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Abstract. At a time when the quantity of music media surrounding us is rapidly
increasing and the access to recordings as well as the amount of music files avail-
able on the Internet is constantly growing, the problem of building music recom-
mendation systems is of great importance. In this work, we perform a study on
automatic classification of musical instruments. We use monophonic sounds. The
latter have successfully been classified in the past, with main focus on pitch. We
propose new temporal features and incorporate timbre descriptors. The advan-
tages of this approach are: preservation of temporal information and high classi-
fication accuracy.

1 Introduction

Music has accompanied man for ages in various situations. Today, we hear music media
in advertisements, in films, at parties, at the philharmonic, etc. One of the most impor-
tant functions of music is its effect on humans. Certain pieces of music have a relaxing
effect, while others stimulate us to act, and some cause a change in or emphasize our
mood. Music is not only a great number of sounds arranged by a composer, it is also
the emotion contained within these sounds (Grekow and Ras, 2009).

The steep rise in music downloading over CD sales has created a major shift in
the music industry away from physical media formats and towards Web-based (online)
products and services. Music is one of the most popular types of online information
and there are now hundreds of music streaming and download services operating on the
World-Wide Web. Some of the music collections available are approaching the scale
of ten million tracks and this has posed a major challenge for searching, retrieving, and
organizing music content. Research efforts in music information retrieval have involved
experts from music perception, cognition, musicology, engineering, and computer sci-
ence engaged in truly interdisciplinary activity that has resulted in many proposed al-
gorithmic and methodological solutions to music search using content-based methods
(Casey et al., 2008).

This work contributes to solving the important problem of building music recom-
mendation systems. Automatic recognition or classification of music sounds helps user
to find favorite music objects, or be recommended objects of his/her liking, within large
online music repositories. We focus on musical instrument recognition, which is a chal-
lenging problem in the domain.



Melody matching based on pitch detection technology has drawn much attention
and many music information retrieval systems have been developed to fulfill this task.
Numerous approaches to acoustic feature extraction have already been proposed.

This has stimulated the research on instrument classification and new features de-
velopment for content-based automatic music information retrieval. The original audio
signals are a large volume of unstructured sequential values, which are not suitable for
traditional data mining algorithms, while the higher level data representative of acous-
tical features are sometimes not sufficient for instrument recognition.

We propose new dynamic features, which preserve temporal information, for in-
creased accuracy with classification.

The rest of the paper is organized as follows: section 2 reviews related work, section
3 discusses timbre, section 4 describes features, section 5 presents the proposed tempo-
ral features, section 6 shows the experiment results, and finally section 7 concludes.

2 Related Work

(Martin and Kim, 1998) employed the K-NN (k-nearest neighbor) algorithm to a hi-
erarchical classification system with 31 features extracted from cochleagrams. With a
database of 1023 sounds they achieved 87% of successful classifications at the family
level and 61% at the instrument level when no hierarchy was used. Using the hierarchi-
cal procedure increased the accuracy at the instrument level to 79% but it degraded the
performance at the family level (79%). Without including the hierarchical procedure
performance figures were lower than the ones they obtained with a Bayesian classi-
fier. The fact that the best accuracy figures are around 80% and that Martin and Kim
have settled into similar figures shows the limitations of the K-NN algorithm (provided
that the feature selection has been optimized with genetic or other kind of techniques).
Therefore, more powerful techniques should be explored.

Bayes Decision Rules and Naive Bayes classifiers are simple probabilistic classi-
fiers, by which the probabilities for the classes and the conditional probabilities for a
given feature and a given class are estimated based on their frequencies over the train-
ing data. They are based on probability models that incorporate strong independence
assumptions, which may, or may not have a bearing in reality, hence are naive. The
resultant rule is formed by counting the frequency of various data instances, and can
be used then to classify each new instance. (Brown, 1999) applied this technique to
18 Mel-Cepstral coefficients by a K-means clustering algorithm and a set of Gaussian
mixture models. Each model was used to estimate the probabilities that a coefficient
belongs to a cluster. Then probabilities of all coefficients were multiplied together and
were used to perform the likelihood ratio test. It then classified 27 short sounds of oboe
and 31 short sounds of saxophone with an accuracy rate of 85% for oboe and 92% for
saxophone.

Neural networks process information with a large number of highly interconnected
processing neurons working in parallel to solve a specific problem. Neural networks



learn by example. (Cosi, 1998) developed a timbre classification system based on audi-
tory processing and Kohonen self-organizing neural networks. Data were preprocessed
by peripheral transformations to extract perception features, then were fed to the net-
work to build the map, and finally were compared in clusters with human subjects’
similarity judgments. In the system, nodes were used to represent clusters of the input
spaces. The map was used to generalize similarity criteria even to vectors not utilized
during the training phase. All 12 instruments in the test could be quite well distinguished
by the map.

Binary Tree is a data structure in which each node contains one parent and not more
than 2 children. It has been pervasively used in classification and pattern recognition
research. Binary Trees are constructed top-down with the most informative attributes
as roots to minimize entropy. (Jensen and Amspang, 1999) proposed an adapted Binary
Tree with real-valued attributes for instrument classification regardless of pitch of the
instrument in the sample.

Typically a digital music recording, in form of a binary file, contains a header and a
body. The header stores file information such as length, number of channels, sampling
rate, etc. Unless it is manually labeled, a digital audio recording has no description of
timbre or other perceptual properties. Also, it is a highly nontrivial task to label those
perceptual properties for every piece of music based on its data content.

In music information retrieval area, a lot of research has been conducted in melody
matching based on pitch identification, which usually involves detecting the fundamen-
tal frequency. Most content-based Music Information Retrieval (MIR) systems query by
whistling/humming systems for melody retrieval. So far, few systems exists for timbre
information retrieval in the literature or market, which indicates it as a nontrivial and
currently unsolved task (Jiang et al., 2009).

3 Timbre

The definition of timbre is: in acoustics and phonetics - the characteristic quality of a
sound, independent of pitch and loudness, from which its source or manner of produc-
tion can be inferred. Timbre depends on the relative strengths of its component frequen-
cies; in music - the characteristic quality of sound produced by a particular instrument
or voice; tone color. ANSI defines timbre as the attribute of auditory sensation, in terms
of which a listener can judge that two sounds are different, though having the same
loudness and pitch. It distinguishes different musical instruments playing the same note
with the identical pitch and loudness. So it is the most important and relevant facet of
music information. People discern timbre from speech and music in everyday life.

Musical instruments usually produce sound waves with frequencies, which are an
integer (a whole number) multiples of each other. These frequencies are called har-
monics, or harmonic partials. The lowest frequency is the fundamental frequency f0,
which has close relation with pitch. The second and higher frequencies are called over-
tones. Along with fundamental frequency, these harmonic partials distinguish the tim-
bre, which is also called tone color. The human aural distinction between musical in-
struments is based on the differences in timbre.



3.1 Challenges in Timbre Estimation

The body of a digital audio recording contains an enormous amount of integers in a
time-order sequence. For example, at a sampling rate 44,100Hz, a digital recording has
44,100 integers per second. This means, in a one-minute long digital recording, the
total number of the integers in the time-order sequence will be 2,646,000, which makes
it a very large data item. The size of the data, in addition to the fact that it is not in
a well-structured form with semantic meaning, makes this type of data unsuitable for
most traditional data mining algorithms.

Timbre is rather subjective quality and not of much use for automatic sound timbre
classification. To compensate, musical sounds must be very carefully parameterized to
allow automatic timbre recognition.

4 Feature Descriptions and Instruments

Based on latest research in the area, MPEG published a standard group of features
for digital audio content data. They are either in the frequency domain or in the time
domain. For those features in the frequency domain, a STFT (Short Time Fourier Trans-
form) with Hamming window has been applied to the sample data. From each frame a
set of instantaneous values is generated. We use the following timbre-related features
from MPEG-7:

Spectrum Centroid - describes the center-of-gravity of a log-frequency power spec-
trum. It economically indicates the pre-dominant frequency range. We use Log Power
Spectrum Centroid, and Harmonic Spectrum Centroid.

Spectrum Spread - is the Root of Mean Square value of the deviation of the Log
frequency power spectrum with respect to the gravity center in a frame. Like Spectrum
Centroid, it is an economic way to describe the shape of the power spectrum. We use
Log Power Spectrum Spread, and Harmonic Spectrum Spread.

Harmonic Peaks - is a sequence of local peaks of harmonics of each frame. We use
the Top 5 harmonic peaks - Frequency, and Top 5 Harmonic Peaks - Amplitude.

In addition, we use the Fundamental Frequency as a feature in this study.

5 Design of New Temporal Features

Describing the whole sound produced by a given instrument by single value of a pa-
rameter which changes in time, may be omitting a large amount of relevant information
encoded within the sound. For example, calculating the average of the values taken in
certain time points. For this reason, we design features, which characterize the changes
of sound properties in time.



5.1 Frame Pre-processing

The instrument sound recordings are divided into frames. We pre-process the frames, in
way that each frame overlaps the previous frame by 2/3 as shown on Figure 1. In other
words, if framel is abc, then frame2 is bcd, frame3 is cde, and so on. This preserves
temporal information contained in the sequential frames.

Fig. 1. Overlapping frames

5.2 New Temporal Features

After the frames have been pre-processed, we extract the timbre related features de-
scribed in section 4 for each frame. We build a database from this information, shown
in Table 1. x1, 2, 3, ..., x,, are the tuples (or objects - the overlapping frames). At-
tribute a is the first feature extracted on them (log power spectrum centroid). We have a
total of 7 attributes, 2 of which in a vector form.

Next, we calculate 6 new features based on the attribute a value for the first 3 frames
t1,t9, and t3. The new features are defined as follows:

di =ty —t
d2:t3*t2



ds = t5 —

tg(a) = (t2 — t1)/1
tg(B) = (ts —t2)/1
tg(y) = (ts —t1)/2

This process is performed by our Temporal Cross Tabulator. y1, y2, ys, ..., y, are
the new objects created by cross tabulation, which we store in a new database - Table
2. So, our first new object y; in Table 2 is created from the first 3 objects x1, T2, 3 in
Table 1. Our next new object y- in Table 2 is created from zo, 3, x4 in Table 1. New
object y3 in Table 2 is created from x3, x4, x5 in Table 1.

Since classifiers do not distinguish the order of the frames, they are not aware that
frame ¢; is closer to frame ¢, than it is to frame ¢3. With the new features «, 3, and ~,
we allow for that distinction to be made. tg(«) = (¢t2 — t1)/1 takes into consideration
that the distance between ¢, and ¢; is 1, while tg(y) = (¢35 —t1)/2 because the distance
between t3 and ¢ is 2.

This temporal cross-tabulation increases the current number attributes 6 times. In
other words, for every attribute (or feature) from Table 1, we have dy, ds, ds, «, 3, and
~ in Table 2. Thus, 15 current attributes (or features: log power spectrum centroid, har-
monic spectrum centroid, log power spectrum spread, harmonic spectrum spread, fun-
damental frequency, top 5 harmonic peaks amplitude - each peak as a separate attribute,
and top 5 harmonic peaks frequency - each peak as a separate attribute) multiplied by 6
= 90. The complete Table 2 has 90 attributes, which comprises our new dataset.

6 Experiment

We have chosen 6 instruments: viola, cello, flute, english horn, piano, and clarinet for
our experiments. All recordings originate from MUMS CD’s (Opolko and Wapnick
1987), which are used worldwide in similar tasks. We split each recording into overlap-
ping frames, and extract the new temporal features as described in the previous section
5. That produces a dataset with 1225 tuples and 90 attributes.

We import the dataset into WEKA (Hall et al., 2009) data mining software for clas-
sification. We train two classifiers: Bayesian Neural Network and J45 Decision Tree.
We test using bootstrap. Bayesian Neural Network has accuracy of 81.14% and J45 has
accuracy of 96.73%. The summary results of the classification are shown in Figure 3
and the detailed results in Figure 4.

7 Conclusions and Directions for the Future

We produce a music information retrieval system, which automatically classifies musi-
cal instruments. We use timbre related features. We propose new temporal features. The
advantages of this approach are preservation of temporal information, and high classifi-
cation accuracy. This work contributes to solving the important problem of building mu-
sic recommendation systems. Automatic recognition or classification of music sounds
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Table 1. Features Table 2. Temporal cross tabulation
extracted on overlapping
frames
Fig. 2. New Temporal Features
Correctly Classified | Incorrectly Classified | Correct % Incorrect %
Bayesian Neur. Net. 994 231 81.1429 % 18.8571 %
J45 1185 40 96.7347 % 3.2653 %
Fig. 3. Results Summary
TP Rate FP Rate Precision Recall F-Measure | ROC Class
BNNet
0.957 0.141 0.548 0.957 0.697 0.98 2A# piano
0.931 0.016 0911 0.931 0.921 0.994 2C cello_bowed
0.783 0.011 0.945 0.783 0.856 0.988 3A# bflatclarinet
0.712 0.046 0.732 0.712 0.722 0.947 3A#_ englishhorn
0.693 0.008 0.934 0.693 0.796 0.971 3C_viola_bowed
0.792 0 1 0.792 0.884 0.994 4A#_flute_vibrato
J45
0.973 0.015 0919 0.973 0.945 0.996 2A# piano
0.973 0.009 0.953 0.973 0.963 0.999 2C cello_bowed
0.996 0.002 0.992 0.996 0.994 1 3A#_bflatclarinet
0.935 0.006 0.966 0.935 0.95 0.996 3A% englishhorn
0.926 0.003 0.981 0.926 0.953 0.999 3C_viola_bowed
0.981 0.004 0.985 0.981 0.983 1 4A# flute vibrato

Fig. 4. Results - Detailed Accuracy by Class



helps user to find favorite music objects within large online music repositories. It can
also be applied to recommend musical media objects of user’s liking. Directions for the
future include automatic detection of emotions (Grekow and Ras, 2009) contained in
music files.
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