
Data Distribution Method for Scalable Actionable Pattern
Mining

Arunkumar Bagavathi

University of North Carolina at

Charlotte

Charlotte, NC

abagavat@uncc.edu

Varun Rao

University of North Carolina at

Charlotte

Charlotte, NC

vrao3@uncc.edu

Angelina A. Tzacheva

University of North Carolina at

Charlotte

Charlotte, NC

aatzache@uncc.edu

ABSTRACT
Action Rules are rule based systems for discovering actionable pat-

terns hidden in a large dataset. Action Rules recommend actions

that a user or a system can undertake to their advantage, or to

accomplish their goal. Current Action Rules extraction methods are

unable to process huge volumes of data in a reasonable time and it

requires a distributed and parallel extraction methods. Limited re-

search has been done on extracting Action Rules using a distributed

scenario. Major complications of discovering Action Rules with

such distributed systems are data distribution among computing

nodes and calculation of major parameters of action rules. In this

work, we propose few methods to handle the big data distribution

among computation nodes using the Spark framework. With en-

hanced experiments made on datasets in transportation, medical,

and business domains, we show our methods achieve almost equal

valid results compared to results from classical non-distributed

Action Rule discovery methods with improved run time.

KEYWORDS
Action Rules, Data Distribution, Distributed Processing

ACM Reference Format:
Arunkumar Bagavathi, Varun Rao, and Angelina A. Tzacheva. 2018. Data

Distribution Method for Scalable Actionable Pattern Mining. In Proceedings
of . ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.

nnnnnnn

1 INTRODUCTION
Knowledge discovery is a process of preprocessing, transforming

and identifying unidentified patterns and trends from a large quan-

tity data. Rule based knowledge discovery tasks intend to circum-

scribe methods that identifies, learns or evolves ’rules’ to store and

manipulate knowledge. Rule based systems are used for finding

association and classifying data objects. Rules takes the format as

given in equation (1), where the antecedent(left side of the rule) is
a conjunction of conditions and the consequent (right side of the
rule) is a resulting pattern for the conditions in antecedent.

condition(s) → result(s) (1)

Action Rule is also rule based knowledge discovery technique

that recommend possible transitions of data from one state to an-

other, which the user can use to their advantage. For example,

one would want to find actionable patterns in the data to improve

, ,
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

his/her salary. Some of the applications for Action Rules are: im-

proving customer satisfaction in business [9] and reducing hospital

readmission in the medical field [3]. Action Rules are extracted

from Decision table [15]. In decision table, attributes can be split

into Stable Attributes and Flexible Attributes along with the Decision
attribute which is the final decision that the user need to achieve.

Stable attributes in any Action Rule AR remain constant or cannot

form action in AR. While flexible attributes can change their value

from ai to aj . Action Rules can take the representation as given in

equation (2), where Ψ represents a conjunction of stable features,

(α → β) represents a conjunction of changes in values of flexible

features and (θ → ϕ) represents desired decision action.

[(Ψ) ∧ (α → β)] → (θ → ϕ) (2)

More than a decade, many researches have been conducted over

Action Rules giving rise to several algorithms like DEAR [19], ARAS

[16] and Association Action Rules [14]. These algorithms extract

Action Rules in an expected time frame when the dataset size is

limited, which is not the case these days. Limited research has been

done on extracting Action Rules in a distributed scenario. Some

methods like MR-Random Forest[20] method has been proposed to

introduce the concept of distributed Action Rule discovery. Chal-

lenges in extracting Action Rules in a distributed fashion include

distributing the data among nodes and combining results from all

nodes such that there is no loss of any patterns from the data, we

get Action Rules in a fair amount of time and there is less communi-

cation overhead for the cluster. In this paper, we propose a method

to handle the data distribution task and extract Action Rules ef-

ficiently using the Spark framework. Although we propose this

method for the data that contains many attributes, we show that

the proposed method suits also for other datasets. We also apply

our algorithm to datasets in the domains of transportation, medical

and business.

2 RELATEDWORKS
The perception of Action Rules is first introduced in 2000, when Ras

and Alicia proposed an idea of Action Rules help many businesses

to gain profit by finding interesting actionable patterns in the data

[15]. In the literature, Action Rules are extracted using twomethods.

First is a rule based approach, in which intermediate classification

rules are extracted first using efficient rule generation algorithms

such as LERS or ERID. From these extracted rules, action rules

are generated with systems like DEAR [19], which extracts Action

Rules from two classification rules, or ARAS [16], which extracts

Action Rules using a single classification rule. Second method is

object-based approaches, in which the Action Rules are extracted

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, , Arunkumar Bagavathi, Varun Rao, and Angelina A. Tzacheva

Table 1: Sample Decision System S

X a b c d
x1 a1 b1 c1 d1
x2 a3 b1 c1 d1
x3 a2 b2 c1 d2
x4 a2 b2 c2 d2
x5 a2 b1 c1 d1
x6 a2 b2 c1 d2
x7 a2 b1 c2 d2
x8 a1 b2 c2 d1

directly from the decision table without any intermediary steps.

Systems ARED [7] and Association Action Rules [14] works in

the object-based approach. Out of all algorithms, only Association

Action Rules [14] extracts all possible Action Rules from the given

decision table but it is inefficient in terms of time to extract rules.

Considering the growth of big data, some research [20] [4] has

been done to extract Action Rules using popular distributed comput-

ing frameworks such as MapReduce and Spark. The main challenge

involved in distributed processing of rule based data mining is load

balancing and obtaining global optimum results. [20] proposed a

method to distribute the data randomly to different sites and gather

results from all sites. [4] handle the load balancing by clustering the

data into d partitions, where d is the number of unique values of a

decision attribute. Since not much of the works have been done on

distributed Action Rule algorithms area, we give related works data

load balancing for other problems such as association rule mining.

Apriori algorithm is one of the popular algorithms to find fre-

quent patterns [2]. Since the algorithm has to find all combination

of patterns from the data and it involves many passes over the data,

several parallel algorithms have been proposed to discover frequent

itemsets faster. Over a decade many research has been roposed to

extract association rules in a distributed setup [11][21] [13] [17]

[12] [18] [22].

In this paper, we propose a novel approach for partitioning the

given data. We also give a new algorithm to extract all Action Rules,

based on the algorithm proposed in [14], which is the slowest

among all proposed Action Rules algorithms and compute addi-

tional parameters like Utility and Coverage. We test how fast our

new method works compared to our previous distributed Action

Rule extraction algorithms and also we check validity of the new

method by comparing number of Action Rules generated and rule

coverage of Action Rules from system with classical Association

Action Rules [14] on a single machine and SARGS [4] systems.

3 ACTION RULES AND SPARK
In this section, we give basic knowledge about Decision system,

Action Rules, Spark and GraphX frameworks to understand out

methodology.

3.1 Action Rules
In this subsection, we give definitions of action terms, action rules

and properties of action rules [15]

Let S = (X ,A ∪ d,V) be a decision system, similar to the one

given in Table 1, where d is a decision attribute andV = ∪Vi : i ∈ A.

Action terms can be given by the expression of (m,m1 → m2),

wherem ∈ A andm1,m2 ∈ Vm .m1 = m2 ifm ∈ ASt . In that case,

we can simplify the expression as (m,m1) or (m = m1). Whereas,

m1 ,m2 ifm ∈ AF l
Action Rules can take a form of t1 ∩ t2 ∩ ∩ tn , where ti is an

atomic action or action term and the Action Rule is a conjunction

of action terms to achieve the desired action based on attribute d.
Example Action Rule for the Decision System in Table 1 is given
below: (a,a1 → a2).(b,b1 → b2) −→ (d,d1 → d2)

3.1.1 Properties of Action Rules. Action Rules are considered

interesting based on themetrics such as Support, Confidence, Utility

and Coverage. Higher these values, more interesting they are to

the end user.

Consider an action rule R of form:

(Y1 → Y2) −→ (Z1 → Z2) where,
Y is the condition part of R

Z is the decision part of R

Y1 is a set of all left side action terms in the condition part of R

Y2 is a set of all right side action terms in the condition part of R

Z1 is the decision attribute value on left side

Z2 is the decision attribute value on right side

In [15], the support and confidence of an action rule R is given

as

Support(R) =min{card(Y1 ∩ Z1), card(Y2 ∩ Z2)}

Conf idence(R) = [card (Y1∩Z1)

card (Y1)
] · [

card (Y2∩Z2)

card (Y2)
]

Later, Tzacheva et.al [1] proposed a new set of formula for cal-

culating Support and Confidence of Action Rules. Their idea is to

reduce complexities in searching the data several times for Sup-

port and Confidence of an Action Rule. The new formula are given

below.

Support(R) = {card(Y2 ∩ Z2)

Conf idence(R) = [card (Y2∩Z2)

card (Y2)
]

Tzacheva et. al [1] also introduced a notion of utility for Action

Rules. Utility of Action Rules takes a following form. For most of

cases Utility of Action Rules equals the Old Confidence of the same

Action Rule.

Utility(R) = [card (Y1∩Z1)

card (Y1)
]

Coverage of an Action Rule means that how many decision from

values, from the entire decision system S, are being covered by all

extracted Action Rules. In other words, using the extracted Action

Rules, Coverage defines how many data records in the decision

system can successfully transfers from Z1 to Z2.

3.2 Spark
Spark [23] is a framework that is similar to MapReduce [5] to pro-

cess large quantity of data efficiently in a parallel fashion and in

a short span of time. The disadvantage of MapReduce framework

is frequent system’s disk access for writing and reading the data

between Map and Reduce phases. However, Spark introduces a dis-

tributed memory abstraction strategy named Resilient Distributed

Datasets(RDD). The RDDs works by splitting the data into multiple

nodes, do in-memory computations on whose nodes and store the

results in memory itself if there are any available space in RAM.

These results can be accessed for future processes and analyses,

Data Distribution Method for Scalable Actionable Pattern Mining , ,

which in-turn create another RDD. Thus, Spark cuts-off large num-

ber of disk accesses for storing intermediate outputs like in Hadoop

MapReduce.

Spark helps machine learning algorithms which relies on multi-

ple iterations on the given data with the help of RDD’s in-memory

computation. Spark handles node failures by having a lineage graph

of RDDs. The lineage graph is a Directed Acyclic Graph(DAG)

where each node represents a transformation stage. When a failure

occurs at a certain stage, Spark uses the last available working

point(RDD) from the lineage graph and restart all computations

from that working point rather than repeating the entire process

from the beginning or saving the intermediate results and replicat-

ing them across multiple nodes.

4 METHODOLOGY
In this paper, we propose a new method for generating Action

Rules in a distributed fashion. For scalability, we redesign the Ac-

tion Rules algorithms and implement them in the Spark framework

[23]. The basic problem in previous works [20] [4] related to Action

Rules is the data distribution module. They divided the data by

random by using the automatic partitioning with Apache Spark

and MapReduce We propose two new methods for more intelli-

gent scalable data distribution: (1) Slitting data based on decision

attribute values distribution, (2) vertically splitting the data. We

compare our results with the results from other distributed Action

Rule extraction : SARGS [4].

4.1 Method 1. Class Attribute Value - Data
Distribution Strategy for Scalable Action
Rules

4.1.1 Data Distribution Module. The data distribution module

is to evenly distribute the data based on the decision attribute. The

main objective of the data distribution module is to overcome the

obstacle of inaccurate knowledge discovery while extracted in a

distributed setup. The given input data is split into n groups, where

n=no. of decision attribute vales and each group consists of records

from the information system matching the corresponding decision

value. Also, the proportion constraint Pд ≃ PS is maintained, where

Pд is the proportion of records in a partition g with decision at-

tribute value di and PS is the proportion of records in the given

information system S with decision attribute value di . By this way,

each partition contains same proportion of data which is equal to

the original dataset. The final actionable knowledge from these

partitions are considered to be equal to that of the knowledge from

the single data. Figure 1 shows an example data partition for the

information system S shown in Table 1.

SARGS algorithm consists of 3 modules namely: Data distribu-

tion, LERS and ARAS.

4.1.2 LERS module. After the data is distributed, we extract

Action Rules on each patition by using a set of 2 classification rules

produced by Learning fro Example based on Rough Sets (LERS)

system [8]. The second module does the LERS [8] classification

rule induction. Using the information system S from Table 1, LERS

strategy can find all certain and possible rules describing decision

attribute d in terms of attributes a,b, and c . Since LERS follows

Figure 1: Example Data Distribution in SARGS for Table 1

bottom-up strategy, it constructs classification rules with condi-

tional part covering x attributes, then it continues to construct rules

with conditional part of x + 1 attributes during the following itera-

tions. Only marked rules from the LERS module are considered for

the ARAS module. A classification rule ci if and only if Sci ⊆ Sd∗ ,
where Sci is the set of rows in S that support the classification rule

ci and Sd∗ is the set of rows in S that support the decision attribute

value d∗.

4.1.3 SARGS - Modified ARAS module. The SARGS algorithm
propsed in [4] uses LERS [8] and ARAS [16] methods for extracting

Action Rules in a distributed fashion for larger datasets.

The third module uses SARGS [4] - the modified version of ARAS

[16] and it uses all marked classification rules from the second

(LERS) module and derives Action Rules. ARAS method, which

extracts incomplete Action Rules, may not be useful when the user

requires valid recommendations. Sample Action Rules from the

system ARAS for the Decision System S given in Table 1 are given

below:

ARs1 : (d1 → d2) = (a,→ a2).(b,→ b2) −→ (d,d1 → d2)
ARs2 : (d1 → d2) = (a,→ a2).(c, c2) −→ (d,d1 → d2)
ARs3 : (d1 → d2) = (b,→ b1).(c, c2) −→ (d,d1 → d2)
ARs4 : (d1 → d2) = (b,→ b2).(c, c1) −→ (d,d1 → d2)

Algorithm 1 SARGS

Require: actions of type list(actions) and dFROM values

1: procedure procedure
2: sv ← list of stable attribute values in actions
3: as ← set of objects in decision system supporting sv ∩
dFROM

4: mv ← set of missing flexible attribute values in actions
5: smv ← Cartesian product of missing values

for each valueSet in cmv do:
6: nv ← combine valueSet with sv
7: ns ← set of objects in the decision system supporting

nv in actions
8: If ns ⊆ as then
9: Add value to actions
10: Output actions as Action Rule

11:

, , Arunkumar Bagavathi, Varun Rao, and Angelina A. Tzacheva

Algorithm 1 gives the modified version of ARAS module that the

SARGS algorithm uses to extract all complete Action Rules. This

algorithm extracts all missing values from the conditional (left) part

of the given Action Rule. The algorithm then get cartesian product

of all missing values (except the values of same attribute) and fills

in the action rule. Following Action Rules are extracted from the

decision system S given in Table 1 using SARGS method.

AR1(d1 → d2) = (A,a1 → a2).(B,→ b2) −→ (D,d1 → d2)
AR2(d1 → d2) = (A,a3 → a2).(B,→ b2) −→ (D,d1 → d2)

4.2 Method 2. Vertical Split - Data Distribution
for Scalable Association Action Rules

In this work, we propose a novel approach for extracting Action

Rules by splitting the data vertically, in cotrast with the classical

horizontal split, which is performed by parallel processing systems.

This vertical split method can be applied to the Association Action

Rules discovery method described by Ras et. al [14]. Association

Action Rules is an exhaustive A-Priori like method, which extracts

all possible action rules by taking all combinations of Action terms

through iterative nature. For that reason, Association Action Rules

is the most complex, and the most computationally expensive out

of all Action Rules extraction algorithms. In this work, we propose

the Vertical Data Split method, which allows for much faster com-

putational time for Association Action Rules extraction, as well

as it it makes it possible to run the extraction in a Cloud Cluster

environment in parallel.

(a,a1) ∩ (b,b2) −→ (c, c1) ∩ (d,d2)
We propose a method provides very broad recommendations

and works comparatively faster than our previous approaches: MR-

Random Forest algorithm [20] and SARGS algorithm [4]. We pro-

pose this method that suits data that has large attribute space. But

the method works better with small data also. In this method, we

split the data vertically into 2 or more partitions, with each partition

having only a small subset of attributes. Our algorithm runs sepa-

rately on each partition, does transformations like map(), flatmap()
functions and combine results with join() and groupBy() operations.
Algorithm 2 gives our new algorithm to extract all possible Action

Rules from the data in a parallel fashion. Following this algorithm

for each partition of data, we collect multiple action rules set. We

combine all action rules to give user a final set of recommendation

action rules.

5 EXPERIMENTS AND RESULTS
To test our methods, we use three datasets: Car Evaluation data,

MammographicMass data, and the Charlotte North Carolina BusinesWise

data.

The Car Evaluation and Mammography are obtained from the

Machine Learning repository of the Department of Information

and Computer Science of the University of California, Irvine [10].

The Car Evaluation Data consists of records describing a car’s

goodness and acceptability. The Mammographic Mass data contains

records that measure severity of the cancer. Since these datasets

are relatively small in size, in order to test them for scalability with

the proposed distributed processing algorithms, we replicate their

data rows 1024 and 2056 times respectively for CarEvaluation and

MammographicMass datasets, in order to increase data size.

Algorithm 2 ActionRulesExtract

Require: data of type (rid , rvalues)) and dFROM ,dTO values

procedureMyProcedure

2: dA := (s ∈ r |r ∈ data |(s, rid)).дroupByKey()
cOLD ← dA

4: i ← 2

parallel:
6: while i , n do:

c ← data. f latmap(r => (comb(rvalues , i)), rid)
8: cNEW ← c .дroupByKey()

cVALID ← cNEW . f ilter ()
10: cFROM ← cVALID . f ilter (dFROM)

cTO ← cVALID . f ilter (dTO)
12: if cFROM = ∅ or cTO = ∅ then break

atomic ← cFROM .jon(cTO). f ilter ()
14: actionsupp ← (r ∈ atomic | f indSupp(r)). f ilter ()

if actionsupp = ∅ then break
16: atomicFROM ← atomic . f ilter ()

atomicTO ← atomic . f ilter ()
18: aFROM ← atomicFROM .join(cOLD)

aTO ← atomicTO .join(cOLD)

20: actionconf ← aFROM .join(aTO)
actions← actionsupp .join(actionconf)

22: collect actions
cOLD := cNEW

24: i := i + 1

We also test with the city of Charlotte North Carolina BusinesWise

data , which is donated by the Charlotte Chamber of Commerce.

This data collects details of over 20,000 business companies in Meck-

lenburg county, North Carolina. From this data, our focus is how

to increase a company’s estimated sales from <2 million US dollars

to the range between 3 million and 10 million US dollars. Further

Table 2 gives a broad picture of the datasets that we used to test

our algorithm.

Table 3 show parameters that we set for each dataset to collect

Action Rules. For our vertical data distribution method evaluations,

we split the Business data only because of the small number of

attributes in Car Evaluation data and Mammographic Mass data.

In Table 4, we give the performance of Class data distribution

methods in context of number of Action Rules they extract from

each dataset. From Table 4, it can be noted that the SARGS algo-

rithms, using both default data distribution and class distribution

approaches, fail to extract some Action Rules. This is due to the

data distribution step involved before the algorithm start to extract

Action Rules. It can be noted that for the Business data, we get 142

rules in common from 265 rules. The remaining rules are based on

the data distribution of different partitions.

In Table 5, we give performance of Vertical data distribution

method for Association Action Rules [14] in terms of number of

Action Rules extracted and compare them with the same algorithm

in non-parallel method. From Table 4 and Table 5, it can be noted

that Association Action Rules method extracts more number of

Action Rules compared to the SARGS method. This is due to the

Data Distribution Method for Scalable Actionable Pattern Mining , ,

Table 2: Dataset Properties

Property Car Evalua-
tion Data

Mamm.
Mass Data

Business
Data

Attributes 7 attributes

-Buying

-

Maintenance

-Doors

-Persons

-Luggage

Boot

-Safety

-Class

6 attributes

-BI-RADS

-Patient’s age

-Shape

-Margin

-Density

-Severity

17 attributes

including

-City

-Sector

-Site Type

-Building

Type

-Estimated

Sales

-Total Em-

ployees

Count

Decision

attribute

values

Class

(unacc, acc,

good, vgood)

Severity

(0 - benign, 1-

malignant)

Estimated

Sales

(< $2M, 3 −
10M, 10 −

25M, 25 −

50M, 50 −

100M, 100 −
500M, >
500M)

of instances

/ decision

value

unacc - 1210

acc - 384

good - 69

vgood - 65

0 - 516

1 - 445

< $3M -

12503

$3-$10M -

1927

$10-$25M -

393

$25-$50M -

130

$50-$100M -

69

$100-$500M -

57

> $500M - 50

of instances

after replica-

tion

1,769,472 1,968,128 N/A

fact that the Association Action Rules method extract all possible

Action Rules from the data.

In Table 6 and Table 7, we give run time evaluations of our

proposed methods. Table 6 compares runtimes of SARGS methods

with the classic ARAS [16] method. From this table, it can be noted

that the SARGS method [4] with default data distribution performs

better, in terms of run time, than our proposed method for all

datasets. This is due to an extract data distribution step involved in

the Class data distribution method.

In Table 7, we give run time evaluations of our proposed method

2: vertical data distribution for the Association Action Rules [16]

method. Association Action Rules extraction is one of the complex

Table 3: Parameters used in all Action Rule discovery algo-
rithms

Property Car Evalua-
tion Data

Mamm.
Mass Data

Business
Data

Stable at-

tributes

Maintenance,

Buying Price,

Doors

Age, Shape Start Year

Required de-

cision action

(Class)

unacc → acc
(Severity)

1→ 0

Estimated

Sales $3M −
$10M →

$10M −$25M

Minimum

Support α
and Con-

fidence

β

2048, 70% 4096, 70% 10, 70%

Table 4: Performance of SARGS algorithms with Class Data
Distribution in terms of number of rules generated. Values
in brackets() represent number of common Action Rules
across all methods

Data Non-
Parallel
Algorithm

SARGS -
Default
Data Distri-
bution

SARGS -
Class Dis-
tribution
Algorithm

Car Evalua-

tion Data

53 53 53

Mamm. Mass

Data

166 165 165

Business

Data

265 372(142) 418(142)

Table 5: Performance of Association Action Rules algorithm
with Vetical data distribution in terms of number of rules
generated

Data Non-
Parallel
Algorithm

Vertical
Data Dis-
tribution
Algorithm

Car Evalua-

tion Data

3500 3496

Mamm. Mass

Data

5790 5756

Business

Data

67000

66632

Action Rule technique because the algorithm needs to evaluate all

possible combination of action terms. With our additional vertical

data distribution method to Spark’s default data distribution, we

achieve better performance in terms of run time of the algorithm.

, , Arunkumar Bagavathi, Varun Rao, and Angelina A. Tzacheva

Table 6: Time taken by SARGS algorithms with data distri-
bution methods to extract Action Rules

Data Non-
Parallel
Algorithm

SARGS -
Default
Data Distri-
bution

SARGS -
Class Dis-
tribution

Car Evalua-

tion Data

0.56 mins 0.28 mins 0.5 mins

Mamm. Mass

Data

0.75 mins 0.38 mins 0.51 mins

Business

Data

20 mins 13.4 mins 14 mins

Table 7: Time taken by Association Action Rules algorithms
to extract Action Rules

Data Non-
Parallel
Algorithm

Vertical
Data Dis-
tribution
method

Car Evalua-

tion Data

72 mins 1.73 mins

Mamm. Mass

Data

40 mins 1.45 mins

Business

Data

> 20hrs 22 mins

In Table 8, we give sample Action Rules, that are common in all

algorithms, for the Car Evaluation data (ARC1,ARC2,ARC3), Mam-

mographic Mass data (ARM1,ARM2,ARM3) and the Business data

(ARB1,ARB2,ARB3). For example, consider the Action Rule ARB1.
This rule recommends that if a company moves from ’Residential’

to ’Office’ type and if they move from the city of ’Matthews’ to

’Charlotte’ and increase their overall employees count to the range

of ’25 − 49Employees’ and if they change their sector to ’Services’

and if they increase their number of offices and if their start year is

between 1981 and 1990, their Estimated sales would increase from

the range $2M − $10M to the range $10M − $24M .

We now give evaluations on Action Rules based on classic single

machine methods with our proposed methods. As described in Ta-

ble 4, due to data distribution part in SARGS methods, we lose some

Action Rules with our proposed methods. On the other hand, in the

real world scenario, all Action Rules are not necessary to make a

decision action. In Table 9 and Table 10, we compare properties of

Action Rules such as Support,Old Confidence, New Confidence and
Utility from our proposed class distribution with SARGS method

with default data distribution and class data distribution methods

for 3 different datasets. For space constraints, we limit our evalu-

ations to the Action Rules given in Table 8 alone. We run all our

algorithms in 10 partitions for Car Evaluation and Mammographic

Mass datasets and 2 partitions for the Business data.

Table 8: Action Rules of all Datasets

Car Evaluation Data

(1) ARC1 : (buyinд = low) ∧ (maint = vhiдh) ∧
(persons,more → 4) =⇒ (class,unacc → acc) [Sup-
port: 3072, Old Confidence: 70%, New Confidence: 100%,

Utility: 70%]

(2) ARC2 : (buyinд = med) ∧ (doors = 3) ∧ (maint =
med)∧(persons, 2→more)∧(sa f ety,hiдh →med) =⇒
(class,unacc → acc) [Support: 3072, Old Confidence:

100%, New Confidence: 100%, Utility: 100%]

(3) ARC3 : (buyinд = med) ∧ (luдboot , small → biд) ∧
(maint =med) ∧ (persons, 2→more) ∧ (sa f ety, low →
med) =⇒ (class,unacc → acc) [Support: 4096, Old Con-

fidence: 100%, New Confidence: 100%, Utility: 100%]

Business Data

(1) ARB1 : (BLDGTYPE,Residential → O f f ice) ∧
(CITY ,Matthews → Charlotte) ∧ (EMPALLSITE, 1 −
3Employees → 25 − 49Employees) ∧
(SECTOR,AдricultureForestryandFishinд →

Services) ∧ (SITETYPE, SinдleSite →

Headquaters) ∧ (STARTYR, 1981 − 1990) =⇒

(ESTSALES, $2Mto$10M → $10Mto$25M) [Sup-

port: 11, Old Confidence: 73%, New Confidence: 73%,

Utility: 73%]

(2) ARB2 : (BLDGTYPE,O f f ice/Retail →

Retail) ∧ (EMPALLSITE, 10 − 24Employees →

50 − 99Employees) ∧ (SECTOR,RetailTrade →

Services) =⇒ (ESTSALES, $2Mto$10M →

$10Mto$25M) [Support: 12, Old Confidence: 100%,

New Confidence: 100%, Utility: 100%]

(3) ARB3 : (CITY ,Matthews → Huntersville) ∧
(EMPALLSITE, 25 − 49Employees → 100 −

249Employees) ∧ (SITETYPE, SinдleSite →

Headquarters) =⇒ (ESTSALES, $2Mto$10M →

$10Mto$25M) [Support: 4, Old Confidence: 64%, New

Confidence: 100%, Utility: 64%]

6 CONCLUSION
We propose two new methods for Data Distribution for Cloud

Parallel processing , which can be applied to Actionable Pattern

Mining via Action Rules. The Method 1 can be applied to most

Action Rules algorithms, including ActionRules [15], system DEAR

[19], ARAS [16], systems ARED [7].

Method 2 is specifically designed for Association Action rules

[14], which is the most complex and time-consuming Action Rules

extraction method, however it discovers all possible Action Rules.

Previous works divide the data by random using default partition-

ing provided by Hadoop MapReduce, and Apache Spark. For that

reason, the calculation of Support and Confidence may not repre-

sent very well the original support and confidence for Action Rules

Data Distribution Method for Scalable Actionable Pattern Mining , ,

Table 9: Support(s),Old Confidence(o),New Confidence(c) and Utility(u) of Action Rules from Car Evaluation for the Class
Distribution approach

Action Rule Non-parallel algo-
rithm

SARGS - Default Data
Distribution

SARGS - Class Distri-
bution

s o c u s o c u s o c u

ARC1 3072 70% 100% 70% 343 42% 100% 42% 339 70% 100% 70%

ARC2 3072 100% 100% 100% 306 100% 100% 100% 309 100% 100% 100%

Table 10: Support(s),Old Confidence(o),New Confidence(c) and Utility(u) of Action Rules from Business Data for the Class
Distribution approach

Action Rule Non-parallel algo-
rithm

SARGS - Default Data
Distribution

SARGS - Class Distri-
bution

s o c u s o c u s o c u

ARB1 11 73% 73% 73% 4 100% 100% 100% 7 66% 66% 66%

ARB2 12 100% 100% 100% 5 0% 0% 0% 7 100% 100% 100%

extracted on the entire dataset, or the support and confidence may

be incorrect all together.

Our results show improved support, confidence, and utility with

the new proposed methods, which more closely represent the cor-

rect support and confidence as obtained by non-parallel methods.

In addition, our results show much faster computational times with

big datasets for the exhaustive Association Action Rules method.

Future work includes, introduction the notion of cost the suggested

Actions, and filtering the Action Sets based on cost, to further re-

duce the computational time, and provide the most interesting and

usable Action Rules.

REFERENCES
[1] S. Ramachandran A.A. Tzacheva, C.C. Sankar and R.A. Shankar. 2016. Support

Confidence and Utility of Action Rules Triggered by Meta-Actions. In proceedings
of 2016 IEEE International Conference on Knowledge Engineering and Applications
(ICKEA 2016). IEEE Computer Society.

[2] Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast algorithms for mining

association rules. In Proc. 20th int. conf. very large data bases, VLDB, Vol. 1215.
487–499.

[3] Mamoun Al-Mardini, Ayman Hajja, Lina Clover, David Olaleye, Youngjin Park,

Jay Paulson, and Yang Xiao. 2016. Reduction of Hospital Readmissions through

Clustering Based Actionable Knowledge Mining. InWeb Intelligence (WI), 2016
IEEE/WIC/ACM International Conference on. IEEE, 444–448.

[4] A. Bagavathi, P. Mummoju, K. Tarnowska, A. A. Tzacheva, and Z. W. Ras. 2017.

SARGS method for distributed actionable pattern mining using spark. In 2017
IEEE International Conference on Big Data (Big Data). 4272–4281. https://doi.org/

10.1109/BigData.2017.8258454

[5] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing

on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[6] Michael Hahsler and Radoslaw Karpienko. 2017. Visualizing association rules in

hierarchical groups. Journal of Business Economics 87, 3 (2017), 317–335.
[7] Seunghyun Im and ZbigniewW Raś. 2008. Action rule extraction from a decision

table: ARED. In International Symposium on Methodologies for Intelligent Systems.
Springer, 160–168.

[8] S.R. Marepally J.W. Grzymala-Busse and Y. Yao. 2013. An Empirical Comparison

of Rule Sets Induced by LERS and Probabilistic Rough Classification. In Rough
Sets and Intelligent Systems. Vol. 1. Springer, 261–276.

[9] Jieyan Kuang, Albert Daniel, Jill Johnston, and Zbigniew W Raś. 2014. Hierar-

chically structured recommender system for improving NPS of a company. In

International Conference on Rough Sets and Current Trends in Computing. Springer,
347–357.

[10] M. Lichman. 2013. UCI Machine Learning Repository. Technical Report. Irvine,
CA, USA.

[11] Ming-Yen Lin, Pei-Yu Lee, and Sue-Chen Hsueh. 2012. Apriori-based frequent

itemset mining algorithms on MapReduce. In Proceedings of the 6th international

conference on ubiquitous information management and communication. ACM, 76.

[12] Maria Malek and Hubert Kadima. 2013. Searching frequent itemsets by clustering

data: Towards a parallel approach using mapreduce. In Web Information Systems
Engineering–WISE 2011 and 2012 Workshops. Springer, 251–258.

[13] Hongjian Qiu, Rong Gu, Chunfeng Yuan, and Yihua Huang. 2014. Yafim: a parallel

frequent itemset mining algorithm with spark. In Parallel & Distributed Processing
Symposium Workshops (IPDPSW), 2014 IEEE International. IEEE, 1664–1671.

[14] Zbigniew W Ras, Agnieszka Dardzinska, Li-Shiang Tsay, and Hanna Wasyluk.

2008. Association action rules. In Data Mining Workshops, 2008. ICDMW’08. IEEE
International Conference on. IEEE, 283–290.

[15] ZbigniewW Ras and Alicja Wieczorkowska. 2000. Action-Rules: How to increase

profit of a company. In European Conference on Principles of Data Mining and
Knowledge Discovery. Springer, 587–592.

[16] Zbigniew W Raś, Elżbieta Wyrzykowska, and Hanna Wasyluk. 2007. ARAS:

Action rules discovery based on agglomerative strategy. In InternationalWorkshop
on Mining Complex Data. Springer, 196–208.

[17] Sanjay Rathee, Manohar Kaul, and Arti Kashyap. 2015. R-Apriori: an efficient

apriori based algorithm on spark. In Proceedings of the 8th Workshop on Ph. D.
Workshop in Information and Knowledge Management. ACM, 27–34.

[18] Matteo Riondato, Justin A DeBrabant, Rodrigo Fonseca, and Eli Upfal. 2012.

PARMA: a parallel randomized algorithm for approximate association rules

mining in MapReduce. In Proceedings of the 21st ACM international conference on
Information and knowledge management. ACM, 85–94.

[19] Li-Shiang Tsay* and Zbigniew W Raś. 2005. Action rules discovery: system

DEAR2, method and experiments. Journal of Experimental & Theoretical Artificial
Intelligence 17, 1-2 (2005), 119–128.

[20] Angelina A Tzacheva and Zbigniew W Ras. 2010. Association action rules and

action paths triggered by meta-actions. In Granular Computing (GrC), 2010 IEEE
International Conference on. IEEE, 772–776.

[21] Le Wang, Lin Feng, Jing Zhang, and Pengyu Liao. 2014. An efficient algorithm

of frequent itemsets mining based on mapreduce. JOURNAL OF INFORMATION
&COMPUTATIONAL SCIENCE 11, 8 (2014), 2809–2816.

[22] Xian Wu, Wei Fan, Jing Peng, Kun Zhang, and Yong Yu. 2015. Iterative sampling

based frequent itemset mining for big data. International Journal of Machine
Learning and Cybernetics 6, 6 (2015), 875–882.

[23] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-

silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster

Computing. In Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI’12). USENIX Association, Berkeley, CA, USA,

2–2. http://dl.acm.org/citation.cfm?id=2228298.2228301

https://doi.org/10.1109/BigData.2017.8258454
https://doi.org/10.1109/BigData.2017.8258454
http://dl.acm.org/citation.cfm?id=2228298.2228301

	Abstract
	1 Introduction
	2 Related Works
	3 Action Rules and Spark
	3.1 Action Rules
	3.2 Spark

	4 Methodology
	4.1 Method 1. Class Attribute Value - Data Distribution Strategy for Scalable Action Rules
	4.2 Method 2. Vertical Split - Data Distribution for Scalable Association Action Rules

	5 Experiments and Results
	6 Conclusion
	References

