
                                                                                                            K-Means Clustering Example

K-Means Clustering – Example

We recall from the previous lecture, that clustering allows for unsupervised learning. That is, the machine / software will learn on its own, using the data (learning set), and will classify the objects into a particular class – for example, if our class (decision) attribute is  tumorType and its values are: malignant, benign, etc. - these will be the classes. They will be represented by cluster1, cluster2, etc. However, the class information is never provided to the algorithm. The class information can be used later on, to evaluate how accurately the algorithm classified the objects.

	
	Curvature
	Texture
	Blood

Consump
	Tumor

Type

	x1
	0.8
	1.2
	A
	Benign

	x2
	0.75
	1.4
	B
	Benign

	x3
	0.23
	0.4
	D
	Malignant

	x4

.

.
	0.23
	0.5
	D
	Malignant



	
	Curvature
	Texture
	Blood

Consump
	Tumor

Type

	x1
	0.8
	1.2
	A
	Benign

	x2
	0.75
	1.4
	B
	Benign

	x3
	0.23
	0.4
	D
	Malignant

	x4

.

.
	0.23
	0.5
	D
	Malignant











(learning set)




With the K-Means algorithm, we recall it works as follows:
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K-means Clustering



Partitional clustering approach 



Each cluster is associated with a centroid (center point) 



Each point is assigned to the cluster with the closest centroid



Number of clusters, K, must be specified (is predetermined)



The basic algorithm is very simple
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K-means Clustering – Details



Initial centroids are often chosen randomly.

– Clusters produced vary from one run to another.



The centroid is (typically) the mean of the points in the 

cluster.



‘Closeness’ is measured by Euclidean distance, cosine 

similarity, correlation, etc. (the distance measure / function 

will be specified)



K-Means will converge (centroids move at each iteration). 

Most of the convergence happens in the first few 

iterations.

– Often the stopping condition is changed to ‘Until relatively few 

points change clusters’

.

.

.


Example

Problem: Cluster the following eight points (with (x, y) representing locations) into three clusters   A1(2, 10)  A2(2, 5)  A3(8, 4)  A4(5, 8)  A5(7, 5)  A6(6, 4)  A7(1, 2)  A8(4, 9). Initial cluster centers are: A1(2, 10),  A4(5, 8)  and  A7(1, 2).  The distance function between two points  a=(x1, y1)  and  b=(x2, y2)  is defined as:   ρ(a, b) = |x2 – x1| + |y2 – y1| .  

Use k-means algorithm to find the three cluster centers after the second iteration. 
Solution:

Iteration 1

	
	
	         (2, 10)
	        (5, 8)
	         (1, 2)
	

	
	Point
	Dist Mean 1
	Dist Mean 2
	Dist Mean 3
	Cluster

	A1
	(2, 10)
	
	
	
	

	A2
	(2, 5)
	
	
	
	

	A3
	(8, 4)
	
	
	
	

	A4
	(5, 8)
	
	
	
	

	A5
	(7, 5)
	
	
	
	

	A6
	(6, 4)
	
	
	
	

	A7
	(1, 2)
	
	
	
	

	A8
	(4, 9)
	
	
	
	


First we list all points in the first column of the table above. The initial cluster centers – means, are (2, 10),  (5, 8)  and  (1, 2) - chosen randomly.  Next, we will calculate the distance from the first point (2, 10)  to each of the three means, by using the distance function:

point

mean1

x1, y1

x2, y2
(2, 10)  
(2, 10)  
   ρ(a, b) = |x2 – x1| + |y2 – y1|
ρ(point, mean1) = |x2 – x1| + |y2 – y1|



  = |2 – 2| + |10 – 10|



  = 0 + 0



  = 0
point

mean2

x1, y1

x2, y2
(2, 10)  
(5, 8)  
   ρ(a, b) = |x2 – x1| + |y2 – y1|
ρ(point, mean2) = |x2 – x1| + |y2 – y1|



  = |5 – 2| + |8 – 10|



  = 3 + 2



  = 5
point

mean3

x1, y1

x2, y2
(2, 10)  
(1, 2)  
   ρ(a, b) = |x2 – x1| + |y2 – y1|
ρ(point, mean2) = |x2 – x1| + |y2 – y1|



  = |1 – 2| + |2 – 10|



  = 1 + 8



  = 9
So, we fill in these values in the table:

	
	
	         (2, 10)
	        (5, 8)
	         (1, 2)
	

	
	Point
	Dist Mean 1
	Dist Mean 2
	Dist Mean 3
	Cluster

	A1
	(2, 10)
	0
	5
	9
	1

	A2
	(2, 5)
	
	
	
	

	A3
	(8, 4)
	
	
	
	

	A4
	(5, 8)
	
	
	
	

	A5
	(7, 5)
	
	
	
	

	A6
	(6, 4)
	
	
	
	

	A7
	(1, 2)
	
	
	
	

	A8
	(4, 9)
	
	
	
	


So, which cluster should the point (2, 10) be placed in?  The one, where the point has the shortest distance to the mean – that is mean 1 (cluster 1), since the distance is 0.

Cluster 1

Cluster 2

Cluster 3

(2, 10)

So, we go to the second point  (2, 5)  and we will calculate the distance  to each of the three means, by using the distance function:

point

mean1

x1, y1

x2, y2
(2, 5)  

(2, 10)  
   ρ(a, b) = |x2 – x1| + |y2 – y1|
ρ(point, mean1) = |x2 – x1| + |y2 – y1|



  = |2 – 2| + |10 – 5|



  = 0 + 5



  = 5
point

mean2

x1, y1

x2, y2
(2, 5)  

(5, 8)  
   ρ(a, b) = |x2 – x1| + |y2 – y1|
ρ(point, mean2) = |x2 – x1| + |y2 – y1|



  = |5 – 2| + |8 – 5|



  = 3 + 3



  = 6
point

mean3

x1, y1

x2, y2
(2, 5)
  
(1, 2)  
   ρ(a, b) = |x2 – x1| + |y2 – y1|
ρ(point, mean2) = |x2 – x1| + |y2 – y1|



  = |1 – 2| + |2 – 5|



  = 1 + 3



  = 4
So, we fill in these values in the table:

Iteration 1

	
	
	         (2, 10)
	        (5, 8)
	         (1, 2)
	

	
	Point
	Dist Mean 1
	Dist Mean 2
	Dist Mean 3
	Cluster

	A1
	(2, 10)
	0
	5
	9
	1

	A2
	(2, 5)
	5
	6
	4
	3

	A3
	(8, 4)
	
	
	
	

	A4
	(5, 8)
	
	
	
	

	A5
	(7, 5)
	
	
	
	

	A6
	(6, 4)
	
	
	
	

	A7
	(1, 2)
	
	
	
	

	A8
	(4, 9)
	
	
	
	


So, which cluster should the point (2, 5) be placed in?  The one, where the point has the shortest distance to the mean – that is mean 3 (cluster 3), since the distance is 0.

Cluster 1

Cluster 2

Cluster 3

(2, 10)





(2, 5)

Analogically, we fill in the rest of the table, and place each point in one of the clusters:

Iteration 1

	
	
	         (2, 10)
	        (5, 8)
	         (1, 2)
	

	
	Point
	Dist Mean 1
	Dist Mean 2
	Dist Mean 3
	Cluster

	A1
	(2, 10)
	0
	5
	9
	1

	A2
	(2, 5)
	5
	6
	4
	3

	A3
	(8, 4)
	12
	7
	9
	2

	A4
	(5, 8)
	5
	0
	10
	2

	A5
	(7, 5)
	10
	5
	9
	2

	A6
	(6, 4)
	10
	5
	7
	2

	A7
	(1, 2)
	9
	10
	0
	3

	A8
	(4, 9)
	3
	2
	10
	2


Cluster 1

Cluster 2

Cluster 3

(2, 10)


(8, 4)


(2, 5)




(5, 8)


(1, 2)




(7, 5)




(6, 4)




(4, 9)

Next, we need to re-compute the new cluster centers (means). We do so, by taking the mean of all points in each cluster.

For Cluster 1, we only have one point A1(2, 10), which was the old mean, so the cluster center remains the same.

For Cluster 2, we have ( (8+5+7+6+4)/5, (4+8+5+4+9)/5 ) = (6, 6)

For Cluster 3, we have ( (2+1)/2, (5+2)/2 ) = (1.5, 3.5)

[image: image3.wmf]
The initial cluster centers are shown in red dot. The new cluster centers are shown in red x.

That was Iteration1 (epoch1). Next, we go to Iteration2 (epoch2), Iteration3, and so on until the means do not change anymore. 

In Iteration2, we basically repeat the process from Iteration1 this time using the new means we computed.
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‘We would need two more epochs. After the 2°¢

1: {Al, A8}, 2: {A3, A4, AS, AG}, 3: {A2, AT}
with centers C1=(3, 9.5), C 6.5.5.25) and C.
After the 3 epoch, the results would be:

1: {Al, A4, A8}, 2: {A3, AS, AG}, 3: {A2, AT}

with centers C1=(3.66. 9). 33) and C3=(1.5, 3.5).
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The way we do that, is by plotting the objects from the database into space. Each attribute is one dimension:








After all the objects are plotted, we will calculate the distance between them, and the ones that are close to each other – we will group them together, i.e. place them in the same cluster.
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K-means Clustering – Details

		Initial centroids are often chosen randomly.

		Clusters produced vary from one run to another.

		The centroid is (typically) the mean of the points in the cluster.

		‘Closeness’ is measured by Euclidean distance, cosine similarity, correlation, etc. (the distance measure / function will be specified)

		K-Means will converge (centroids move at each iteration). Most of the convergence happens in the first few iterations.

		Often the stopping condition is changed to ‘Until relatively few points change clusters’



.

.

.



(C) Vipin Kumar, Parallel Issues in Data Mining, VECPAR 2002






