
In Search of Actionable Patterns of Lowest Cost - a
Scalable Action Graph Method

Angelina A.Tzacheva,Arunkumar Bagavathi,Sharath C.B. Suryanarayanaprasad
Department of Computer Science

University of North Carolina at Charlotte
Charlotte, NC, 28223, USA

Email: aatzache@uncc.edu,abagavat@uncc.edu,sbagursu@uncc.edu

Abstract—Action Rules benefit its users to achieve their goals
by extracting actionable information hidden in the large data.
Undertaking such actionable recommendations incur some form
of cost to users. The actionable recommendation system fails
when the recommended actions are cost wise unendurable or
non-profitable and uninteresting to the end user. Finding low
cost actionable patterns in larger datasets is a time consuming
and requires a scalable approach. In this work, we give a
representation for Action Rules as graphs called Action Graphs,
which uncovers undiscovered relationship between actionable
patterns in the recommended action rules. Also, we define three
popular graph algorithms: Dijkstra’s Shortest Path algorithm,
Breadth First Search algorithm and Depth First Search algorithm
to search low cost Action Rules from Action Graphs in the dis-
tributed scenario using Spark framework. Upto our knowledge,
our Depth First algorithm is the first work to be implemented
using Spark framework. We apply the proposed algorithms to
three datasets in transportation, medical, and business domains.
Results show these domains can benefit from the discovered
actionable recommendations of low cost, in time efficient way.

Index Terms—Low Cost Action Rules, Action Graph, Graph
Search, GraphX

I. INTRODUCTION

Discovering surprising, unknown and useful knowledge
from a massive data is the crucial task of data mining. Most of
the data mining or machine learning algorithms manifest the
relationship of data objects with other objects (Clustering) or
classes (Classification). The Rule based learning tasks intend
to circumscribe methods that identifies, learns or evolves
’rules’ to store and manipulate knowledge. Rules takes the
format as given in Equation 1, where the antecedent(left side
of the rule) is a conjunction of conditions and the consequent
(right side of the rule) is a resulting pattern for the conditions
in antecedent.

condition(s)→ result(s) (1)

Action Rule is a rule based data mining technique that
recommend possible transitions of data from one state to
another, which the user can use to their advantage. For
example, reducing hospital readmission in the medical do-
main [1]. Action Rules can take the representation as given
in Equation 2, where Ψ represents a conjunction of stable
features, (α → β) represents a conjunction of changes in

values of flexible features and (θ → φ) represents desired
decision action.

[(Ψ) ∧ (α→ β)]→ (θ → ρ) (2)

Actionable patterns from Action Rules are prone to incur
certain form of cost to the user [2], [3]. Cost for actions in
Action Rules include money, time, energy or human resources.
Recommended actions can cause both positive(benefits) and
negative(loses) effects for users [4]. Thus, Action Rules
recommendations system should incur low cost to the users to
make them feasible actions. Existing approaches [5] [6] do not
consider cost effectiveness for recommendations. In [2], the
notion of cost of the Action Rules is introduced and refined.
Searching for low cost Action Rules from a huge data can be
very time consuming and requires a scalable and distributed
approach for extracting them in a reasonable timeframe.

In this work, we construct a scalable graph, called (Action
Graph) based on action terms of derived Action Rules [7]
and their relations between other action terms. We use Spark
GraphX [8] to build a scalable graph. We also introduce three
most graph algorithms: Dijkstra’s Shortest Path algorithm,
Breadth First Search algorithm and Depth First Search al-
gorithm to extract low cost Action Rules and compare their
results. Although Dijkstra’s Shortest path and Breadth First
Search algorithms have made immense progress in parallel
computing, Depth First Search is very complex to implement
in parallel computing frameworks. In this work, for the first
time we are defining Depth First Search for the constructed
Action Graph and compare their results with other algorithms.

II. RELATED WORKS

There has been a recent trend to discover actionable pet-
terns efficiently with distributed frameworks. For example,
Tzacheva, et. al proposed MR-Random Forest algorithm [9]
and Bagavathi, et. al proposed SARGS algorithm [7] for
scalable Action Rules extraction in a distributed environment
such as Hadoop MapReduce and Apache Spark to handle Big
Data. However, these algorithms do not consider the Cost of
the discovered Action Rules. All actionable patterns involve
some form of Cost such as money, time, power and other
resources to achieve the desired results [2]. Recently Tzacheva,
et.al [10] introduced the notion of Action Graph to examine
connectivity patterns in Action Rules.

TABLE I
SAMPLE DECISION SYSTEM S

X a b c d
x1 a1 b1 c1 d1
x2 a3 b1 c1 d1
x3 a2 b2 c1 d2
x4 a2 b2 c2 d2
x5 a2 b1 c1 d1
x6 a2 b2 c1 d2
x7 a2 b1 c2 d2
x8 a1 b2 c2 d1

Ras and Tzacheva [11] introduced the notion of cost and
feasibility of Action Rules as an interestingness measure. They
proposed a graph based method for extracting feasible and low
cost Action Rules. Ras and Tzacheva [2] proposed a heuristic
search of new low cost Action Rules, where objects supporting
new set of rules also supports existing rule set but the cost of
reclassifying them is much lower for new rules.

Apart from Action Rules, some research has been done
on extracting Actionable knowledge. For example, Karim and
Rahman [12] proposed another method to extract cost effective
actionable patterns for customer attribtion problem in post
processing steps of Decision Tree and Naive Bayes classifiers.
Cui, et.al [13] proposed to extract optimal actionable plans
during post processes of Additive Tree Model (ATM) classifier.
These actionable patterns can change the given input to a
desired one with a minimum cost. Hu, et.al [14] proposed
an integrated framework to gather cost minimal actions sets
to provide support for social projects stakeholders to control
risks involved in risk analysis and project planning phases.

III. BACKGROUND - ACTION RULES, COST OF ACTION
RULES, AND SPARK

In this section, we give basic knowledge about Decision
system, Action Rules, Spark and GraphX frameworks to
understand out methodology.

A. Decision System

Consider an information system given in Table I
Information System can be represented as S = (X,A, V)

where,
X is a nonempty, finite set of objects: X =

{x1, x2, x3, x4, x5, x6, x7, x8}
A is a nonempty, finite set of attributes: A = a, b, c, d and
Vi is the domain of attribute a which represents a set of

values for attribute i : i ∈ A. For example, Vb = b0, b2.
An information system becomes a Decision system, if

A = ASt ∪AFl ∪ d, where d is a decision attribute. The user
chooses the attribute d if they want to extract desired action
from di : i ∈ Vd. ASt is a set of Stable Attributes and AFl is a
set of Flexible Attributes. For example, ZIPCODE is a Stable
Attribute and User Ratings can be a Flexible Attribute.

B. Action Rules

In this subsection, we give definitions of action terms, action
rules and properties of action rules [16]

Let S = (X,A ∪ d, V) be a decision system, where d is a
decision attribute and V = ∪Vi : i ∈ A. Action terms can be
given by the expression of (m,m1 → m2), where m ∈ A and
m1,m2 ∈ Vm. m1 = m2 if m ∈ ASt. In that case, we can
simplify the expression as (m,m1) or (m = m1). Whereas,
m1 6= m2 if m ∈ AFl. Example Action Rule for the Decision
System in Table 1 is given below: (a, a1 → a2).(b, b1 →
b2) −→ (d, d1 → d2)

(a, a1 → a2).(b, b1 → b2) −→ (d, d1 → d2)

C. Cost of Action Rules

Typically, there is a cost associated with changing an
attribute value from one class to another more desirable one.
For example, lowering the interest percent rate for a customer
is a monetary cost for the bank; while, changing the marital
status from ’married’ to ’divorced’ has a moral cost, in addition
to any monetary costs which may be incurred in the process.

The definition of cost was introduced by Tzacheva and Ras
[2] as follows:

Assume that S = (X,A, V) is an information system. Let
Y ⊆ X , b ∈ A is a flexible attribute in S and v1, v2 ∈ Vb
are its two values. By ℘S(b, v1 → v2) we mean a number
from (0, ω] which describes the average cost of changing the
attribute value v1 to v2 for any of the qualifying objects in
Y . These numbers are provided by experts. Object x ∈ Y
qualifies for the change from v1 to v2, if b(x) = v1. If
℘S(b, v1 → v2) < ℘S(b, v3 → v4), then we say that the
change of values from v1 to v2 is more feasible than the change
from v3 to v4. Assume an action rule r of the form:

(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ . . . ∧ (bp, vp → wp)⇒
(d, k1 → k2)

If the sum of the costs of the terms on the left hand side of
the action rule is smaller than the cost on the right hand side,
then we say that the rule r is feasible.

D. Spark GraphX

Spark GraphX [8] is an embedded graph processing frame-
work built on top of Apache Spark. In general, graphs can be
represented as G=(V,E), where V is the set of vertices in G and
E, which takes the general representation as eij = Edge(i, j),
is the set of edges connecting 2 vertices (i,j) in G. GraphX
treats the complete graphs as an RDD(a data structure in Spark
framework). It maintains the graph RDD in the type of [VD,
ED], where VD and ED are other RDDs representing vertex
properties and edge properties respectively. GraphX performs
graph-specific operations as a series of distributed map(), join()
and reduce() functions of RDDs.

IV. METHODOLOGY

In this work, we propose a graph-based method to search
for optimal low cost Action Rules. To extract low cost Action
Rules, first we extract Action Rules with a distributed mech-
anism : SARGS [7]. From the extracted Action Rules, we
build an Action Graph. We then propose a method based on

Dijkstra’s algorithm to search the Action Graph for low cost
Action Rules. In this section, we give the SARGS algorithm,
Action Graphs and our search algorithm to extract low cost
Action Rules.

A. Action Rules Extraction Using SARGS

The SARGS algorithm propsed in [7] uses LERS [19] and
ARAS [5] methods for extracting Action Rules in a distributed
fashion for larger datasets. SARGS algorithm consists of 3
modules namely: Data distribution, LERS and ARAS.

1) Data Distribution Module: The data distribution module
is to evenly distribute the data based on the decision attribute.
With data distribution module, SARGS gets final actionable
knowledge from the distributed partitions are considered to be
equal to that of the knowledge from the single data.

2) LERS module: SARGS follows distributed method of
generating classification rules using LERS system. Using the
information system S from Table I, LERS strategy can find
all certain and possible rules describing decision attribute d in
terms of attributes a, b, and c.

3) Modified ARAS module: SARGS uses all marked certain
rules from the LERS module and derive Action Rules. ARAS
method, which extracts incomplete Action Rules, may not be
useful when the user requires valid recommendations. Sample
Action Rules from the system ARAS for the Decision System
S given in Table I are given below:
ARs1 : (d1 → d2) = (a,→ a2).(b,→ b2) −→ (d, d1 →

d2)
ARs2 : (d1 → d2) = (a,→ a2).(c, c2) −→ (d, d1 → d2)
SARGS version of ARAS extracts all complete Action

Rules. Following Action Rules are extracted from the decision
system S given in Table I using SARGS method.
AR1(d1 → d2) = (A, a1 → a2).(B,→ b2) −→ (D, d1 →

d2)
AR2(d1 → d2) = (A, a3 → a2).(B,→ b2) −→ (D, d1 →

d2)

B. Action Graph

We build a graph called Action Graph from the Action Rules
extracted using the SARGS algorithm. We build Action Graph
by using action terms in Action Rules and their relation with
other action terms. In general, graphs take the representation
of G = (V,E), where V is a set of vetices and E is a set of
edges connecting vertex pairs in V. All vertices and edges can
contain properties that combined together uniquely represent
vertices and edges respectively. We represent our Action Graph
as an undirected graph Ag = (Av, Ae). In Action Graph, we
treat action terms that we get from Action Rules as a set
of vertices (Av) and we create edge between a vertex pair
(am, an|am, an ∈ ri), where ri is an Action Rule.

C. Dijkstra’s Shortest Path Algorithm

Algorithm 1 gives an overview on the Dijkstra’s shortest
path algorithm for Action Graphs for finding low cost Action
Rules. In Spark GraphX, all nodes process thier properties in
parallel. Ee consider following properties to each node in the
graph to execute the algorithm.

• vertexName, vertexCost: corresponding vertex’s name and
cost respectively

• d: (key, value) pair, where key represents the starting
vertex(s) and value consists of a path followed from s to
the current node and corresponding path’s cost

In SENDMSG function, we choose the sources that
the destination is not having and send paths and costs of
only sources that are not available in the destination. In
MERGEMSG function, for each source we select a path
with minimum cost and in RECEIV EMSG, we receive
all messages and add current node’s cost and update graph
properties. By following these functions, eventually paths and
costs propagates to all nodes in the graph. By the end of n/2
iterations, all nodes would have least cost to reach from source
to themselves.

Algorithm 1 Dijkstra’s Shortest Path algorithm for Action
Graphs
Require: Ag = (Av, Ae), a source vertex u and cost threshold

ρ
A′g := Ag .mapVertices(v =¿ (v.vertexName,v.vertexCost,d)

2: procedure SENDMSG(id,srcVertex,dstVertex)
sources := Collect sources from srcVertex.d that are

not available in dstVertex.d
4: return a dictionary with sources to dstVertex

procedure MERGEMSG(m1,m2)
6: mergedMessage := ∅

for source ∈ m1.sources do
8: if m1.source.cost < m2.source.cost then

mergedMessage.source := m1.source
10: else

mergedMessage.source := m2.source
12: return mergedMessage

procedure RECEIVEMSG(id,oldProp,newProp)
14: for source ∈ newProp do

newCost := Add this.name,this.cost to new-
Prop.source

16: oldProp.source = newCost
return oldProp

18: Afinal
g := A′g .aggregateMessages(SendMsg, MergeMsg,

ReceiveMsg)
return all paths and costs from all vertexes

D. Breadth First Search Algorithm for Action Graph

Since maintaining a queue to track the traversal is complex
in parallel computing engines like Spark GraphX, we follow
modified strategies for Breadth-First and Depth-First searches
in Action Graphs. BFS works alike Algorithm 1 with one
exception. Instead of choosing a path with minimum cost in the
MERGEMSG function, for each source vertex we choose a
path from the latest source. For example, if vertexes 1 and 2
are sending path and cost for the source node 3 to vertex 4, the
MERGEMSG function of vertex 4 chooses path and cost
of source node 3 from vertex 2. Once this entry is updated, it

cannot be altered in future but it can propagate to update its
neighbor entries.

E. Depth First Search algorithm for Action Graph

For long time in the literature, parallelizing Depth First
Search is one of the main concerns and several variations of
parallelized DFS has been proposed [20] [21]. In this paper,
we propose DFS for Action Graphs to extract low cost Action
Rules as given in Algorithm 2. For the sake of Spark GraphX
framework, we attach following parameters to each node for
the algorithm:
• vertexName, vertexCost: corresponding vertex’s name and

cost respectively
• neighborPath: path followed by a node to traverse among

immediate neighbors
• l: Similar to dictionary d in Algorithm 1. We also attach

which node to visit next along with path and cost
Thus each vertex share their neighborPath in the first itera-

tion with their neighbors(but only to specified neighbor vertex
get the content). In the remaining iterations SENDMSG
function sends the dictionary l. Unlike Dijkstra’s and BFS, we
are not gathering paths for all possible source and destination
pairs. Instead, we are setting each vertex as a source vertex
and collecting a path using DFS traversal to reach all other
vertexes. Thus in the MERGEMSG function, we are getting
updated pat and cost from neighbors. In RECEIV EMSG
function, we simply find nodes, from neighborPath, that are
not visited and attach them to the path in same sequence and
update the cost and next node to visit parameters.

V. EXPERIMENT AND RESULTS

To test the proposed methods, we use three datasets: Car
Evaluation data, Mammographic Mass data, and the city of
Charlotte North Carolina BusinesWise data.

The Car Evaluation and Mammography are obtained
from the Machine Learning repository of the Department
of Information and Computer Science of the University of
California, Irvine [22]. The Car Evaluation Data consists of
records describing a car’s goodness and acceptability. The
Mammographic Mass data contains records that measure
severity of human cancer.

The city of Charlotte North Carolina BusinesWise data ,
wich was donated by the Charlotte Chamber of Commerce.
This data collects details of over 20,000 business companies
in Mecklenburg county, North Carolina. The data includes
several features like City, StartYear, Sector, SiteType, Employ-
ees count at the site, Total sites and Estimated Sales. From
this data, our focus is how to increase the Estimated Sales
amounts in USD . We show detailed description of each dataset
properties in Table II which we use to test our algorithm.

With our datasets, we run the SARGS algorithm on each
data. We collect Action Rules which meet the minimum
support(s), and minimum confidence(c), threshold. If we have
n action terms in an Action Rule, we record the cost(ρ) for
each n Action Terms. We calculate Total Cost of each Action

Algorithm 2 Depth First Search algorithm for Action Graphs
Require: Ag = (Av, Ae), a source vertex u and cost threshold

ρ
A′g := Ag .mapVertices(v =¿ (v.vertexName, v.vertexCost,
neighborPath, l)

2: procedure SENDMSG(id,srcVertex,dstVertex)
return dstVertex.l

4: procedure MERGEMSG(m1,m2)
mergedMessage := ∅

6: for source ∈ m1.sources do
if —m1.source— > —m2.source— then

8: mergedMessage.source := m1.source
else

10: mergedMessage.source := m2.source
return mergedMessage

12: procedure RECEIVEMSG(id,oldProp,newProp)
for source ∈ newProp.msg do

14: if newProp.source.target = id then
newPath = newProp.source.path

16: for node ∈ oldProp.neighborPath do
if node /∈ newProp.source.path then

18: newPath := Add (node.name,node.cost)
if allV ertices ∈ newPath.names then

20: target := ∅
else

22: target := newPath.last.name
oldProp.source := (newPath,target)

24: return oldProp
Afinal

g := A′g .aggregateMessages(SendMsg, MergeMsg,
ReceiveMsg)

26: return all paths and costs from all vertexes

TABLE II
PROPERTIES OF THE DATASETS

Property Car Evalua-
tion Data

Mamm. Mass
Data

Business Data

of instances 1728 961 22441
Attributes 7 attributes 6 attributes 17 attributes

including
Decision
attribute
values

Class
(unacc, acc,
good, vgood)

Severity
(0 - benign, 1-
malignant)

Estimated
Sales
(<$2M,2-
10M,10-
25M,25-
50M,50-
100M,100-
500M,>500M)

Data size 52 KB 16 KB 5.5 MB

Rule by adding the cost of all Action Terms in the rule.
The cost of each action term is provided by a domain expert
who has enough knowledge about the data. For example,
for the Mammography dataset, a medical doctor specifies the
cost for the suggested actions. However, for our experiment
purpose, we assign a random cost number to each ActionTerm.
We assign the cost of 0 for stable attribute Action Terms

TABLE III
EXAMPLE ACTION RULES OF LOWEST COST, MEDIUM COST AND HIGH

COST FOR CAR EVALUATION DATASET

High Cost Action Rules

1) ARC1 : (doors = 2) ∧ (lugBoot, big → small) ∧
(maint, low → vhigh) ∧ (persons, 2 → more) =⇒
(class, unacc → acc)[Support : 4, OldConfidence :
25%, NewConfidence : 100%, Utility : 25%COST :
3.523]

Low Cost Action Rules

1) ARC7 : (buying, high → vhigh) ∧ (doors = 4) ∧
(lugBoot, big → med) ∧ (maint, vhigh → low) ∧
(persons = more) ∧ (safety, high → med) =⇒
(class, unacc → acc)[Support : 1, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%, COST :
1.289]

and between 0 and 1 for flexible attribute Action Terms. In
Table III, Table IV and Table V, we show samples of high
cost Action Rules, and Low Cost Action Rules, for the Car
Evaluation Data, Mammographic Mass Data and Business
Data respectively. The high cost Action Rules are actions
that the user would probably ignore since they are very high
compared to the given cost threshold ρ. The low cost Action
Rules are more suitable for users since all low cost Action
Rules are below the given cost threshold ρ. In Table III,
Table IV and Table V, low cost Action Rules are ones which
has cost less than ρ.

These Action Rules define what actions do a company/user
should employ to achieve their desired goal. For example, the
rule ARC1 recommends that if a car company decreases the
Buying Cost from very high to low and increases luggage boot
size from medium to big and increases the Maintenance Cost
from low to very high and increases Safety Measures from low
to medium and if the Seating Capacity is more than 4, then the
Car Condition may change from Unacceptable to Acceptable
with the cost of 3.53. For all datasets, we consider cost just as
a measure of an Action Rule since the actual costs are assigned
by experts.

Next, we build an Action Graph using the list of extracted
Action Rules as an input. We implement the Action Graph in
both non-parallel environment, and in a clustered environment
for performance and scalability comparision. We use algo-
rithms 2 and 1 to return all low cost Action Rules (cost < ρ).

Table VI gives details about the number of Action Rules
and basic properties of these graphs such as number of nodes,
edges and number of connected component in Action Graphs
and parameters set for algorithms to extract rules. It is notable
that the Action Graph for the Business data is disconnected and
contains 3 component in the graph. For experiment purpose,
we set the minimum cost threshold ρ as 1.3 for all datasets.

In Tables VII, VIII and IX, we give our system’s runtime
performance comparing with non distributed and distributed
versions of the Dijkstra’s shortest path, Breadth First Search

TABLE IV
EXAMPLE ACTION RULES OF LOWEST COST, MEDIUM COST AND HIGH

COST FOR MAMMOGRAPHIC MASS DATA

High Cost Action Rules

1) ARM1 : (BI − RADS, 6 → 4) ∧ (Margin, 5 →
3) ∧ (Shape, 4 → 2) =⇒ (Severity, 1 → 0)[Support :
13, OldConfidence : 100%, NewConfidence :
100%, Utility : 100%, ;COST : 2.688]

Low Cost Action Rules

1) ARM7 : (BI − RADS, 5 → 2) ∧ (Density, 1 →
3) =⇒ (Severity, 1 → 0)[Support : 6, OldConfidence :
80%, NewConfidence : 100%, Utility : 80%, COST :
1.286

TABLE V
EXAMPLE ACTION RULES OF HIGHEST COST, MEDIUM COST AND

LOWEST COST FOR THE BUSINESS DATA

High Cost Action Rules

1) ARB1 : (BLDGTY PE,Miscellaneous →
Office) ∧ (EMPALLSITE, 1 − 3Employees →
10 − 24Employees) ∧ (EMPSITE, 1 − 3Employees →
4 − 9Employees) ∧ (OWNBLDG, Y → N) ∧
(SECTOR, Services → WholesaleTrade) ∧
(SITETY PE, SingleSite → Headquarters) =⇒
(ESTSALES, $2Mto$10M → $10Mto$25M)[Support :
2, OldConfidence : 100%, NewConfidence :
100%, Utility : 100%, COST : 4.069

Low Cost Action Rules

1) ARB7 : (CITY,Matthews → Cornelius) ∧
(EMPALLSITE, 50 − 99Employees → 100 −
249Employees) ∧ (EMPSITE, 1 − 3Employees →
50 − 99Employees) =⇒ (ESTSALES, $2Mto$10M →
$10Mto$25M)[Support : 2, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%, COST :
1.071

and Depth First Search algorithms respectively for finding low
cost Action Rules. The distributed version of the Action Graph,
which we implement in Apache Spark [17] using the GraphX
[8] library shows faster processing times for large datasets
compared to single machine implementation in Java.

VI. CONCLUSION

We studied 3 methods for searching the Action Graph for
Rules of Lowest Cost. We find that BFS and DFS perform
better in terms of processing time, for large datasets when
incorporated into parallel frameworks like Spark GraphX. For
smaller datasets, all parallel algorithms perform almost similar
to serialized versions of algorithms. However, the Dijkstra’s
algorithm discovers higher number of Low Cost Action Rules.
We implemented the DFS method in Spark GraphX, which has
not been implemented before. For Action Graphs, we modified
DFS algorithm to work similar to neighborhood aggregation.

TABLE VI
ANALYSIS ON ACTION GRAPHS

Property Car Evalua-
tion Data

Mamm. Mass
Data

Business Data

Stable
attributes

Doors, Buying Age Start Year

Required deci-
sion action

(Class)
unacc→ acc

(Severity)
1→ 0

Estimated
Sales $2M −
$10M →
$10M −
$24M

No.of Action
Rules

82,503 552 191,934

No.of Action
Terms / Nodes

45 112 188

Minimum
Support s and
Confidence c

1, 10% 2, 70% 2, 60%

TABLE VII
RUNTIMES OF DIJKSTRA’S SHORTEST PATH ALGORITHM ON DIFFERENT

DATASETS IN SECONDS

Dataset Java Dijkstra’s Spark Dijkstra’s
Car Evaluation data 5s 2s
Mammographic
Mass data

4s 4s

Business data 16s 10s

This is great advantage over previous implementations, as it
allows for DFS search in very large graphs.

REFERENCES

[1] M. Al-Mardini, A. Hajja, L. Clover, D. Olaleye, Y. Park, J. Paulson,
and Y. Xiao, “Reduction of hospital readmissions through clustering
based actionable knowledge mining,” in Web Intelligence (WI), 2016
IEEE/WIC/ACM International Conference on. IEEE, 2016, pp. 444–
448.

[2] Z. W. Raś and A. A. Tzacheva, “In search for action rules of the lowest
cost,” in Monitoring, Security, and Rescue Techniques in Multiagent
Systems. Springer, 2005, pp. 261–272.

[3] P. Su, D. Li, and K. Su, “An expected utility-based approach for
mining action rules,” in Proceedings of the ACM SIGKDD Workshop
on Intelligence and Security Informatics, ser. ISI-KDD ’12. New
York, NY, USA: ACM, 2012, pp. 9:1–9:4. [Online]. Available:
http://doi.acm.org/10.1145/2331791.2331800

[4] A. A. Tzacheva, R. S. Shankar, R.A, and A. Bagavathi, “Action rules
of lowest cost and action set correlations,” in Fundamenta Informati-
cae Journal, European Association for Theoretical Computer Science
(EATCS), IOS Press.

[5] Z. W. Raś, E. Wyrzykowska, and H. Wasyluk, “Aras: Action rules
discovery based on agglomerative strategy,” in International Workshop
on Mining Complex Data. Springer, 2007, pp. 196–208.

[6] S. Im and Z. W. Raś, “Action rule extraction from a decision table:
Ared,” in International Symposium on Methodologies for Intelligent
Systems. Springer, 2008, pp. 160–168.

[7] A. Bagavathi, P. Mummoju, K. Tarnowska, A. A. Tzacheva, and Z. W.
Ras, “Sargs method for distributed actionable pattern mining using
spark,” in 2017 IEEE International Conference on Big Data (Big Data),
Dec 2017, pp. 4272–4281.

[8] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “Graphx: Graph processing in a distributed dataflow
framework.” in OSDI, vol. 14, 2014, pp. 599–613.

[9] A. A. Tzacheva, A. Bagavathi, and P. D. Ganesan, “Mr-random forest
algorithm for distributed action rules discovery,” International Journal
of Data Mining & Knowledge Management Process (IJDKP), vol. 6,
no. 5, pp. 15–30, 2016.

TABLE VIII
RUNTIMES OF BREADTH FIRST SEARCH ALGORITHM ON DIFFERENT

DATASETS IN SECONDS

Dataset Java BFS Spark BFS
Car Evaluation data 3s 2s
Mammographic
Mass data

4s 4s

Business data 11s 7s

TABLE IX
RUNTIMES OF DEPTH FIRST SEARCH ALGORITHM ON DIFFERENT

DATASETS IN SECONDS

Dataset Java DFS Spark DFS
Car Evaluation data 4s 5s
Mammographic
Mass data

5s 7s

Business data 18s 9s

[10] B. A. D. A. K. Tzacheva, Angelina A., “In search of actionable patterns
of lowest cost - a scalable graph method,” International Journal of
Database Management Systems.

[11] Z. W. Ras, A. A. Tzacheva, L.-S. Tsay, and O. Giirdal, “Mining for in-
teresting action rules,” in Intelligent Agent Technology, IEEE/WIC/ACM
International Conference on. IEEE, 2005, pp. 187–193.

[12] M. Karim and R. M. Rahman, “Decision tree and naive bayes algorithm
for classification and generation of actionable knowledge for direct
marketing,” Journal of Software Engineering and Applications, vol. 6,
no. 04, p. 196, 2013.

[13] Z. Cui, W. Chen, Y. He, and Y. Chen, “Optimal action extraction for
random forests and boosted trees,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2015, pp. 179–188.

[14] Y. Hu, J. Du, X. Zhang, X. Hao, E. Ngai, M. Fan, and M. Liu, “An
integrative framework for intelligent software project risk planning,”
Decision Support Systems, vol. 55, no. 4, pp. 927–937, 2013.

[15] Y. Hu, B. Feng, X. Mo, X. Zhang, E. Ngai, M. Fan, and M. Liu, “Cost-
sensitive and ensemble-based prediction model for outsourced software
project risk prediction,” Decision Support Systems, vol. 72, pp. 11–23,
2015.

[16] Z. W. Raś and A. Dardzińska, “From data to classification rules and
actions,” International Journal of Intelligent Systems, vol. 26, no. 6, pp.
572–590, 2011.

[17] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing,”
in Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 2–2. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2228298.2228301

[18] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[19] S. M. J.W. Grzymala-Busse and Y. Yao, “An empirical comparison of
rule sets induced by lers and probabilistic rough classification,” in Rough
Sets and Intelligent Systems. Springer, 2013, vol. 1, pp. 261–276.

[20] G. Chu, C. Schulte, and P. J. Stuckey, “Confidence-based work stealing
in parallel constraint programming,” in International conference on
principles and practice of constraint programming. Springer, 2009,
pp. 226–241.

[21] M. Naumov, A. Vrielink, and M. Garland, “Parallel depth-first search
for directed acyclic graphs,” in Proceedings of the Seventh Workshop
on Irregular Applications: Architectures and Algorithms. ACM, 2017,
p. 4.

[22] M. Lichman, “Uci machine learning repository,” Irvine, CA, USA, Tech.
Rep., 2013.

