
Cloud Computing for Data Analysis

Group Activity 05

k-means on MapReduce

This problem will help you understand the nitty gritty details of implementing clustering

algorithms on Hadoop. In addition, this problem will also help you understand the impact of using

various distance metrics and initialization strategies in practice. Let us say we have a set X of n

data points in the d-dimensional space Rd. Given the number of clusters k and the set of k centroids

C, we now proceed to define various distance metrics and the corresponding cost functions that

they minimize.

Euclidean distance: Given two points A and B in d dimensional space such that

A = [a1, a2, ……… ad] and B = [b1, b2,…… bd], the Euclidean distance between A and B is defined

as:

The corresponding cost function Φ that is minimized when we assign points to clusters using

the Euclidean distance metric is given by:

Iterative k-Means Algorithm: We learned the basic k-Means algorithm in class which is as

follows: k centroids are initialized, each point is assigned to the nearest centroid and the centroids

are recomputed based on the assignments of points to clusters. In practice, the above steps are run

for several iterations. We present the resulting iterative version of k-Means in Algorithm 1

Algorithm 1 Iterative k-Means Algorithm

1: procedure Iterative k-Means

2: Select k points as initial centroids of the k clusters.

3: for iterations := 1 to MAX ITER do

4: for each point p in the dataset do

5: Assign point p to the cluster with the closest centroid

6: end for

7: for each cluster c do

8: Recompute the centroid of c as the mean of all the data points assigned to c

9: end for

10: end for

11: end procedure

Iterative k-Means clustering on Hadoop: Implement iterative k-means using MapReduce where a

single step of MapReduce completes one iteration of the k-means algorithm. So, to run k-means

for i iterations, you will have to run a sequence of i MapReduce jobs. Please use the dataset

at https://www.dropbox.com/sh/catm7lun0siijaf/AACMN-IsEADzqrjBNfAY9dhla?dl=0 for this

problem. The zip has 4 files:

1. data.txt contains the dataset which has 4601 rows and 58 columns. Each row is a document

represented as a 58 dimensional vector of features. Each component in the vector represents

the importance of a word in the document.

2. c1.txt contains k initial cluster centroids. These centroids were chosen by selecting k = 10

random points from the input data.

3. c2.txt contains initial cluster centroids which are as far apart as possible. (You can do this

by choosing 1st centroid c1 randomly, and then finding the point c2 that is farthest from c1,

then selecting c3 which is farthest from c1 and c2, and so on).

Set number of iterations (MAX_ITER) to 20 and number of clusters k to 10 for all the experiments

carried out in this question.

Hint about job chaining:

We need to run a sequence of Hadoop jobs where the output of one job will be the input for the

next one. There are multiple ways to do this and you are free to use any method you are comfortable

with. One simple way to handle such a multistage job is to configure the output path of the first

job to be the input path of the second and so on.

http://snap.stanford.edu/class/cs246-data/hw2-q4-kmeans.zip

The following pseudo code demonstrates job chaining

var inputDir

var outputDir

var centroidDir

for i in no-of-iterations{

Configure job here with all params

Set job input directory = inputDir

Set job output directory = outputDir + i

Run job

centroidDir = outputDir + i

}

You will also need to share the location of the centroid file with the mapper. There are many ways

to do this and you can use any method you find suitable. One way is to use the Hadoop

Configuration object. You can set it as a property in the Configuration object and retrieve the

property value in Mapper setup function

For more details see:

1. http://hadoop.apache.org/docs/r1.0.4/api/org/apache/hadoop/conf/Configuration.

html

2. http://hadoop.apache.org/docs/r1.0.4/api/org/apache/hadoop/mapreduce/Mapper.h

tml

Exploring initialization strategies with Euclidean distance

Task – 1:

Using the Euclidean distance (refer to Equation 1) as the distance measure, compute the cost

function φ(i) (refer to Equation 2) for every iteration i. This means that, for your first MapReduce

job iteration, you’ll be computing the cost function using the initial centroids located in one of

the two text files. Run the k-means on data.txt using c1.txt and c2.txt. Generate a graph where

you plot the cost function φ(i) as a function of the number of iterations i=1, …20 for c1.txt and

also for c2.txt.

(Hint: Note that you do not need to write a separate MapReduce job to compute φ(i). You can just

incorporate the computation of φ(i) into the Mapper/Reducer.)

http://hadoop.apache.org/docs/r1.0.4/api/org/apache/hadoop/conf/Configuration.html#set(java.lang.String%2C%20java.lang.String)
http://hadoop.apache.org/docs/r1.0.4/api/org/apache/hadoop/mapreduce/Mapper.html#setup(org.apache.hadoop.mapreduce.Mapper.Context)

Task – 2:

What is the percentage change in cost after 10 iterations of the K-Means algorithm when the

cluster centroids are initialized using c1.txt vs. c2.txt and the distance metric being used is

Euclidean distance? Is random initialization of k-means using c1.txt better than initialization using

c2.txt in terms of cost φ(i)? Explain your reasoning.

What to Submit?

1. Upload your source code, working .jar file

2. README file noting any assumptions you made in your program and steps to execute

your code

3. A graph plot of cost vs. iteration for c1.txt and c2.txt for Task - 1

4. Percentage improvement values for Task - 2

