

 Int. J. Social Network Mining, Vol. 3, No. 1, 2020 35

 Copyright © 2020 Inderscience Enterprises Ltd.

Action rules for sentiment analysis using Twitter

Angelina A. Tzacheva*,
Jaishree Ranganathan and
Arunkumar Bagavathi
Department of Computer Science,
University of North Carolina at Charlotte,
Charlotte, NC, 28223, USA
Email: aatzache@uncc.edu
Email: jrangan1@uncc.edu
Email: abagavat@uncc.edu
*Corresponding author

Abstract: Actionable patterns are interesting and usable knowledge mined
from large datasets. Action rules are rules that describe the possible transition
of objects from one state to another with respect to a decision attribute. In this
work, we extract actionable recommendations in the form of action rules, that
can be applied to social networking data in a scalable manner to achieve the
desired user goals. We propose extraction of actionable patterns based on
sentiment analysis of social network data. In sentiment analysis there are two
approaches to determine the polarity: Corpus-based, and Lexicon-based. We
use corpus-based sentiment analysis approach, where sentiment values are
generated based on sentence structure rather than words. Results show
actionable patterns in tweet data and provide suggestions on how to change
sentiment of the tweet to a more positive one. The experiment is performed
with Twitter data in a distributed environment using Hadoop MapReduce for
scalability with large data.

Keywords: sentiment analysis; natural language processing; action rules;
MapReduce.

Reference to this paper should be made as follows: Tzacheva, A.A.,
Ranganathan, J. and Bagavathi, A. (2020) ‘Action rules for sentiment analysis
using Twitter’, Int. J. Social Network Mining, Vol. 3, No. 1, pp.35–51.

Biographical notes: Angelina A. Tzacheva is currently teaching as an
Associate Professor at the University of North Carolina at Charlotte, USA. Her
research interests include data mining, knowledge discovery in databases,
distributed knowledge systems, medical imaging, multimedia databases, and
bio-informatics.

Jaishree Ranganathan is a PhD student at the University of North Carolina at
Charlotte, USA. Her research interests include data mining, text mining, and
knowledge discovery in databases, natural language processing, machine
learning, and social media mining.

Arunkumar Bagavathi is a PhD student at the University of North Carolina at
Charlotte, USA. His research interests include data mining, knowledge
discovery in databases, machine learning, and network analysis.

 36 A.A. Tzacheva et al.

1 Introduction

Social interaction websites like Facebook, Flickr, and Twitter have added a new
dimension to the social life of internet-aware people. This trend provides a huge amount
of raw data that can be processed to generate structured and useful information. Data
mining promises to discover valid and potentially useful patterns in data. Often,
discovered patterns are not useful to the user. ‘actionability’ addresses this problem in
that a pattern is deemed actionable if the user can act upon it favourably. Actionable
patterns in most cases can be created through rule reduction, model refinement, or
parameter tuning by optimising generic patterns (Wang et al., 2006). Actionable patterns
are revised optimal versions of generic patterns that capture deeper characteristics and
understanding of the business and are also called in-depth or optimised patterns. Action
rules are specific patterns extracted from large datasets. To generate action rules, the
attributes in the dataset are split into two groups called – flexible attributes and stable
attributes. Flexible attributes are those for which the state can change, and the stable
attributes are those for which the state is always fixed. An association action rule is a rule
extracted from an information system that describes a cascading effect of changes of
attribute values listed in the left-hand side of a rule (Ras et al., 2008) on changes of
attribute values listed in its right-hand side. Generating action rules based on a
classification rules are expensive. This paper makes use of the ARAS algorithm proposed
by Ras et al. (2007). ARAS action rules discovery based on grabbing strategy which uses
LERS -–combines each action rule generated from single classification rule with the
remaining stable attributes to offer more action rules. This work discovers more action
rules as compared to the previous algorithms. The use of LERS in the pre-processing
module for defining classification rules serves to decrease the complexity of ARAS
algorithm. Sentiment analysis is the process of identifying the polarity, opinion or
emotion expressed by human. In this work we use the Stanford core NLP suite (Manning
et al., 2014) for extracting sentiment from Twitter data.

2 Related work

Many algorithms are available for mining social media data. These data mining
algorithms can be divided into several categories. The following are two well established
categories: supervised learning and unsupervised learning.

In supervised learning algorithms, the class attributes for datasets are known before
running the algorithm. This supervised learning is further classified as classification and
regression. When the class attribute is discrete it is classification. Decision tree learning,
naive Bayes classifier, and k-nearest neighbour classifier are classification methods.
When the class attribute is continuous it is regression. Linear regression and logistic
regression are regression methods.

In unsupervised learning, the dataset has no class attribute and the task is to find
similar instances and significant patterns in dataset. For example, unsupervised learning
can be used to identify events on Twitter data, because the frequency of tweeting is
different for various events. This method allows tweets to be grouped based on the times
at which they appear and therefore can identify the tweets corresponding to real-world
events. This section describes various related research works in this area.

 Action rules for sentiment analysis using Twitter 37

Authors Mishra and Nandi (2015) used Enron e-mail communication dataset to
predict the likelihood of future connection between nodes (people) communicating
through e-mail where there is no connection between them in present state of the
network. This proposal was a Hybrid approach for link prediction which is based on
principle of feature ensemble to generate predictive model. Jaccard’s coefficient and
preferential attachment (JCPA) model, Jaccard’s Coefficient, and Adamic/Adar (JCAA)
model, preferential attachment, and Adamic/Adar (PAAA) model are generated with the
context of ascertaining more accuracy in the performance of link prediction classifier.
naive Bayes classifier is the base classifier. The results of this experiment show the
proposed hybrid computation method achieves better results with link prediction. The
experiment results show that 17,040 pairs of nodes have link labels as connected and
label of 170,839 pairs of nodes is unknown which required to be classified. The ratio of
disconnected and connected links is 0.099:1. Results are evaluated with confusion matrix
and ROC curve.

Authors Hafez et al. (2015) proposed community detection in social network using
logic-based programming based on four real social networks – Zachary’s karate club
network, the bottlenose dolphin network, American college football network and
synthetic network – benchmark proposed by Girvan and Newman based on planted
partition model. They used deterministic annealing expectation maximisation algorithm
in the learning process which yielded promising results when applied to the community
detection problem. The model works well with directed and undirected networks and
weighted and un-weighted networks. Community in a network is a group of nodes having
a high density of edges among the nodes and a low density of edges between different
groups. Community detection involves identifying the number of ‘k’ communities or
groups in a network and assigning community membership for each node. The authors
Hafez et al. (2015)use PRISM which is a high-level language for probabilistic
modelling. Test results on real social networks and synthetic networks were good
compared to the NL-EM method results and compared to the original community
structure of the networks.

Authors Basuchowdhuri et al. proposed a unified scheme for finding disjoint and
overlapping communities in social networks using strength of ties in 2015. Authors
proposed a metric that measures strength of a link (SOL) in the network to calculate the
degree to which it is part of the community. SOL is formulated based on the number of
connections between two adjacent communities and their respective average clustering
coefficients to formulate the strength of the links. There are two parts in SOL formulation
as follows: part 1 is a calculation of number of connections between the neighbours of the
nodes of the link excluding the link. Part 2 is a calculation of average clustering
coefficient value of the neighbours of the nodes of the link. Results of this paper show
that goodness of a community is defined by its presence of cliques. Structured query
language (SQL) based methods work well for graphs with low average shortest path
length and high clustering coefficient.

Authors Conan-Guez and Nguyen (2015) proposed an efficient algorithm for
hierarchical clustering analysis of large networks called Mod-Mullner. This is a
cumulative algorithm for hierarchical clustering analysis. It uses greedy optimisation of
modularity, a widely-used measure for network partitioning. Definition of a network
community based on the modularity measure ‘Q’ proposed by Newman (2004) is used to
quantify the quality of a given partition ‘P’ of a network into separate communities. This

 38 A.A. Tzacheva et al.

work analysed both simulated and real social networks. Mod-Mullner method achieved
1.7 accelerations faster on an average on simulated and real-world networks compared to
our fast implementation.

The following studies performed experiments to analyse Twitter data.
Authors Chellal et al. (2016) proposed multi-criterion real time tweet summarisation

based upon adaptive method. This method provides new relevant and non-redundant
information about an event as soon as it occurs. The tweets selection is based on the
following three criterions: informativeness, novelty and relevance with regards of the
user interest which are combined as conjunctive condition. Experiments were carried out
on TREC MB RTF-2015 (Lin et al., 2015) dataset.

Authors Xu et al. (2016) proposed methods to infer a user’s expertise based on their
posts on the popular micro-blogging site Twitter. They proposed a sentiment-weighted
and topic relation-regularised learning model. Sentiment intensity of a tweet is used to
evaluate user’s expertise and the relatedness between user’s expertises is exploited to
model inference problem. The following four common metrics were used for evaluation:
accuracy, precision, recall and F1-score.

Authors Bravo-Marquez et al. (2016) proposed a simple model for transferring
sentiment labels from words to tweets and vice versa by representing both tweets and
words using feature vectors residing in the same feature space. Two transfer learning
problems are used to evaluate the approach:

1 training a tweet-level polarity classifier from a polarity lexicon

2 inducing a polarity lexicon from a collection of polarity-annotated tweets.

Tweet centroid model developed in this paper outperformed the classification
performance of the popular emoticon-based method for data labelling and better results
than a classifier trained from tweets labelled based on the polarity of their words.

Authors Kamkarhaghighi et al. (2016) discovered credible Twitter users in stock
market domain. This work suggested a correlation between each user’s credibility and the
extracted features from each follower network: number of followers; number of stock
market-related followers, extracted by a cashtag-based approach; ratio of stock
market-related followers to the total number of followers; and the number of seed user
tweets.

Authors Bartoli et al. (2016) proposed a language and an inference engine for tweet
filtering. This method is an evolutionary approach driven by a multi-objective
optimisation scheme to the problem of filtering of Twitter posts. Dataset of Twitter posts
authored by 11,254 different Twitter users were assembled by means of an automatic
procedure exploiting the Twitter APIs. Egocentric text classifier was used to associate
each post with its topics. By Egocentric we mean that class is based on how far the ego is
from the ego of that category. Lucia and Ferrari (2014) proposed unsupervised
knowledge-based classifier for short text messages where an ego-network represents each
category. Classification is based on how far the words are from the ego of that category.
Ego-network is built by exploiting YAGO and WordNet. YAGO is a large ontology with
high coverage and precision. All objects are represented as entities. WordNet is a lexical
database of the English language where words are linked via semantic relationships.

Authors Al-Ayyoub et al. (2015) proposed a lexicon-based sentiment analysis of
Arabic tweets. This method is based on sentiment analysis and opinion mining of social
network data Twitter feedbacks and comments. Unsupervised approach of sentiment

 Action rules for sentiment analysis using Twitter 39

analysis was applied which built a sentiment lexicon sentiment analysis (SA) tool. The
sentiment lexicon contains sentiment value for each component of a sentence such as
parts of speech (POS), negations, modifiers, clauses, context etc. These values are
combined to obtain the sentiment value of entire sentence. This sentiment lexicon was
built with about 120,000 Arabic terms and a SA tool based on predicate calculus.

In this work, we propose a new method of discovering actionable patterns through
action rules for the Twitter data with sentiment analysis (Manning et al., 2014) results.
We are not aware of any other research that analyse tweets using action rules.

3 Methodology

The focus of this work is to mine actionable patterns via action rules from Twitter data
and provide suggestions on how users can be more positive. The proposed method shown
in Figure 1 consists of the following components: data collection, pre-processing,
sentiment analysis, classification, action rule generation, and summarisation.

Figure 1 Actionable pattern mining system for twitter sentiment analysis

3.1 Data collection

We collected data using Twitter standard search API. The following attributes are
extracted as part of the data collection process: RetweetCount, IsFavorited, UserID,
UserFriendsCount, UserFavoritesCount, UserFollowersCount, UserLanguage and
TweetText. We collected close to 28,000 instances for the experiments purpose. Sample
data shown in Table 3.

3.2 Pre-processing

Pre-processing is discretisation on the attributes UserFriendsCount, UserFavoritesCount,
and UserFollowers Count by placing them in intervals. Intervals are selected based on the
range of friends, favourites, and followers count in the actual data, for instance if the
user’s friends count is within 100 then we discretise them as 0–100. In this step, we
cleaned the data from missing values, applied feature selection and removed unnecessary
values. In pre-processing step, we aim to represent the data in a form that can be analysed

 40 A.A. Tzacheva et al.

efficiently and to improve their quality by reducing the amount of trivial noise. We kept
the following attributes: RetweetCount, IsFavorited, UserID, UserFriendsCount,
UserFavoritesCount, UserFollowersCount, UserLanguage, and TweetText.

3.3 Sentiment analysis

We performed Sentiment Analysis on data and augmented the data with class attribute
which is ‘Sentiment’ that has the following values: positive, negative, neutral, very
positive, and very negative. In addition, we extracted Parts of Speech and augmented the
data with attribute verb. Example for Parts of Speech is shown in Figure 3. This
information is required in actionable pattern mining because verbs suggest actionable
knowledge.

Figure 2 Sentiment analysis (see online version for colours)

Stanford core NLP (Manning et al., 2014) was used for sentiment analysis. The general
process for sentiment analysis is shown in Figure 2. This NLP suite provides a set of
natural language analysis tools. The basic distribution provides model files for the
analysis of well-edited English, but the engine is compatible with models for other
languages. Stanford core NLP is written in Java (Manning et al., 2014). This NLP suite
provides various annotators which can work with any character encoding, making use of
Java’s Unicode support, but system defaults to UTF-8 encoding. Out of these annotators
we are using tokeniser, part of speech, and sentiment analysis in our work.

Figure 3 Part-of-speech tagger – verbs

3.4 Classification

We use learning from examples using rough sets (LERS) (Grzymala-Busse et al., 2013)
algorithm to extract classification rules from Twitter data. Each tweet was classified as

 Action rules for sentiment analysis using Twitter 41

positive, negative, neutral, very positive, very negative. LERS (Grzymala-Busse et al.,
2013) is used to extract classification rules from the information system. Our
implementation follows distributed strategy of generating classification rules using LERS
system shown in Figure 4. Using the information system S from Table 1, LERS strategy
generates certain and possible rules describing decision attribute D in terms of attributes
A, B, and C. LERS can be used as a data strategy to generate classification rules. LERS
produces a set of certain and possible rules (Grzymala-Busse et al., 2013). We consider
only marked certain rules to construct action rules. Since LERS follows bottom-up
strategy, it constructs rules with a conditional part of length x, then it continues to
construct rules with a conditional part of length x + 1 during the following iterations.

Figure 4 LERS algorithm

Algorithm 1:
LERS (attributesSupport, decisionSupport)

(where attributesSupport and decisionSupport are maps with distinct attribute values as keys and
their corresponding value is the objects in the information system supporting them)
 fixedSupport ← attributesSupport
 while attributesSupport is not empty do
 for each key, value pair in the attributeSupport do
 if value is a subset of one of the values of decisionSupport then
 Add key and decisionValue to certainRules(where certainRules is a map with

attribute value as a ‘key’ and decision attribute value as a ‘value’)
 else
 Add key and value to possibleRules
 (where possibleRules is a map with attribute value as a ‘key’ and decision

attribute value as a ‘value’)
 end
 delete key from the attributesSupport
 end
 for each key1, value1 pair in the possibleRules do
 for each key2, value2 pair in the fixedSupport do
 if key1 contains key2 then Continue
 else
 key3 ← (key2, key1)
 value3 ← Set of objects in information system supporting key3
 Add key3 and value3 to attributeSupport
 end
 end
 end
 end

 42 A.A. Tzacheva et al.

Table 1 Example information system

X A B C D

x1 a1 b1 c1 d1
x2 a3 b1 c1 d1
x3 a2 b2 c1 d2
x4 a2 b2 c2 d2
x5 a2 b1 c1 d1
x6 a2 b2 c1 d2
x7 a2 b1 c2 d2
x8 a1 b2 c2 d1

For the information system given in Table 1, consider the following as decision support:

{ } () { }1 1 2 5 8 2 3 4 6 7() * , , , ; * , , ,d x x x x d x x x x− = =

LERS module given in Figure 4 for the given information system S, extracts certain and
possible rules which are given in Table 2.
Table 2 LERS example for information system S

Iteration Attribute value support Certain rules Possible rules

1 (a1) * = {x1, x8} – marked a1 → d1 a2 → d1
 (a2) * = {x3, x4, x5, x6, x7} a3 → d1 a2 → d2
 (a3) * = {x2} – marked b1 → d1
 (b1) * = {x1, x2, x5, x7} b1 → d2
 (b2) * = {x3, x4, x6, x8} b2 → d1
 (c1) * = {x1, x2, x3, x5, x6} b2 → d2
 (c2) * = {x4, x7, x8} c1 → d1
 c1 → d2
 c2 → d1
 c2 → d2
2 (a2, b1) * = {x5, x7} a2^ b2 → d2 a2 ^ b1 → d1
 (a2, b2) * = {x3, x4, x6} – marked a2 ^ c2 → d2 a2 ^ b1 → d2
 (a2, c1) * = {x3, x5, x6} b1 ^ c1 → d1 a2 ^ c1 → d1
 (a2, c2) * = {x4, x7} – marked b1^ c2 → d2 a2^ c1 → d2
 (b1, c1) * = {x1, x2, x5} – marked b1^ c2 → d2 b2 ^ c2 → d1
 (b1, c2) * = {x7} – marked b2 ^ c2 → d2
 (b2, c1) * = {x3, x6} – marked
 (b2, c2) * = {x4, x8}
3 (a2, b1, c1) * = {x5} – marked a2 ^ b1 ^ c1 → d1

 Action rules for sentiment analysis using Twitter 43

3.5 Actionable pattern mining – action rules

ARAS is action rules discovery based on agglomerative strategy, which uses LERS
proposed by Ras et al. (2007) as an alternative to system DEAR (Ras and Tsay, 2003)
which extracts action rules from a pair of classification rules. The foremost advantage of
using ARAS is that it uses single classification rule to provoke action rules. ARAS uses
an algorithm like LERS to extract action rules, without the need of verifying the validity
of the certain relations. The algorithm checks if these relations are marked previously by
LERS.

Figure 5 AR (action rules) algorithm in distributed environment using MapReduce

Algorithm 2:
AR (certainRules, decisionFrom, decisionTo)

 (where certainRules is provided by the LERS)
 for each key, value pair in the certainRules do
 if value1 equals decisionTo then
 actions ← empty list
 for each attribute value a in key do
 A←attributeName(a)
 actions. Add (“(A, → a)”)

 end

ARAS presumes that system LERS construct classification rules describing target
decision value. Figure 4 and Figure 5 together gives the algorithm of ARAS. Algorithm
AR takes each candidate classification rule and form an action rule schema which in turn
is given to the algorithm ARAS to build a cluster of action rules around each schema. For
the classification rules in Table 2, algorithm AR generates following set of action rule
schema:

() () () ()1 1 2 2 2 1 2, , ,sAR d d A a B b D d d→ = → ∧ → →

() () () ()2 1 2 2 2 1 2, , ,sAR d d A a C c D d d→ = → ∧ → →

() () () ()3 1 2 2 2 1 2, , ,sAR d d B b C c D d d→ = → ∧ →

() () () ()4 1 2 2 1 1 2, , ,sAR d d B b C c D d d→ = → ∧ → →

Algorithm ARAS takes each action rule schema and using their flexible and stable
attributes generates following action rules which imply d1 → d2. For the action rule
schema ARs1, the algorithm ARAS finds all missing flexible attributes AM: {a1, a3, b1}.
Each missing flexible attribute is filled into appropriate action terms. In ARAS, the
maximum number of action rules generated = AM. For ARs1, ARAS produces following
action rules:

 44 A.A. Tzacheva et al.

() () () ()1 1 2 1 2 2 1 2, , ,AR d d A a a B b D d d→ = → ∧ → →

() () () ()2 1 2 3 2 2 1 2, , ,AR d d A a a B b D d d→ = → ∧ → →

Figure 6 ARAS in a distributed environment using MapReduce

Algorithm 3:
ARAS (actions, decisionFrom, decisionTo)
 (where ‘actions’ is a list of actions from Algorithm AR)
 stableValues ← list of stable attribute values in actions
 actionsSupport ←set of objects in the information system supporting

stableValues ∩ decisionFrom
 missingValues ←set of missing flexible attribute values of the flexible attributes in actions
 for each value in missingValues do
 newValues ← combine value with stableValues
 newSupport ← set of objects in the information system supporting newValues in actions
 if newSupport ⊆ actionsSupport then
 Add value to actions
 Output actions as Action Rule
 end
 end

Let an action rule R takes a form of:

() ()1 2 1 2Y Y Z Z→ →

where,

Y is the condition part of R

Z is the decision part of R

Y1 is a set of all left side of the all condition action terms

Y2 is a set of all right side of the all condition action terms

Z1 is the decision attribute value on left side

Z2 is the decision attribute value on right side

In Ras et al (2007), the support and confidence of an action rule R is given as

() (){ }1 1 2 2Support(R)=min card Y Z , card Y Z∩ ∩

() () () ()1 1 1 2 2 2Confidence(R) card Y Z / card Y * card Y Z / card Y= ∩ ∩⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

In this paper, we use the following support and confidence formula given by Tzacheva
et.al. (2016b) to reduce the complexity.

()2 2Support(R) card Y Z= ∩

() ()2 2 2Confidence(R) card Y Z / card Y= ∩⎡ ⎤⎣ ⎦

 Action rules for sentiment analysis using Twitter 45

3.6 Distributed actionable pattern mining – random-forest Hadoop

We use MR – random-forest algorithm for distributed action rules discovery by authors
Tzacheva et al. (2016a), using Apache Hadoop framework and Google MapReduce
(Dean and Ghemawat,2008). MR-Random-Forest algorithm is shown in Figure 6. We
take as an input a set of files: the data, the attribute names, user specified parameters such
as: minimum support, and confidence thresholds, stable attribute names, flexible attribute
names, decision attribute choice, decision attribute value to change from, and decision
attribute value to change to, which is the desired value of decision attribute (desired
object state). We import these input files into the Hadoop distributed file system (HDFS).
Action rules are built using Apache framework and results are evaluated using Hadoop
MapReduce system. The data is spread across a distributed environment to get more
optimal action rules and upgraded ARAS algorithm to get more specific action rules.
Figure 7 shows the overview of the algorithm used for generating action rules.

Figure 7 MR – random forest algorithm for distributed action rules discovery

4 Experiment and results

Our research is focussed on recommending methods to improve emotions from negative
to positive and neutral to positive and increasing friends count of a user. For this
experiment, we used live tweets extracted using Twitter Search API on the latest tweets.
The Twitter Search API searches against a sampling of recent tweets published in the past
seven days. Data Collection includes user-generated updates collected directly from
social media API as they allow subscription to a continuous live stream of data. Our data
contains the following attributes: RetweetCount, IsFavorited, UserID, UserFriendsCount,

 46 A.A. Tzacheva et al.

UserFavoritesCount, UserFollowersCount, TweetText, UserLanguage, TweetSentiment,
and TweetVerb. We collected about 28,000 instances. Table 3 gives the description about
the dataset. The Hadoop research cluster at University of North Carolina Charlotte was
used to perform the experiments. This cluster has six nodes connected via ten gigabits per
second ethernet network.
Table 3 Sample data with sentiment analysis results

ReTweet IsFavorited Friends Followers Language

0 False 247 30,795 en
0 False 42 527 13

 Text Sentiment Verb
0 RT @ThadSuggs: PLS HELP.SAVEA GRADE. Negative Help
0 RT @CW_TheFlash: Thanks for watching! New

episodes return January 24.
Positive watching

Figure 8 Tweets sentiment analysis (see online version for colours)

We used action rules to change the emotion from negative to positive and neutral to
positive, also to change from lower number of friends count to higher number of friends.
Our data contains the following attributes: RetweetCount, IsFavorited,
UserID, UserFriendsCount, UserFavoritesCount, UserFollowersCount, TweetText,
UserLanguage, TweetSentiment, and TweetVerb. In Figure 8 we can see that most of the
comments are negative. We focus on the issue of improving the comments emotion from
negative to positive and neutral to positive by providing actionable patterns to improve
the emotions. Also, we suggest actionable patterns to improve friends count. In our data,
we noticed that positive comments have more favourites compared to others as shown in
Figure 9.

 Action rules for sentiment analysis using Twitter 47

Figure 9 Favourites count for various sentiments (see online version for colours)

The methods suggested in previous section LERS, ARAS for classification and action
rules mining were implemented in Java and tested with the above data set.

Let us consider AR1 from Table 5. If user’s favourites count increases from 0–100 to
1,001–5,000 and user’s followers count increases from 101–200 to 701–800 and user
language is English, then tweet sentiment could be changed from neutral to positive. This
rule is generated with a confidence of 100% and support 2 for the Twitter data with
following attributes: RetweetCount, IsFavorited, UserID, UserFriendsCount,
UserFavoritesCount, UserFollowersCount, UserLanguage and TweetSentiment. In future
if more attributes relevant to the context of text like frequency of part-of-speech
including adjectives is added then we anticipate that the action rules generated by our
system would be more intuitive.
Table 4 Single node and Hadoop cluster time comparison

Experiment Time taken single node Time taken Hadoop

Experiment 1 432 seconds 258 seconds
Experiment 2 270 seconds 180 seconds
Experiment 3 273 seconds 192 seconds

Considering the recent growth of the amount of data collected nowadays, we use
distributed implementation of the proposed method LERS and ARAS using Hadoop map
reduce framework by Tzacheva et al. (2016a). We show that computation is much faster
in the distributed framework than on single computer. The experiment results are shown
in Table 4. We can scale to large social media data sizes. It is considered that the
workload can be spread across two nodes and can increase the number of mappers and
scale to very large size data and handle it appropriately.

 48 A.A. Tzacheva et al.

Table 5 Example action rules generated

Action rule no. Action rule

AR1 (UserFavoritesCount, 0–100 → 1,001–5,000) ^ (UserFollowersCount,
101–200 → 701–800) ^ (UserLanguage = en-gb) (TweetSentiment,

Neutral → Positive) [Support: 2, Old Confidence: 66%,
New Confidence: 100%]

AR2 (UserFavoritesCount, 101–200 → 701–800) ^ (UserFollowersCount,
0–100 → 301–400) ^ (UserFriendsCount, 101-200 → 201–300) ^

(UserLanguage = en) (TweetSentiment, Neutral → Positive) [Support: 2,
Old Confidence: 80%, New Confidence: 100%]

AR3 (UserFavoritesCount, 201–300 → 601–700) ^ (UserFollowersCount,
5,001–10,000 → 301–400) ^ (UserFriendsCount, 501–600 → 701–800)
(TweetSentiment, Neutral → Positive) [Support: 2, Old Confidence: 100%,

New Confidence: 100%]

Experiment 1: UserFriendsCount, following attributes were used to generate action rules:
decision attribute – UserFriendsCount, stable attribute – UserLanguage, support – 2,
confidence – 60%. Sample action rules generated for this experiment are given in
Table 6.
Table 6 Example action rules – experiment 1: change from class UserFriendsCount: low to

high number of friends

Single node action rules Hadoop action rules

(TweetSentiment, negative → positive) ^
(UserFavoritesCount, 0–100 →
10,001–15,000) ^ (UserFollowersCount,
0–100 → 1,001–5,000) ^ (UserLanguage = pt)

 (UserFriendsCount, 0–100 →
1,001–5,000) [support: 2, old confidence:
67%, new confidence: 100%]

(TweetSentiment, negative → neutral) ^
(UserFavoritesCount, 0–100 → 5,001–10,000)
^ (UserLanguage = it) (UserFriendsCount,

0–100 → 1,001–5,000) [support: 2, old
confidence: 60%, new confidence: 100%]

(TweetSentiment, Neutral → Positive) ^
(UserFavoritesCount, 0–100 →
10,001–15,000) ^ (UserFollowersCount,
0–100 → 1,001–5,000) ^ (UserLanguage = pt)

 (UserFriendsCount, 0–100 →
1,001–5,000) [support: 2, old confidence:
76%, new confidence: 100%]

(TweetSentiment, neutral → positive) ^
(UserFavoritesCount, 601–700 →

1,001–5,000) ^ (UserLanguage = de)
(UserFriendsCount, 0–100 → 1,001–5,000)

[support: 2, old confidence: 100%, new
confidence: 100%]

(TweetSentiment, negative → neutral) ^
(UserFavoritesCount, 20,001–25,000 →
601–700) ^ (UserFollowersCount, 0–100 →
5,001–10,000) ^ (UserLanguage = en)
(UserFriendsCount, 0–100 → 1,001–5,000)
[support: 4, old confidence: 96%, new
confidence: 100%]

(TweetSentiment, very negative → neutral) ^
(UserFavoritesCount, 0–100 → 601–700) ^

(UserFollowersCount, 0–100 →
5,001–10,000) ^ (UserLanguage = en)

(UserFriendsCount, 0–100 → 1,001–5,000)
[support: 2, old confidence: 100%, new

confidence: 100%]

Experiment 2: negative to positive, following attributes were used to generate action
rules: decision attribute – TweetSentiment, stable attribute – UserLanguage, support – 2,
confidence – 60%. Sample action rules generated for this experiment are given in
Table 7.

 Action rules for sentiment analysis using Twitter 49

Table 7 Example action rules – experiment 2: change class from TweetSentiment: negative to
positive

Single node action rules Hadoop action rules

(UserFavoritesCount, 10,001–15,000 →
601–700) ^ (UserFollowersCount, 101–200 →
301–400) ^ (UserFriendsCount, 301–400 →
701–800) (TweetSentiment, negative →
positive) [support: 2, old confidence: 60%,
new confidence: 100%]

(UserFavoritesCount, 0–100 → 601–700) ^
(UserFollowersCount, 5,001–10,000 →

301–400) ^ (UserFriendsCount, 201–300 →
701–800) (TweetSentiment, negative →
positive) [support: 2, old confidence: 100%,

new confidence: 100%]
(UserFavoritesCount, 101–200 →
15,001–20,000) ^ (UserFollowersCount,
101–200 → 701–800) ^ (UserLanguage = de)

 (TweetSentiment, negative → positive)
[support: 2, old confidence: 100%, new
confidence: 100%]

(UserFavoritesCount, 0–100 → 601–700) ^
(UserFollowersCount, 30,000-above →

301–400) ^ (UserFriendsCount, 201–300 →
701–800) (TweetSentiment, negative →
positive) [support: 2, old confidence: 100%,

new confidence: 100%]
(UserFavoritesCount, 501–600 → 601–700) ^
(UserFollowersCount, 101–200 → 301–400) ^
(UserFriendsCount, 801–900 → 701–800)
(TweetSentiment, negative → positive)
[support: 2, old confidence: 100%, new
confidence: 100%]

(UserFollowersCount, 5,001–10,000 →
201–300) ^ (UserFriendsCount, 5,001–10,000

→ 0–100) ^ (UserLanguage = es)
(TweetSentiment, negative → positive)
[support: 3, old confidence: 75%, new

confidence: 100%]

Experiment 3: neutral to positive, following attributes were used to generate action rules:
decision attribute – TweetSentiment, stable attribute – UserLanguage, support – 2,
confidence – 60%. Sample action rules generated for this experiment are given in
Table 8.
Table 8 Example action rules – experiment 3: change class from TweetSentiment: neutral to

positive

Single node action rules Hadoop action rules

(UserFavoritesCount, 30,000–above →
601–700) ^ (UserFollowersCount,
20,001–25,000 → 301–400) ^
(UserFriendsCount, 101–200 → 701–800)
(TweetSentiment, neutral → positive)
[support: 2, old confidence: 66%, new
confidence: 100%]

(UserFavoritesCount, 30,000–above →
601–700) ^ (UserFollowersCount,

20,001–25,000 → 301–400) ^
(UserFriendsCount, 101–200 → 701–800)

(TweetSentiment, neutral → positive)
[support: 2, old confidence: 66%, new

confidence: 100%]
(UserFavoritesCount, 101–200 → 601–700) ^
(UserFollowersCount, 901–1,000 → 301–400)
^ (UserFriendsCount, 201–300 → 701–800)

 (TweetSentiment, Neutral → Positive)
[Support: 2, Old Confidence: 66%, New
Confidence: 100%]

(UserFavoritesCount, 101–200 → 601–700) ^
(UserFollowersCount, 901–1,000 → 301–400)

^ (UserFriendsCount, 201–300 → 701–800)
 (TweetSentiment, neutral → positive)
[support: 2, old confidence: 100%,

new confidence: 100%]
(UserFavoritesCount, 30,000–above →
601–700) ^ (UserFollowersCount,
30,000–Above → 301–400) ^
(UserFriendsCount, 201–300 → 701–800)
(TweetSentiment, neutral → positive)
[support: 2, old confidence: 100%, new
confidence: 100%]

(UserFavoritesCount, 5,001–10,000 →
701–800) ^ (UserFollowersCount,

1,001–5,000 → 301–400) ^
(UserFriendsCount, 101–200 → 201–300) ^
(UserLanguage = en) (TweetSentiment,

neutral → positive) [support: 2, old
confidence: 77%, new confidence: 100%]

 50 A.A. Tzacheva et al.

5 Conclusions

This work proposed a new approach to analyse sentiment of tweets through mining
actionable patterns via action rules. We suggest actions that can be undertaken to
reclassify user sentiment from negative to positive and neutral to positive using
comments. We also suggest actions of how users can increase their friends count. We
provide implementation on both single machine and cloud distributed environment for
scalability purpose. We compare the results with single machine implementation and
distributed Hadoop MapReduce framework. Our experiments show that the processing of
the proposed algorithm runs faster on distributed environment than on single machine.
The proposed method can scale to accommodate large social media data size. Future
work includes augmenting the data set with more syntactical parts including nouns and
adjectives and to build lexicons for specific subjects. For example, financial, medical, and
industrial topics.

References
Al-Ayyoub, M., Essa, S.B. and Alsmadi, I. (2015) ‘Lexicon-based sentiment analysis of arabic

tweets’, International Journal of Social Network Mining, Vol. 2, No. 2, pp.101–114.
Bartoli, A., Carminati, B., Ferrari, E. and Medvet, E. (2016) ‘A language and an inference engine

for Twitter filtering rules’, in Proceedings of IEEE/WIC/ACM International Conference on
Web Intelligence (WI’16), IEEE 2016, Omaha, USA, October, pp.614–617.

Basuchowdhuri, P., Prabhu, V.L., Roy, M., Majumder, S. and Saha, S.K. (2015) ‘Unified scheme
for finding disjoint and overlapping communities in social networks using strength of ties’,
International Journal of Social Network Mining, Vol. 2, No. 2, pp.173–202.

Bravo-Marquez, F., Frank, E. and Pfahringer, B. (2016) ‘From opinion lexicons to sentiment
classification of tweets and vice versa: a transfer learning approach’, in Proceedings of
IEEE/WIC/ACM International Conference on Web Intelligence (WI’16), IEEE 2016, Omaha,
USA, October, pp.145–152.

Chellal, A., Boughanem, M. and Dousset, B. (2016) ‘Multi-criterion real time tweet summarization
based upon adaptive threshold’, in Proceedings of IEEE/WIC/ACM International Conference
on Web Intelligence (WI’16), IEEE 2016, Omaha, USA, October, pp.264–271.

Conan-Guez, B. and Nguyen, M.C. (2015) ‘Mod-Mullner: an efficient algorithm for hierarchical
community analysis in large networks’, International Journal of Social Network Mining, Vol.
2, No. 2, pp.133–157

Dean, J. and Ghemawat, S. (2008) ‘MapReduce: simplified data processing on large clusters’,
Communications of the ACM, Vol. 51, No. 1, pp.107–113.

Grzymala-Busse, J.W., Marepally, S.R. and Yao, Y. (2013) ‘An empirical comparison of rule sets
induced by LERS and probabilistic rough classification’, in Rough Sets and Intelligent
Systems – Professor Zdzislaw Pawlak in Memoriam, Springer, Berlin, Heidelberg, pp.61–276.

Hafez, A.I., Al-Shammari, E.T., Hassanien, A.E. and Fahmy, A.A. (2015) ‘Community detection in
social networks using logic-based probabilistic programming’, International Journal of Social
Network Mining, Vol. 2, No. 2, pp.158–172.

Kamkarhaghighi, M., Chepurna, I., Aghababaei, S. and Makrehchi, M. (2016) ‘Discovering
credible Twitter users in stock market domain’, in Proceedings of IEEE/WIC/ACM
International Conference on Web Intelligence (WI’16), IEEE 2016, Omaha, USA, October,
pp.66–72.

Lin, J., Efron, M., Sherman, G., Wang, Y. and Voorhees, E.M. (2015) ‘Overview of the TREC
2015 microblog track’, in Proceedings of Text Retrieval Conference, (TREC2015),
Gaithersburg, USA, 17–20 November.

 Action rules for sentiment analysis using Twitter 51

Lucia, W. and Ferrari, E. (2014) ‘Egocentric: ego networks for knowledge-based short text
classification’, in Proceedings of the 23rd ACM International Conference on Information and
Knowledge Management, November, pp.1079–1088.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. and McClosky, D. (2014) ‘The
Stanford CoreNLP natural language processing toolkit’, in Proceedings of 52nd Annual
Meeting of the Association for Computational Linguistics: System Demonstrations, Baltimore,
USA, pp.55–60.

Mishra, S. and Nandi, G.C. (2015) ‘A novel hybrid approach for link prediction problem in social
network’, International Journal of Social Network Mining, Vol. 2, No. 2, pp.115–132.

Newman, M.E. (2004) ‘Detecting community structure in networks’, The European Physical
Journal B (EPJ B), Vol. 38, No. 2, pp.321–330.

Ras, Z.W. and Tsay, L.S. (2003) ‘Discovering extended action-rules (system DEAR)’, in
Proceedings of Intelligent Information Processing and Web Mining, Springer, Berlin,
Heidelberg, pp.293–300.

Ras, Z.W., Dardzinska, A., Tsay, L.S. and Wasyluk, H. (2008) ‘Association action rules’, in
Proceedings of IEEE International Conference on Data Mining Workshops, (ICDMW’08),
pp.283–290.

Ras, Z.W., Wyrzykowska, E. and Wasyluk, H. (2007) ‘ARAS: action rules discovery based on
agglomerative strategy’, in Proceedings of 2007 International Workshop on Mining Complex
Data, Springer, Berlin, Heidelberg, September, pp.96–208.

Tzacheva, A.A., Bagavathi, A. and Ganesan, P.D. (2016a) ‘MR-random forest algorithm for
distributed action rules discovery’, International Journal of Data Mining and Knowledge
Management Process (IJDKP), Vol. 6, No. 5, pp.15–30.

Tzacheva, A.A., Sankar, C.C., Ramachandran, S. and Shankar, R.A. (2016b) ‘Support confidence
and utility of action rules triggered by meta-actions’, in IEEE International Conference on
Knowledge Engineering and Applications (ICKEA2016), September, Singapore, pp.113–120.

Wang, K., Jiang, Y. and Tuzhilin, A. (2006) ‘Mining actionable patterns by role models’, in
Proceedings of 22nd IEEE International Conference on Data Engineering (ICDE’06),
Atlanta, USA, April, pp.16–21.

Xu, Y., Zhou, D. and Lawless, S. (2016) ‘Inferring your expertise from twitter: integrating
sentiment and topic relatedness’, In Proceedings of IEEE/WIC/ACM International Conference
on Web Intelligence (WI’16), IEEE 2016, Omaha, USA, October, pp.121–128.

