::;’3;%2

|) [l R , I\ | \ \ I\ \ /_!\//'-\)
©2015-2025. Reproduction oriusage prohibited without .““ \‘\L/

permission of authors (Dr.'Hansen or Dr. Zadrozny)

Scalable and Distributed Data
Storage and Analysis

Srinivas Akella

Computer Science
UNC Charlotte

DSBA 6100: Big Data Analytics for
Competitive Advantage

February 19, 2014

| A A)\ A I\
2e®i0 oA LA ..

‘ N [) . i [! i\ [) i - .A . . N) f B T LN Y S | //t\ : 4|“'_ “J‘I‘\\.‘
-/ DSBA6100 Big Data Analytics for Competitive Advantage', 35':« & PO AT TV Slicle |y |

e Qo '\l

|) I R . I\ | \ \)\ ‘ﬁ‘ M\
©2015-2025. Reproduction oriusage prohibited without 1 - || @ '

permission of authors (Dr.'Hansen or Dr. Zadrozny) \ R

AR\

MapReduce and Hadoop

MapReduce

MapReduce programming paradigm for clusters of
commodity PCs

Map computation across many inputs (; O gle

Fault-tolerant
Scalable

Machine independent programming model
Permits programming at abstract level
Runtime system handles scheduling, load balancing

e First Google server
~1999

Computer History Museum

Data Centers

Yahoo data center

BUILDING 1

BULDING 2 87& 6"
BUILDING 3 0"k 6"
ADMIN. BUILDING 6"

HOUSING

BUILDING 6°

S

1 s TTTHIFTTE el
i LA
L;errm%m[-)

g 2]

oweson £
T B i Yeegmoniy
O R

wm

Google data center layout

Harpers, 3/2008

Motivation: Large Scale Data Processing

e Many tasks: Process lots of data to produce other data
e Want to use hundreds or thousands of CPUs
... but this needs to be easy

e MapReduce provides:
— Automatic parallelization and distribution
— Fault-tolerance
— I/O scheduling
— Status and monitoring

Example Tasks

e Finding all occurrences of a string on the web
e Finding all pages that point to a given page

e Data analysis of website access log files

e Clustering web pages

Functional Programming

MapReduce: Based on Functional Programming paradigm that treats computation as
evaluation of math functions

Map
map result-type function sequence &rest more-sequences

The function must take as many arguments as there are sequences provided; at least one
sequence must be provided. The result of map is a sequence such that element jis the
result of applying function to element j of each of the argument sequences.

Example: (map 'list #'-'(1 23 4)) => (-1 -2 -3 -4)

Reduce
reduce function sequence &key :from-end :start :end :initial-value

The reduce function combines all the elements of a sequence using a binary operation; for
example, using + one can add up all the elements.

Example: (reduce #'+ '(1234)) => 10

MapReduce Programming Model

Input and Output: each a set of key/value pairs
Programmer specifies two functions:

map (in_key, in_value) -> list(out_key, intermediate_value)
— Processes input key/value pair
— Produces set of intermediate pairs

reduce (out_key, list(intermediate_value)) -> list(out_value)
— Combines all intermediate values for a particular key
— Produces a set of merged output values (usually just one)

Inspired by similar primitives in LISP and other languages

Example: Count word occurrences

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “17);

reduce(String key, Iterator values):
/] key: a word
// values: a list of counts
int result = O;
for each v in values:
result += Parselnt(v);
Emit(AsString(result));

MapReduce Operations

e Conceptual:
— Map: (K1, V1) -> list(K2, V2)
— Reduce: (K2, list(V2)) -> list(K3, V3)

e WordCount example:
— Map: (doc, contents) -> list(word_i, 1)
— Reduce:
(word_i, list(1,1,...)) -> list(word_i, count_}i)

Execution Overview

User Dean and Ghemawat, 2008

Program

(1) fork .-~

(1)ifork

2) .~ .. (2)
assign assign
_map reduce

split 0 (6) write output
split 1 - fde 0
P 3) read (4) local write
split2 |2 re @
split 3
output
split 4 file 1
In,)ut Map Intermediate files Reduce Output
files phasr (on local disks) phase files

Parallel Execution

e 200,000 map/5000 reduce tasks w/ 2000 machines (Dean and
Ghemawat, 2004)

e Over 1m/day at FB last year

r-—-——- -~ - - - == r-—-—- - -+~ ==~ r-- -~ —-—- - -~ -
| Map Task | I | Map Task 2 I | Map Task 3 I
| L L '
| Lo L |
| Lo L |
| Lo Lo |
| L L '
| L L '
1|kl kv k2: ‘ ‘ k1 | 1 k3o kdw | kdwv k3w |1 | kd v | klw k3 |
| Partitioning Functio | | Partitioning Funetion | | Partitioning Funet I

Reduce Task 2 I
________________ -

Model has Broad Applicability

MapReduce Programs In Google Source Tree

1000

00—

0 | | | | | | |
Mar May Jul Sep MNovw Jan Mar May Jul GSep

2003 2004
Example uses:
distributed grep distributed sort web link-graph reversal
term-vector per host web access log stats inverted index construction

statistical machine

document clustering machine learning translation

Usage at Google

Table 1. MapReduce Statistics for Different Months.

Aug. 04 Mar. 06 Sep. 07
Number of jobs (1000s) 29 171 2217
Avg. completion time (secs) 634 874 395
Machine years used 217 2,002 11,081
map input data (TB) 3,288 52,254 403,152
map output data (TB) 758 6,743 34,774
reduce output data (TB) 193 2970 14,018
Avg. machines per job 157 268 394
Unique implementations
map 395 1958 4083
reduce 269 1208 2418

Number of instances in source lree

UL LA

ALK -

) ~

AAK)

VSR
VLS 2

HIVEINY
VK &
HIUKIEX

Fig. 4. MapReduce instances over time.

Hadoop

e Open Source Apache project

o Written in Java; runs on Linux, Windows, OS/X, Solaris

e Hadoop includes:

— MapReduce: distributes applications
— HDFS: distributes data

Compute Cluster
Dat |L'II5-BII.II.'k'I DE: Block
ata
dats data data da / OFS Block 1 m
data data data data data |
data clata data dana data -1
data data data data data Lo DFS Block 2
daita data
data ¢
daita [OF 5 Block 2
dala
data
e m
DFS Block
—

Hadoop Design Goals

e Storage of large data sets
e Running jobs in parallel

e Maximizing disk I/O

e Batch processing

Job Distribution

Users submit mapreduce jobs to jobtracker

Jobtracker puts jobs in queue, executes on first-come, first-served
basis

Jobtracker manages assignment of map and reduce tasks to
tasktrackers

Tasktrackers execute tasks upon instruction from jobtracker, and
handle data transfer between map and reduce phases

Hadoop MapReduce

{ User }
Job

Data Distribution

e Data transfer handled implicitly by HDFS
e Move computation to where data is: data locality

e Map tasks are scheduled on same node that input data
resides on

o If lots of data is on the same node, nearby nodes will
map instead

Hadoop DFS (HDFS)

Map Reduce and HDFS

master slave
task task
tracker tracker
: s :
tracker
FEEEEEEFEEEEEEEEEEENENEEEEFEEEEENEEEEEEEENEEEEEEEEERAEEEEEN
HOFS name
layer node
data data
node node

multi-node cluster

MapReduce
layer

http://www.michael-noll.com/wiki/Running_Hadoop On_Ubuntu_Linux_(Multi-Node_Cluster)

Data Access

e CPU and transfer speed, RAM and disk size double every
18-24 months

e Disk seek time is nearly constant (~5% per year)
e Time to read entire disk is growing

e Scalable computing should not be limited by disk seek
time
e Throughput more important than latency

Original Google Storage

The Originat Google Storage

N 5935 Lavey Page e et .
P S T S e o
2 favge

Source: Computer History Museum

HDFS

Inspired by Google File System (GFS)
Follows master/slave architecture

HDFS installation has one Namenode and one or more Datanodes (one per
node in cluster)

Namenode: Manages filesystem namespace and regulates file access by
clients. Makes filesystem namespace operations (open/close/rename of files
and directories) available via RPC

Datanode: Responsible for serving read/write requests from filesystem
clients. Also perform block creation/deletion/replication (upon instruction
from Namenode)

HDFS Design Goals

e Very large files:
— Files may be GB or TB in size

e Streaming data access:
— Write once, read many times
— Throughput more important than latency

e Commodity hardware
— Node failure may occur

HDFS

e Files are broken into blocks of 64MB (but can be user
specified)

e Default replication factor is 3x

e Block placement algorithm is rack-aware

e Dynamic control of replication factor

HDFS

Metada@_,gpg"" Namenode

HDFS Architecture

Metadata (Name, replicas, ...):
/home/foo/data, 3, ...

Block ops
Read Datanodes
’ |
1 S a Replication
[]
“ _
“\Y‘/"_
Rack 1

Datanodes

= n

Bloc

KS

Source: http://lucene.apache.org/hadoop/hdfs _design.html

Example HDFS Installation

Facebook, 2010 (Largest HDFS
installation at the time)

2000 machines, 22,400 cores
24 TB / machine, (21 PB total)
Writing 12TB/day

Reading 800TB/day

25K MapReduce jobs/day

65 Million HDFS files

30K simultaneous clients.

2014: Facebook generates 4 new
petabyes of data and runs 600,000
queries and 1 million map-reduce jobs
per day.

Hive is Facebook's data warehouse, with
300 petabytes of data in 800,000 tables

More at:
https://research.facebook.com/blog/15226929279
72019/facebook-s-top-open-data-problems/

1B users per day
(http://fortune.com/2015/08/28/1-billion-facebook/)

Companies to first use MapReduce/Hadoop

e Google LinkedIn

e Yahoo Disney

e Microsoft NY Times

e Amazon Ebay

e Facebook Quantcast

o Twitter Veoh

e Fox interactive media Joost |
Any company with

e AOL Last.fm enough data

e Hulu

Hadoop Vendors

e Cloudera Cloudera

e Hortonworks
Hortonworks

e MapR

e IBM BigInsights

Hive r"’

Apache Hive is a data warehouse infrastructure built on top of Hadoop for
providing data summarization, query, and analysis.

Developed at Facebook to enable analysts to query Hadoop data
MapReduce for computation, HDFS for storage, RDBMS for metadata

Can use Hive to perform SQL style queries on Hadoop data
Most Hive queries generate MapReduce jobs
Can perform parallel queries over massive data sets

Apache Pig

e Pig: High-level platform for creating MapRed
programs

e Developed at Yahoo
e Pig Latin: Procedural language for Pig

e Ability to use user code at any point in pipeline makes it
good for pipeline development

Traditional Data Enterprise Architecture

Business Custom Enterprise
Analytics Applications Applications
I Tmn REPOS
g Traditional Sources
g (RDBMS, OLTP, OLAP)

Hortonworks, 2013

Emerging Big Data Architecture

Business Custom
Analytics Applications Applications
DEV & DATA

E 99 9| —
RDBMS EDW MPP " HADOOP PLATFORM

z TRADITWONAL REPOS

! Traditional Sources New Sources

= (RDBMS, OLTP, OLAP) {web logs, email, sensors, social media)

3

1. Collect data
2. Clean and process using Hadoop
3. Push data to Data Warehouse, or use directly in Enterprise applications

Hortonworks, 2013

e Data flow of meter done manually

&
'y

Manual Meter
Reading

Enroliment &
Events

Weather & Survey|
Data

Awadallah and Graham

o Automatic update of meter readings every 15 mins

Power Smart
Generators Meters
|
{ g Meter Data Pmrmenl;s& Customer Service
Management System
* System
i@ i ¥ i i3 T
JEPSES)S|
Y Customer
Enroliment & Events — :Elmmﬁt
anageme
Weather & Survey Data — -

Awadallah and Graham

DW and Hadoop Use Cases

Requirement

Low latency, interactive reports, and OLAP

ANSI 2003 S0QL compliance is required
Preprocessing or exploration of raw unstructured data
Online archives alternative to tape

High-quality cleansed and consistent data

100s to 1000s of concurrent users

Discover unknown relationships in the data

Parallel complex process logic

CPU intense analysis

System, users, and data governance

Many flexible programming languages running in parallel
Unrestricted, ungovernaed sand box explorations
Analysis of provisional data

Extensive security and regulatory compliance

Real time data loading and 1 second tactical queries

Data Warehouse

Hadoop

Figure 4. Reguirements match to platforms

Awadallah and Graham

*HBasze

