
Discovery of Interesting Action Rules

Zbigniew W. Raś1,2, Angelina A. Tzacheva1, and
Li-Shiang Tsay1

1 UNC-Charlotte, Department of Computer Science,
Charlotte, N.C. 28223, USA

2 Polish Academy of Sciences, Institute of Computer Science,
Ordona 21, 01-237 Warsaw, Poland

Abstract. There are two aspects of interestingness of rules, objective
and subjective measures ([7], [1], [15], [16]. Objective measures are data-
driven and domain-independent. Generally, they evaluate the rules based
on their quality and similarity between them. Subjective measures are
user-driven, domain-dependent, and include unexpectedness, novelty and
actionability [7], [1], [15], [16]. Liu [7] defines a rule as actionable one,
if user can do an action to his/her advantage based on that rule. In
[12] it was assumed that actionability has to be expressed in terms of
changes in values of certain attributes which are used in an informa-
tion system. They introduced a new class of rules (called action rules)
which are constructed from certain pairs of association rules extracted
from the same information system. Conceptually similar definition of an
action rule was proposed independently by [4]. Action rules have been
investigated further in [14], [13], [11], and [18].
In order to construct action rules it is required that attributes in a
database are divided into two groups: stable and flexible. Flexible at-
tributes are used in a decision rule as a tool for making hints to a user
what changes within some of their values are needed to reclassify a group
of objects from one decision class into another one. In this paper, we give
a strategy for constructing all action rules from a given information sys-
tem and show that action rules constructed by system DEAR, presented
in [13], cover only a small part of all action rules. Clearly, we are not inter-
ested in all action rules as we are not interested in extracting all possible
rules from an information system. Classical strategies like See5, LERS,
CART , Rosetta, Weka are discovering rules which classification part is
either the shortest or close to the shortest. This approach is basically
ruling out all other classification rules unless their are surprising rules
[17]. In this paper, we introduce the notion of a cost of an action rule
and define interesting action rules as rules of the smallest cost. We give
a strategy showing how interesting action rules can be generated from
action rules discovered system DEAR.

1 Introduction

There are two aspects of interestingness of rules that have been studied in data
mining literature, objective and subjective measures (see [7], [1], [15], [16]. Objec-
tive measures are data-driven and domain-independent. Generally, they evaluate



the rules based on their quality and similarity between them. Subjective mea-
sures, including unexpectedness, novelty and actionability, are user-driven and
domain-dependent.

A rule is actionable if user can do an action to his/her advantage based on
that rule [7]. This definition is not only subjective but we may even formulate
actions which involve attributes outside the information system schema. In order
to decrease the number of such actions, the definition of a new class of rules
(called action rules) constructed from certain pairs of classification rules has
been given in [12]. Independently, another formal definition of an action rule
was proposed in [4]. These rules have been investigated further in [13], [11], [19],
[18].

To give an example justifying the need of action rules, let us assume that a
number of customers have stopped buying products at one of the grocery stores.
To find the cause of their decision, possibly the smallest and the simplest set
of rules describing all these customers is extracted from the customer database.
For instance, let us assume that [Nationality, European] ∧ [Milk Products, Kefir]
−→ [Profit, Excellent] is such a rule. Assume also that from the same database,
a rule [Nationality, European] −→ [Profit, Average] representing the remaining
customers has been extracted. At the same time, we know that the grocery store
stopped ordering kefir about a month ago. Now, by comparing these two rules,
we can easily find out that the grocery store manager should start ordering
kefir again if he does not want to loose more European customers. Action rule,
constructed from these two rules, is represented by the expression: [Nationality,
European] ∧ [Milk Products, −→ Kefir] −→ [Profit, Average −→ Excellent]. It
should be read as: If Europeans will buy Kefir, then they should shift from the
average group of customers to the excellent one. Ordering kefir by the grocery
store manager is an example of its implementation.

Formal definition of an action rule and the algorithm to construct them from
classification rules was proposed in [12]. This algorithm was implemented as one
of the modules in DEAR [13] system.

In this paper, we present a new method to construct action rules directly
from an information system. At the same time, we show that any action rule
is naturally associated with a pair of classification rules from which it can be
constructed following the strategy given in [12]. So, to have the certainty that
strategy proposed in [12] generates all action rules from a given information
system S, we need to develop an algorithm which generates all classification
rules (not only rules which classification part is the shortest). The easiest way
to achieve that goal is to modify one of the classical rule discovery methods.
We have chosen system LERS for that purpose because it requires quite simple
modification (terms producing classification rules are marked in LERS but in
our algorithm they remain unmarked and they are still used in the process of
classification rules construction).

Following the proposed strategy, all action rules can be constructed from
all possible classification rules. Independently from the method of constructing



them (either directly from an information system or using pairs of extended
classification rules), their number is not only too large but also both methods
are too expensive (in terms of time complexity). It leaves us with a similar
problem initially faced in association rules mining. It was partially solved by
proposing a small subset of association rules, called representative rules, jointly
with a very simple strategy of generating all remaining association rules from
them. It was proved that this strategy is sound and complete [6].

Following similar approach, we could try to find a small subset of action rules
and look for a strategy to generate from them all remaining action rules. As we
mentioned before, the strategy presented in [12] discovers only a small subset of
action rules. In this paper we propose a sound strategy of discovering a small
part of the remaining action rules classified as interesting rules on the basis of
their cost (cheaper means more interesting). Clearly, the question of identifying
a small subset of action rules from which all the remaining action rules can be
constructed is open.

2 Information System and Action Rules

An information system is used for representing knowledge. Its definition, pre-
sented here, is due to [8].

By an information system we mean a pair S = (U,A), where:

– U is a nonempty, finite set of objects,
– A is a nonempty, finite set of attributes, i.e. a : U −→ Va is a function for

any a ∈ A, where Va is called the domain of a.

Objects, for instance, can be interpreted as customers. Attributes can be
interpreted as features, offers made by a grocery store, characteristic conditions
etc.

In this paper we only consider the special case of information systems called
decision tables [8]. In any decision table together with the set of attributes a
partition of that set into conditions and decisions is given. Additionally, we
assume that the set of conditions is partitioned into stable conditions and flexible
conditions. For simplicity reason, we assume that there is only one decision
attribute. Date of birth is an example of a stable attribute. Interest rate on any
customer account is an example of a flexible attribute (dependable on a bank).
We adopt the following definition of a decision table:

By a decision table we mean an information system S = (U,A1 ∪A2 ∪ {d}),
where d 6∈ A1 ∪ A2 is a distinguished attribute called decision. The elements of
A1 are called stable conditions, whereas the elements of A2 are called flexible
conditions.

As an example of a decision table we take S = ({x1, x2, x3, x4, x5, x6, x7, x8, x9},
{a, c}∪{b}∪{d}) represented by Table 1. Attribute a is stable, {b, c} is the set of



a b c d

x1 0 S 0 L

x2 0 R 1 H

x3 0 S 0 L

x4 0 R 1 H

x5 2 P 2 L

x6 2 P 2 L

x7 2 S 2 H

x8 2 S 2 H

x9 2 S 0 L

Table 1. Decision System S

flexible attribute and d is a decision attribute. Also, we assume that H denotes
a high profit and L denotes a low one.

In order to induce rules in which the THEN part consists of the decision
attribute d and the IF part consists of attributes belonging to A1∪A2, subtables
(U,B ∪ {d}) of S where B is a d-reduct [8] in S are used for rules extraction.
By L(r) we mean all attributes listed in the IF part of a rule r. For example,
if r = [(a, 2) ∗ (b, S) −→ (d,H)] is a rule then L(r) = {a, b}. By d(r) we denote
the decision value of that rule. In our example d(r) = H. If r1, r2 are rules and
B ⊆ A1 ∪ A2 is a set of attributes, then the equation r1/B = r2/B means that
the conditional parts of rules r1, r2 restricted to attributes B are the same. Now,
if r1 = [(b, S) ∗ (c, 2) −→ (d,H)], then r1/{b} = r/{b}.

Any certain rule is optimal in S, if by dropping an attribute value listed
in its conditional part we get a rule which is no longer certain one. Similar
definition of optimality can be used for classification rules if we only assume
that the assumption about their certainty is replaced by a threshold value for
their minimal confidence.

Now, let us assume that (a, v −→ w) denotes the fact that the value of
attribute a has been changed from v to w for a number of objects in S. Similarly,
the term (a, v −→ w)(x) means that the attribute value a(x) = v has been
changed to a(x) = w for the object x.

Let S = (U,A1 ∪ A2 ∪ {d}) be a decision table and certain rules r1, r2 are
extracted from S. Assume that B1 is a maximal subset of A1 such that r1/B1 =
r2/B1, d(r1) = k1, d(r2) = k2 and k1 ≤ k2. Also, assume that (b1, b2, ..., bp)
is a list of all attributes in L(r1) ∩ L(r2) ∩ A2 on which r1, r2 differ in values
and r1(b1) = v1, r1(b2) = v2,..., r1(bp) = vp, r2(b1) = w1, r2(b2) = w2,...,
r2(bp) = wp.

By (r1, r2)-action rule r in S we mean the expression:



r = [[(b1, v1 −→ w1) ∧ (b2, v2 −→ w2) ∧ ... ∧ (bp, vp −→ wp)]⇒
[(d, k1 −→ k2)]].

By an action rule in S we mean any (r1, r2)-action rule r in S, where r1, r2
are classification rules extracted from S. Clearly, if r is an action rule in S, then
more than one pair of classification rules extracted from S may be used to define
r.

Similarly to the notation adopted for rules extracted from S, we assume that
L(r) = {b1, b2, ..., bp}. Two definitions related to support of an action rule are
proposed. They both take an optimistic approach. We list them below.

We say that object x supports action rule r in S, if there is an object y ∈ U
such that:

– (∀i ≤ p)[[bi ∈ L(r)] −→ [bi(x) = vi]],
– (∀i ≤ p)[[bi ∈ L(r)] −→ [bi(y) = wi]],
– (∀b ∈ [A1 − L(r)])[b(x) = b(y)],
– d(x) = k1 and d(y) = k2.

We say that object x supports (r1, r2)-action rule r in S, if there is an object
y ∈ U such that:

– x supports classification rule r1,
– y supports classification rule r2,
– (∀b ∈ [A1 − L(r)])[b(x) = b(y)],
– d(x) = k1 and d(y) = k2.

Clearly, the second definition is much stronger since it requires from objects
x, y to support classification rules r1, r2, correspondingly. The first definition
requires only the support restricted to attributes in {bi : 1 ≤ i ≤ p} ∪ {d}. It
does not relate to classification rules used to construct an action rule.

By the support of (r1, r2)-action rule r in S, denoted by SupSr1,r2
(r), we

mean the number of objects in S supporting (r1, r2)-action rule r.

By the support of action rule r in S, denoted by SupS(r), we mean the
number of objects in S supporting r. Clearly SupSr1,r2

(r) ≤ SupS(r), for any
r1, r2.

By the confidence of action rule r in S, denoted by ConfS(r), we mean
[SupS(r)/SupS({vi : 1 ≤ i ≤ p})].

By the confidence of (r1, r2)-action rule r in S, denoted by ConfSr1,r2
(r), we

mean [SupSr1,r2
(r)/SupS(r1)].

Let us go back again to the example of a decision table S 2. Assume for
now that only attributes b, d are flexible in S, where Vb = {S,R, P} and Vd =
{L,H}. To generate all possible action rules directly from S which may reclassify
objects from class L to H, we have to consider all combinations of changes



involving values of flexible attributes. In our simplified example, they are: S → R,
S → P , R → S, P → S, R → P , P → R. In general, if {b1, b2, ..., bp} is the
list of all flexible attributes in S excluding a binary decision attribute d and
card(Vbi

) = mi, (i = 1, 2, ..., p), then we have 2p − 1 different classes of action
rules to be considered. Each class is labelled by a subset of {b1, b2, ..., bp}. Let
{bi1 , bi2 , ..., biq

} be one of such subsets. The number of possible action rules
associated with that subset is equal to 2q ·

∏q

j=1
[mij

· (mij
− 1)]. Clearly, having

such a huge number of possible action rules we can not generate them one by
one from the decision table. So, we have to look for alternate methods.

Let us assume that vi, wi ∈ Vbi
, i ∈ {1, 2, .., p} and ki ∈ Vd, where i =

1, 2. The general idea in action rules construction is to identify a set of objects
satisfying properties {v1, v2, .., vp, k1} and a set of objects satisfying properties
{w1, w2, .., wp, k2}. The goal of an action rule is to reclassify objects satisfying
the first set of properties to the class k2 which is more preferable state. To
achieve that, we may require to change v1 to w1, change v2 to w2, and change
vp to wp, then the expectation is that k1 will change to k2. To materialize such
an expectation, we need an association between elements in {v1, v2, , vp} and k1

and another association between elements in {w1, w2, , wp} and k2. Otherwise,
we wouldn’t succeed. Basically, two classification rules have to be hidden in an
action rule. One classification rule is linked with the left hand side of an action
rule and the other one with its right hand side. To generate classification rules we
have to use some knowledge discovery strategy. But, the classical KD strategies
generate only the shortest or close to the shortest classification rules. Therefore,
we have to develop a new algorithm for discovering all classification rules. To do
that we will modify LERS strategy given by [5].

3 Discovering All Action Rules

In this section, we show how to modify LERS algorithm so it does not ex-
tract only the shortest classification rules but all of them. The original LERS
algorithm is placing a mark on the inclusion [t∗ ⊆ a∗i ], if the corresponding classi-
fication rule [t→ ai] satisfies the threshold for minimal confidence and support.
It means, after finding that rule, the term t is not extended further to guarantee
that the discovered classification rules are the shortest. The modified classifi-
cation rules mining algorithm (called E-LERS) allows the extension of terms
already marked. Since we are not placing any marks on constructed terms, the
algorithm generates all classification rules. We start with an algorithm, called
S-LERS, which is a modification of LERS.

Let us assume that S = (X,A ∪ {d}, V ) is a decision system, where X is
a set of objects, A = {a[i] : 1 ≤ i ≤ I} is a set of classification attributes,
Vi = {a[i, j] : 1 ≤ j ≤ J(i)} is a set of values of attribute a[i], i ≤ I. We also
assume that d is a decision attribute, where Vd = {d[m] : 1 ≤ m ≤M}.

Finally, we assume that a(i1, j1) · a(i2, j2) · ... · a(ir, jr) is denoted by term
[a(ik, jk)]k∈{1,2,...,r}, where all i1, i2, ..., ir are distinct integers and jp ≤ J(ip),



1 ≤ p ≤ r.

Algorithm for Extracting Classification Rules from Incomplete Deci-

sion System S

S-LERS(S, λ1, λ2, L(D));
S = (X,A, V ) - incomplete decision system,
λ1 - threshold for minimum support,
λ2 - threshold for minimum confidence,
L(D) set of rules discovered from S by S-LERS.
begin

i := 1;
while i ≤ I do
begin

j := 1; m := 1
while j ≤ J [i] do
begin

if sup(a[i, j]→ d(m)) < λ1 then mark[a[i, j]? ¹ d(m)?];
if sup(a[i, j]→ d(m)) ≥ λ1 and conf(a[i, j]→ d(m)) ≥ λ2 then

begin

mark[a[i, j]? ¹ d(m)?];
output[a[i, j]→ d(m)]
end

j := j + 1
end

end

Ik := {ik}; /ik - index randomly chosen from {1, 2, ..., I}/
for all jk ≤ J(ik) do a[(ik, jk)]ik∈Ik

:= a(ik, jk);
for all i, j such that both rules

a[(ik, jk)]ik∈Ik
→ d(m),

a[i, j]→ d(m) are not marked and i 6∈ Ik do

begin

if sup(a[(ik, jk)]ik∈Ik
· a[i, j]→ d(m)) < λ1

then mark[(a[(ik, jk)]ik∈Ik
· a[i, j])? ¹ d(m)?];

if sup(a[(ik, jk)]ik∈Ik
· a[i, j]→ d(m)) ≥ λ1 and

conf(a[(ik, jk)]ik∈Ik
· a[i, j]→ d(m)) ≥ λ2 then

begin

mark[(a[(ik, jk)]ik∈Ik
· a[i, j])? ¹ d(m)?];

output[a[(ik, jk)]ik∈Ik
· a[i, j]→ d(m)]

end

else

begin

Ik := Ik ∪ {i};
a[(ik, jk)]ik∈Ik

:= a[(ik, jk)]ik∈Ik
· a[i, j]

end



end

Again, let us consider the decision system S represented by Table 2 and let
us discover rules from it using the above algorithm.

It can be easily checked the the following certain classification rules are gen-
erated:

– r1 = [(B,P )→ (D,L)]; Sup(r1)=2
– r2 = [(C, 0)→ (D,L)]; Sup(r2)=2
– r3 = [(A, 0) ∧ (B,S)→ (D,L)]; Sup(r3)=2
– r4 = [(B,S) ∧ (C, 1)→ (D,L)]; Sup(r4)=1
– r5 = [(B,R)→ (D,H)]; Sup(r5)=2
– r6 = [(B,S) ∧ (C, 2)→ (D,H)]; Sup(r6)=2

Five action rules are constructed from these six classification rules:

– [(B,P → R)→ (D,L→ H)]; Sup=2
– [(B,P → S)→ (D,L→ H)]; Sup=2
– [(C, 0→ 2)→ (D,L→ H)]; Sup=2
– [(B,S → R)→ (D,L→ H)]; Sup=2
– [(C, 1→ 2)→ (D,L→ H)]; Sup=1

Now, we give E-LERS algorithm which differs from S-LERS by marking only
terms in S-LERS which have support below the threshold value. We do not mark
terms from which classification rules are constructed. This algorithm is given be-
low:

Algorithm for Extracting All Classification Rules from Incomplete

Decision System S

E-LERS(S, λ1, λ2, L(D));
S = (X,A, V ) - incomplete decision system,
λ1 - threshold for minimum support,
λ2 - threshold for minimum confidence,
L(D) set of rules discovered from S by E-LERS.
begin

i := 1;
while i ≤ I do
begin

j := 1; m := 1
while j ≤ J [i] do
begin

if sup(a[i, j]→ d(m)) < λ1 then mark[a[i, j]? ¹ d(m)?];
if sup(a[i, j]→ d(m)) ≥ λ1 and conf(a[i, j]→ d(m)) ≥ λ2 then

output[a[i, j]→ d(m)]
j := j + 1
end



end

Ik := {ik}; /ik - index randomly chosen from {1, 2, ..., I}/
for all jk ≤ J(ik) do a[(ik, jk)]ik∈Ik

:= a(ik, jk);
for all i, j such that both rules

a[(ik, jk)]ik∈Ik
→ d(m),

a[i, j]→ d(m) are not marked and i 6∈ Ik do

begin

if sup(a[(ik, jk)]ik∈Ik
· a[i, j]→ d(m)) < λ1

then mark[(a[(ik, jk)]ik∈Ik
· a[i, j])? ¹ d(m)?];

if sup(a[(ik, jk)]ik∈Ik
· a[i, j]→ d(m)) ≥ λ1 and

conf(a[(ik, jk)]ik∈Ik
· a[i, j]→ d(m)) ≥ λ2 then

output[a[(ik, jk)]ik∈Ik
· a[i, j]→ d(m)]

else

begin

Ik := Ik ∪ {i};
a[(ik, jk)]ik∈Ik

:= a[(ik, jk)]ik∈Ik
· a[i, j]

end

end

It can be easily checked that nineteen certain classification rules are generated
by E-LERS. Clearly, all six classification rules extracted by S-LERS are included
in this new set. Five new classification rules extracted by E-LERS are given
below:

– r7 = [(A, 0) ∧ (C, 0)→ (D,L)]; Sup(r7)=1
– r8 = [(A, 2) ∧ (B,P )→ (D,L)]; Sup(r8)=2
– r9 = [(A, 2) ∧ (C, 0)→ (D,L)]; Sup(r9)=1
– r10 = [(A, 0) ∧ (B,S) ∧ (C, 1)→ (D,L)]; Sup(r10)=1
– r11 = [(A, 0) ∧ (B,S) ∧ (C, 0)→ (D,L)]; Sup(r11)=1

Eight action rules can be constructed by using all nineteen classification rules
generated by E-LERS strategy. Clearly five action rules constructed from rules
generated by S-LERS are included in that new set. The new action rules are
listed below:

– [(C, 0→ 1)→ (D,L→ H)]; Sup=2
– [[(B,S → R) ∧ (C, 0→ 1)]→ (D,L→ H)]; Sup=2
– [[(B,P → R) ∧ (C, 2→ 1)]→ (D,L→ H)]; Sup=2

This example shows that some action rules constructed from classification
rules generated by E-LERS are specifications of action rules constructed from
classification rules generated by S-LERS. As an example, we can use rules:
[[(B,S → R) ∧ (C, 0 → 1)] → (D,L → H)] which is E-LERS-based and
[(B,S → R) → (D,L → H)] which is LERS-based. However some action rules
constructed from classification rules generated by E-LERS are independent from
action rules constructed from classification rules generated by S-LERS. As an
example, we can take: [(C, 0 → 1) → (D,L → H)]. It shows that either all



classification rules have to be used to generate all action rules or an alternative
strategy similar to the concept of representative rules in a class of association
rules is needed.

The definition of support of (r1, r2)-action rule r in S is not very pleasant
because it requires rules r1, r2 to be extracted first from S. In order to construct
all action rules based on S, we need to consider all pairs of rules extracted from
S and pick up only those which satisfy the condition required for action rules
construction. Then, from each of these pairs we construct an action rule and
calculate its support and confidence. To speed up the process of action rules
construction, we can concentrate on action rules which are built from certain
pairs of rules extracted from S. For instance, we can consider pairs of rules not
only satisfying the required condition for action rules construction but also which
have a small number of overlapping flexible attributes in their conditional part.
This way we minimize the number of attribute values required by an action rule
to be changed for any object supporting that rule. But the question is if action
rules constructed that way can be seen as a set of generators for the remaining
rules?

4 Discovering Interesting Action Rules

Assume that S = (U,A1 ∪ A2 ∪ {d}). Let b ∈ A1 is a flexible attribute and
b1, b2 are its two values. By ρS(b1, b2) we mean a number from (0,+∞] which
describes the average cost to change the attribute value from b1 to b2 for any
of the qualifying objects in S. Object x ∈ U qualifies for the change from b1
to b2, if b(x) = b1. If the above change is not feasible for one of the qualifying
objects in S, then we write ρS(b1, b2) = +∞. The value of ρS(b1, b2) close to
zero is interpreted that the change of values from b1 to b2 is trivial to accomplish
for qualifying objects in S whereas any large value of ρS(b1, b2) means that this
change of values is practically very difficult to get for some of the qualifying
objects in S.

If ρS(b1, b2) < ρS(b3, b4), then we say that the change of values from b1 to b2
is more feasible than the change from b3 to b4.

We assume that the values ρS(bj1, bj2) are provided by experts. They are
treated as atomic expressions and used later to introduce the notion of the
feasibility and the cost of action rules in S.

Let us assume that r = [(b1, v1 → w1)∧(b2, v2 → w2)∧∧(bp, vp → wp)](x)⇒
(d, k1 → k2)(x) is a (r1, r2)-action rule. By the cost of r denoted by cost(r)
we mean the value

∑
{ρS(vk, wk) : 1 ≤ k ≤ p}. We say that r is feasible if

cost(r) < ρS(k1, k2).

Assume now that user would like to re-classify some customers in S from the
group k1 to the group k2, where k1, k2 ∈ Vd. We may look for an appropriate
action rule, possibly of the lowest cost value, to get a hint which attribute values
need to be changed. Another words, let us assume that RS [(d, k1 → k2)] denotes



the set of all action rules in S having the term (d, k1 → k2) on their decision site.
Now, among all action rules in RS [(d, k1 → k2)] we may identify a rule which
has the lowest cost value. But the rule we get may still have the cost value much
to high to be of any help to us. Let us notice that the cost of the action rule

r = [(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ ... ∧ (bp, vp → wp)](x)⇒ (d, k1 → k2)(x)

might be high only because of the high cost value of one of its sub-terms in the
conditional part of the rule.

Let us assume that (bj , vj → wj) is that term. In such a case, we may look
for an action rule in RS [(bj , vj → wj)] which has the smallest cost value.

Assume that r1 = [(bj1, vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ ... ∧ (bjq, vjq →
wjq)](y) ⇒ (bj , vj → wj)(y) is such a rule which is also feasible in S. Since
x, y ∈ U , we can compose r with r1 getting a new feasible rule which is given
below:

[(b1, v1 → w1) ∧ ... ∧ [(bj1, vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ ... ∧ (bjq, vjq →
wjq)] ∧ ... ∧ (bp, vp → wp)](x)⇒ (d, k1 → k2)(x).

Clearly, the cost of this new rule is lower than the cost of r. However, if its
support in S gets too low, then such a rule is useless for us. Otherwise, we may
recursively follow this strategy trying to lower the cost of re-classifying objects
from the group k1 into the group k2. Each successful step will produce a new
action rule which cost is lower than the cost of the current rule. This heuristic
strategy was presented in [18] as an A?-algorithm generating action rules of the
cost below some user specified threshold value. Such rules are called interesting
rules.

5 Conclusion

System E-LERS generates all classification rules from S (satisfying two thresh-
olds, the first one for a minimum support and second for a minimum confidence)
defining values of a decision attribute in S, in terms of the remaining attributes.
These classification rules are used by DEAR to generate all action rules. So, the
current strategy requires the generation of classification rules from S to form a
base, before the process of action rules construction starts.

Alternate strategy is to partition the set of action rules using the notion of a
cost of rule proposed in [18]. Next we generate the set of action rules following
DEAR strategy based on classical classification rules. This set is seen as the set
of generators to which A∗-search strategy proposed in [18] is applied to generate
new action rules, classified as the most interesting rules with respect to the cost.
This approach although does not generate all action rules, it generates rules
which seems to be the mostly desirable by user.



References

1. Adomavicius, G., Tuzhilin, A., 1997, Discovery of actionable patterns in
databases: the action hierarchy approach. In: Proceedings: KDD’97 Conference,
Newport Beach, CA, AAAI Press.

2. Chmielewski, M.R., Grzymala-Busse J. W., Peterson N. W., Than S., 1993, The
Rule Induction System LERS - a version for personal computers, International
Journal of Approximate Reasoning, 18(3-4), Institute of Computing Science,
Technical University of Poznań, Poland, pp. 181-212.

3. Dardzińska, A., Raś, Z.W., 2003, On Rule Discovery from Incomplete Information
Systems. In: Proceedings: ICDM’03 Workshop on Foundations and New Direc-
tions of Data Mining, T.Y. Lin, X. Hu, S. Ohsuga, C. Liau (eds), Melbourne,
Florida, IEEE Computer Society, pp. 31-35.

4. Geffner, H., Wainer, J., 1998, Modeling action, knowledge and control. In: Pro-
ceedings: ECAI’98, the 13th European Conference on AI, H. Prade (ed), John
Wiley & Sons, pp. 532-536.

5. Grzymala-Busse, J., 1997, A new version of the rule induction system LERS,
Fundamenta Informaticae, 31(1), pp. 27-39.

6. Kryszkiewicz. M., 1998, Fast discovery of representative association rules, In:
Lecture Notes in Artificial Intelligence, Vol. 1424, Proceedings of RSCTC 98,
Springer-Verlag, 214-221.

7. Liu, B., Hsu, W., Chen, S., 1997, Using general impressions to analyze discovered
classification rules, In: Proceedings: KDD’97 Conference, Newport Beach, CA,
AAAI Press.

8. Pawlak, Z., 1991, Rough sets-theoretical aspects of reasoning about data, Kluwer,
Dordrecht.

9. Pawlak, Z., 1981, Information systems - theoretical foundations, Information Sys-
tems Journal, 6, pp. 205-218.

10. Polkowski, L., Skowron A., 1998, Rough sets in knowledge discovery, In: Studies
in Fuzziness and Soft Computing, Physica-Verlag, Springer.

11. Raś, Z.W., Tzacheva, A., Tsay, L.-S., 2005, Action Rules, In: Encyclopedia of
Data Warehousing and Mining, J. Wang (ed.), Idea Group Inc., will appear.

12. Raś, Z., Wieczorkowska, A., 2000, Action Rules: how to increase profit of a com-
pany, In: Principles of Data Mining and Knowledge Discovery, D.A. Zighed, J. Ko-
morowski, J. Zytkow (eds.), Proceedings: PKDD’00, Lyon, France, LNCS/LNAI,
No. 1910, Springer-Verlag, pp. 587-592.

13. Raś, Z.W., Tsay, L.-S., 2003, Discovering Extended Action-Rules (System
DEAR), In: Intelligent Information Systems 2003, Proceedings: IIS’03 Sympo-
sium, Zakopane, Poland, Advances in Soft Computing, Springer-Verlag, pp. 293-
300.

14. Raś, Z., Gupta, S., 2002, Global action rules in distributed knowledge systems,
in Fundamenta Informaticae Journal, IOS Press, 51(1-2), pp. 175-184.

15. Silberschatz, A., Tuzhilin, A., 1995, On subjective measures of interestingness in
knowledge discovery, In: Proceedings: KDD’95 Conference, AAAI Press.

16. Silberschatz, A., Tuzhilin, A., 1996, What makes patterns interesting in knowledge
discovery systems, IEEE Transactions on Knowledge and Data Engineering, 5(6).

17. , Suzuki, E., Kodratoff, Y., 1998, Discovery of surprising exception rules based
on intensity of implication, in Proc. of the Second Pacific-Asia Conference on
Knowledge Discovery and Data mining (PAKDD)



18. Tzacheva, A., Raś, Z.W., 2004, Action rules: feasibility and lowest cost reclassi-
fication, In: Special Issue on Knowledge Discovery, Z.W. Ras (ed.), International
Journal of Intelligent Systems, Wiley, will appear.

19. Tzacheva, A., Raś, Z.W., 2003, Discovering non-standard semantics of semi-stable
attributes, In: Proceedings: FLAIRS’03 Conference, St. Augustine, Florida, I.
Russell, S. Haller (eds.), AAAI Press, pp. 330-334.


