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Abstract: Actionable patterns are interesting and usable knowledge mined 
from large datasets. Action rules are rules that describe the possible transition 
of objects from one state to another with respect to a decision attribute. In this 
work, we extract actionable recommendations in the form of action rules, that 
can be applied to social networking data in a scalable manner to achieve the 
desired user goals. We propose extraction of actionable patterns based on 
sentiment analysis of social network data. In sentiment analysis there are two 
approaches to determine the polarity: Corpus-based, and Lexicon-based. We 
use corpus-based sentiment analysis approach, where sentiment values are 
generated based on sentence structure rather than words. Results show 
actionable patterns in tweet data and provide suggestions on how to change 
sentiment of the tweet to a more positive one. The experiment is performed 
with Twitter data in a distributed environment using Hadoop MapReduce for 
scalability with large data. 
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1 Introduction 

Social interaction websites like Facebook, Flickr, and Twitter have added a new 
dimension to the social life of internet-aware people. This trend provides a huge amount 
of raw data that can be processed to generate structured and useful information. Data 
mining promises to discover valid and potentially useful patterns in data. Often, 
discovered patterns are not useful to the user. ‘actionability’ addresses this problem in 
that a pattern is deemed actionable if the user can act upon it favourably. Actionable 
patterns in most cases can be created through rule reduction, model refinement, or 
parameter tuning by optimising generic patterns (Wang et al., 2006). Actionable patterns 
are revised optimal versions of generic patterns that capture deeper characteristics and 
understanding of the business and are also called in-depth or optimised patterns. Action 
rules are specific patterns extracted from large datasets. To generate action rules, the 
attributes in the dataset are split into two groups called – flexible attributes and stable 
attributes. Flexible attributes are those for which the state can change, and the stable 
attributes are those for which the state is always fixed. An association action rule is a rule 
extracted from an information system that describes a cascading effect of changes of 
attribute values listed in the left-hand side of a rule (Ras et al., 2008) on changes of 
attribute values listed in its right-hand side. Generating action rules based on a 
classification rules are expensive. This paper makes use of the ARAS algorithm proposed 
by Ras et al. (2007). ARAS action rules discovery based on grabbing strategy which uses 
LERS -–combines each action rule generated from single classification rule with the 
remaining stable attributes to offer more action rules. This work discovers more action 
rules as compared to the previous algorithms. The use of LERS in the pre-processing 
module for defining classification rules serves to decrease the complexity of ARAS 
algorithm. Sentiment analysis is the process of identifying the polarity, opinion or 
emotion expressed by human. In this work we use the Stanford core NLP suite (Manning 
et al., 2014) for extracting sentiment from Twitter data. 

2 Related work 

Many algorithms are available for mining social media data. These data mining 
algorithms can be divided into several categories. The following are two well established 
categories: supervised learning and unsupervised learning. 

In supervised learning algorithms, the class attributes for datasets are known before 
running the algorithm. This supervised learning is further classified as classification and 
regression. When the class attribute is discrete it is classification. Decision tree learning, 
naive Bayes classifier, and k-nearest neighbour classifier are classification methods. 
When the class attribute is continuous it is regression. Linear regression and logistic 
regression are regression methods. 

In unsupervised learning, the dataset has no class attribute and the task is to find 
similar instances and significant patterns in dataset. For example, unsupervised learning 
can be used to identify events on Twitter data, because the frequency of tweeting is 
different for various events. This method allows tweets to be grouped based on the times 
at which they appear and therefore can identify the tweets corresponding to real-world 
events. This section describes various related research works in this area. 
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Authors Mishra and Nandi (2015) used Enron e-mail communication dataset to 
predict the likelihood of future connection between nodes (people) communicating 
through e-mail where there is no connection between them in present state of the 
network. This proposal was a Hybrid approach for link prediction which is based on 
principle of feature ensemble to generate predictive model. Jaccard’s coefficient and 
preferential attachment (JCPA) model, Jaccard’s Coefficient, and Adamic/Adar (JCAA) 
model, preferential attachment, and Adamic/Adar (PAAA) model are generated with the 
context of ascertaining more accuracy in the performance of link prediction classifier. 
naive Bayes classifier is the base classifier. The results of this experiment show the 
proposed hybrid computation method achieves better results with link prediction. The 
experiment results show that 17,040 pairs of nodes have link labels as connected and 
label of 170,839 pairs of nodes is unknown which required to be classified. The ratio of 
disconnected and connected links is 0.099:1. Results are evaluated with confusion matrix 
and ROC curve. 

Authors Hafez et al. (2015) proposed community detection in social network using 
logic-based programming based on four real social networks – Zachary’s karate club 
network, the bottlenose dolphin network, American college football network and 
synthetic network – benchmark proposed by Girvan and Newman based on planted 
partition model. They used deterministic annealing expectation maximisation algorithm 
in the learning process which yielded promising results when applied to the community 
detection problem. The model works well with directed and undirected networks and 
weighted and un-weighted networks. Community in a network is a group of nodes having 
a high density of edges among the nodes and a low density of edges between different 
groups. Community detection involves identifying the number of ‘k’ communities or 
groups in a network and assigning community membership for each node. The authors 
Hafez et al. (2015 )use PRISM which is a high-level language for probabilistic 
modelling. Test results on real social networks and synthetic networks were good 
compared to the NL-EM method results and compared to the original community 
structure of the networks. 

Authors Basuchowdhuri et al. proposed a unified scheme for finding disjoint and 
overlapping communities in social networks using strength of ties in 2015. Authors 
proposed a metric that measures strength of a link (SOL) in the network to calculate the 
degree to which it is part of the community. SOL is formulated based on the number of 
connections between two adjacent communities and their respective average clustering 
coefficients to formulate the strength of the links. There are two parts in SOL formulation 
as follows: part 1 is a calculation of number of connections between the neighbours of the 
nodes of the link excluding the link. Part 2 is a calculation of average clustering 
coefficient value of the neighbours of the nodes of the link. Results of this paper show 
that goodness of a community is defined by its presence of cliques. Structured query 
language (SQL) based methods work well for graphs with low average shortest path 
length and high clustering coefficient. 

Authors Conan-Guez and Nguyen (2015) proposed an efficient algorithm for 
hierarchical clustering analysis of large networks called Mod-Mullner. This is a 
cumulative algorithm for hierarchical clustering analysis. It uses greedy optimisation of 
modularity, a widely-used measure for network partitioning. Definition of a network 
community based on the modularity measure ‘Q’ proposed by Newman (2004) is used to 
quantify the quality of a given partition ‘P’ of a network into separate communities. This 
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work analysed both simulated and real social networks. Mod-Mullner method achieved 
1.7 accelerations faster on an average on simulated and real-world networks compared to 
our fast implementation. 

The following studies performed experiments to analyse Twitter data. 
Authors Chellal et al. (2016) proposed multi-criterion real time tweet summarisation 

based upon adaptive method. This method provides new relevant and non-redundant 
information about an event as soon as it occurs. The tweets selection is based on the 
following three criterions: informativeness, novelty and relevance with regards of the 
user interest which are combined as conjunctive condition. Experiments were carried out 
on TREC MB RTF-2015 (Lin et al., 2015) dataset. 

Authors Xu et al. (2016) proposed methods to infer a user’s expertise based on their 
posts on the popular micro-blogging site Twitter. They proposed a sentiment-weighted 
and topic relation-regularised learning model. Sentiment intensity of a tweet is used to 
evaluate user’s expertise and the relatedness between user’s expertises is exploited to 
model inference problem. The following four common metrics were used for evaluation: 
accuracy, precision, recall and F1-score. 

Authors Bravo-Marquez et al. (2016) proposed a simple model for transferring 
sentiment labels from words to tweets and vice versa by representing both tweets and 
words using feature vectors residing in the same feature space. Two transfer learning 
problems are used to evaluate the approach: 

1 training a tweet-level polarity classifier from a polarity lexicon 

2 inducing a polarity lexicon from a collection of polarity-annotated tweets. 

Tweet centroid model developed in this paper outperformed the classification 
performance of the popular emoticon-based method for data labelling and better results 
than a classifier trained from tweets labelled based on the polarity of their words. 

Authors Kamkarhaghighi et al. (2016) discovered credible Twitter users in stock 
market domain. This work suggested a correlation between each user’s credibility and the 
extracted features from each follower network: number of followers; number of stock 
market-related followers, extracted by a cashtag-based approach; ratio of stock  
market-related followers to the total number of followers; and the number of seed user 
tweets. 

Authors Bartoli et al. (2016) proposed a language and an inference engine for tweet 
filtering. This method is an evolutionary approach driven by a multi-objective 
optimisation scheme to the problem of filtering of Twitter posts. Dataset of Twitter posts 
authored by 11,254 different Twitter users were assembled by means of an automatic 
procedure exploiting the Twitter APIs. Egocentric text classifier was used to associate 
each post with its topics. By Egocentric we mean that class is based on how far the ego is 
from the ego of that category. Lucia and Ferrari (2014) proposed unsupervised 
knowledge-based classifier for short text messages where an ego-network represents each 
category. Classification is based on how far the words are from the ego of that category. 
Ego-network is built by exploiting YAGO and WordNet. YAGO is a large ontology with 
high coverage and precision. All objects are represented as entities. WordNet is a lexical 
database of the English language where words are linked via semantic relationships. 

Authors Al-Ayyoub et al. (2015) proposed a lexicon-based sentiment analysis of 
Arabic tweets. This method is based on sentiment analysis and opinion mining of social 
network data Twitter feedbacks and comments. Unsupervised approach of sentiment 
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analysis was applied which built a sentiment lexicon sentiment analysis (SA) tool. The 
sentiment lexicon contains sentiment value for each component of a sentence such as 
parts of speech (POS), negations, modifiers, clauses, context etc. These values are 
combined to obtain the sentiment value of entire sentence. This sentiment lexicon was 
built with about 120,000 Arabic terms and a SA tool based on predicate calculus. 

In this work, we propose a new method of discovering actionable patterns through 
action rules for the Twitter data with sentiment analysis (Manning et al., 2014) results. 
We are not aware of any other research that analyse tweets using action rules. 

3 Methodology 

The focus of this work is to mine actionable patterns via action rules from Twitter data 
and provide suggestions on how users can be more positive. The proposed method shown 
in Figure 1 consists of the following components: data collection, pre-processing, 
sentiment analysis, classification, action rule generation, and summarisation. 

Figure 1 Actionable pattern mining system for twitter sentiment analysis 

 

3.1 Data collection 

We collected data using Twitter standard search API. The following attributes are 
extracted as part of the data collection process: RetweetCount, IsFavorited, UserID, 
UserFriendsCount, UserFavoritesCount, UserFollowersCount, UserLanguage and 
TweetText. We collected close to 28,000 instances for the experiments purpose. Sample 
data shown in Table 3. 

3.2 Pre-processing 

Pre-processing is discretisation on the attributes UserFriendsCount, UserFavoritesCount, 
and UserFollowers Count by placing them in intervals. Intervals are selected based on the 
range of friends, favourites, and followers count in the actual data, for instance if the 
user’s friends count is within 100 then we discretise them as 0–100. In this step, we 
cleaned the data from missing values, applied feature selection and removed unnecessary 
values. In pre-processing step, we aim to represent the data in a form that can be analysed 
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efficiently and to improve their quality by reducing the amount of trivial noise. We kept 
the following attributes: RetweetCount, IsFavorited, UserID, UserFriendsCount, 
UserFavoritesCount, UserFollowersCount, UserLanguage, and TweetText. 

3.3 Sentiment analysis 

We performed Sentiment Analysis on data and augmented the data with class attribute 
which is ‘Sentiment’ that has the following values: positive, negative, neutral, very 
positive, and very negative. In addition, we extracted Parts of Speech and augmented the 
data with attribute verb. Example for Parts of Speech is shown in Figure 3. This 
information is required in actionable pattern mining because verbs suggest actionable 
knowledge. 

Figure 2 Sentiment analysis (see online version for colours) 

 

Stanford core NLP (Manning et al., 2014) was used for sentiment analysis. The general 
process for sentiment analysis is shown in Figure 2. This NLP suite provides a set of 
natural language analysis tools. The basic distribution provides model files for the 
analysis of well-edited English, but the engine is compatible with models for other 
languages. Stanford core NLP is written in Java (Manning et al., 2014). This NLP suite 
provides various annotators which can work with any character encoding, making use of 
Java’s Unicode support, but system defaults to UTF-8 encoding. Out of these annotators 
we are using tokeniser, part of speech, and sentiment analysis in our work. 

Figure 3 Part-of-speech tagger – verbs 

 

3.4 Classification 

We use learning from examples using rough sets (LERS) (Grzymala-Busse et al., 2013) 
algorithm to extract classification rules from Twitter data. Each tweet was classified as 



   

 

   

   
 

   

   

 

   

    Action rules for sentiment analysis using Twitter 41    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

positive, negative, neutral, very positive, very negative. LERS (Grzymala-Busse et al., 
2013) is used to extract classification rules from the information system. Our 
implementation follows distributed strategy of generating classification rules using LERS 
system shown in Figure 4. Using the information system S from Table 1, LERS strategy 
generates certain and possible rules describing decision attribute D in terms of attributes 
A, B, and C. LERS can be used as a data strategy to generate classification rules. LERS 
produces a set of certain and possible rules (Grzymala-Busse et al., 2013). We consider 
only marked certain rules to construct action rules. Since LERS follows bottom-up 
strategy, it constructs rules with a conditional part of length x, then it continues to 
construct rules with a conditional part of length x + 1 during the following iterations. 

Figure 4 LERS algorithm 

Algorithm 1:  
LERS (attributesSupport, decisionSupport) 

(where attributesSupport and decisionSupport are maps with distinct attribute values as keys and 
their corresponding value is the objects in the information system supporting them) 
 fixedSupport ← attributesSupport 
 while attributesSupport is not empty do 
  for each key, value pair in the attributeSupport do 
   if value is a subset of one of the values of decisionSupport then 
    Add key and decisionValue to certainRules(where certainRules is a map with 

attribute value as a ‘key’ and decision attribute value as a ‘value’) 
   else 
    Add key and value to possibleRules 
    (where possibleRules is a map with attribute value as a ‘key’ and decision 

attribute value as a ‘value’) 
   end 
   delete key from the attributesSupport 
  end 
  for each key1, value1 pair in the possibleRules do 
   for each key2, value2 pair in the fixedSupport do 
    if key1 contains key2 then Continue 
    else 
     key3 ← (key2, key1) 
     value3 ← Set of objects in information system supporting key3 
     Add key3 and value3 to attributeSupport 
    end 
   end 
  end 
 end 
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Table 1 Example information system 

X A B C D 

x1 a1 b1 c1 d1 
x2 a3 b1 c1 d1 
x3 a2 b2 c1 d2 
x4 a2 b2 c2 d2 
x5 a2 b1 c1 d1 
x6 a2 b2 c1 d2 
x7 a2 b1 c2 d2 
x8 a1 b2 c2 d1 

For the information system given in Table 1, consider the following as decision support: 

{ } ( ) { }1 1 2 5 8 2 3 4 6 7( ) * , , , ; * , , ,d x x x x d x x x x− = =  

LERS module given in Figure 4 for the given information system S, extracts certain and 
possible rules which are given in Table 2. 
Table 2 LERS example for information system S 

Iteration Attribute value support Certain rules Possible rules 

1 (a1) * = {x1, x8} – marked a1 → d1 a2 → d1 
 (a2) * = {x3, x4, x5, x6, x7} a3 → d1 a2 → d2 
 (a3) * = {x2} – marked  b1 → d1 
 (b1) * = {x1, x2, x5, x7}  b1 → d2 
 (b2) * = {x3, x4, x6, x8}  b2 → d1 
 (c1) * = {x1, x2, x3, x5, x6}  b2 → d2 
 (c2) * = {x4, x7, x8}  c1 → d1 
   c1 → d2 
   c2 → d1 
   c2 → d2 
2 (a2, b1) * = {x5, x7} a2^ b2 → d2 a2 ^ b1 → d1 
 (a2, b2) * = {x3, x4, x6} – marked a2 ^ c2 → d2 a2 ^ b1 → d2 
 (a2, c1) * = {x3, x5, x6} b1 ^ c1 → d1 a2 ^ c1 → d1 
 (a2, c2) * = {x4, x7} – marked b1^ c2 → d2 a2^ c1 → d2 
 (b1, c1) * = {x1, x2, x5} – marked b1^ c2 → d2 b2 ^ c2 → d1 
 (b1, c2) * = {x7} – marked  b2 ^ c2 → d2 
 (b2, c1) * = {x3, x6} – marked   
 (b2, c2) * = {x4, x8}   
3 (a2, b1, c1) * = {x5} – marked a2 ^ b1 ^ c1 → d1  
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3.5 Actionable pattern mining – action rules 

ARAS is action rules discovery based on agglomerative strategy, which uses LERS 
proposed by Ras et al. (2007) as an alternative to system DEAR (Ras and Tsay, 2003) 
which extracts action rules from a pair of classification rules. The foremost advantage of 
using ARAS is that it uses single classification rule to provoke action rules. ARAS uses 
an algorithm like LERS to extract action rules, without the need of verifying the validity 
of the certain relations. The algorithm checks if these relations are marked previously by 
LERS. 

Figure 5 AR (action rules) algorithm in distributed environment using MapReduce 

Algorithm 2:  
AR (certainRules, decisionFrom, decisionTo) 

 (where certainRules is provided by the LERS) 
 for each key, value pair in the certainRules do 
  if value1 equals decisionTo then 
   actions ← empty list  
    for each attribute value a in key do 
     A←attributeName(a) 
     actions. Add (“(A, → a)”) 

     end 

ARAS presumes that system LERS construct classification rules describing target 
decision value. Figure 4 and Figure 5 together gives the algorithm of ARAS. Algorithm 
AR takes each candidate classification rule and form an action rule schema which in turn 
is given to the algorithm ARAS to build a cluster of action rules around each schema. For 
the classification rules in Table 2, algorithm AR generates following set of action rule 
schema: 

( ) ( ) ( ) ( )1 1 2 2 2 1 2, , ,sAR d d A a B b D d d→ = → ∧ → →  

( ) ( ) ( ) ( )2 1 2 2 2 1 2, , ,sAR d d A a C c D d d→ = → ∧ → →  

( ) ( ) ( ) ( )3 1 2 2 2 1 2, , ,sAR d d B b C c D d d→ = → ∧ →  

( ) ( ) ( ) ( )4 1 2 2 1 1 2, , ,sAR d d B b C c D d d→ = → ∧ → →  

Algorithm ARAS takes each action rule schema and using their flexible and stable 
attributes generates following action rules which imply d1 → d2. For the action rule 
schema ARs1, the algorithm ARAS finds all missing flexible attributes AM: {a1, a3, b1}. 
Each missing flexible attribute is filled into appropriate action terms. In ARAS, the 
maximum number of action rules generated = AM. For ARs1, ARAS produces following 
action rules: 
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( ) ( ) ( ) ( )1 1 2 1 2 2 1 2, , ,AR d d A a a B b D d d→ = → ∧ → →  

( ) ( ) ( ) ( )2 1 2 3 2 2 1 2, , ,AR d d A a a B b D d d→ = → ∧ → →  

Figure 6 ARAS in a distributed environment using MapReduce 

Algorithm 3:  
ARAS (actions, decisionFrom, decisionTo) 
 (where ‘actions’ is a list of actions from Algorithm AR) 
 stableValues ← list of stable attribute values in actions 
 actionsSupport ←set of objects in the information system supporting 

stableValues ∩ decisionFrom 
 missingValues ←set of missing flexible attribute values of the flexible attributes in actions 
 for each value in missingValues do 
  newValues ← combine value with stableValues 
  newSupport ← set of objects in the information system supporting newValues in actions 
  if newSupport ⊆ actionsSupport then 
   Add value to actions 
   Output actions as Action Rule 
  end 
 end 

Let an action rule R takes a form of: 

( ) ( )1 2 1 2Y Y Z Z→ →  

where, 

Y is the condition part of R 

Z is the decision part of R 

Y1 is a set of all left side of the all condition action terms 

Y2 is a set of all right side of the all condition action terms 

Z1 is the decision attribute value on left side 

Z2 is the decision attribute value on right side 

In Ras et al (2007), the support and confidence of an action rule R is given as 

( ) ( ){ }1 1 2 2Support(R)=min card Y Z , card Y Z∩ ∩  

( ) ( ) ( ) ( )1 1 1 2 2 2Confidence(R) card Y Z / card Y * card Y Z / card Y= ∩ ∩⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

In this paper, we use the following support and confidence formula given by Tzacheva 
et.al. (2016b) to reduce the complexity. 

( )2 2Support(R) card Y Z= ∩  

( ) ( )2 2 2Confidence(R) card Y Z / card Y= ∩⎡ ⎤⎣ ⎦  



   

 

   

   
 

   

   

 

   

    Action rules for sentiment analysis using Twitter 45    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

3.6 Distributed actionable pattern mining – random-forest Hadoop 

We use MR – random-forest algorithm for distributed action rules discovery by authors 
Tzacheva et al. (2016a), using Apache Hadoop framework and Google MapReduce 
(Dean and Ghemawat,2008). MR-Random-Forest algorithm is shown in Figure 6. We 
take as an input a set of files: the data, the attribute names, user specified parameters such 
as: minimum support, and confidence thresholds, stable attribute names, flexible attribute 
names, decision attribute choice, decision attribute value to change from, and decision 
attribute value to change to, which is the desired value of decision attribute (desired 
object state). We import these input files into the Hadoop distributed file system (HDFS). 
Action rules are built using Apache framework and results are evaluated using Hadoop 
MapReduce system. The data is spread across a distributed environment to get more 
optimal action rules and upgraded ARAS algorithm to get more specific action rules. 
Figure 7 shows the overview of the algorithm used for generating action rules. 

Figure 7 MR – random forest algorithm for distributed action rules discovery 

 

4 Experiment and results 

Our research is focussed on recommending methods to improve emotions from negative 
to positive and neutral to positive and increasing friends count of a user. For this 
experiment, we used live tweets extracted using Twitter Search API on the latest tweets. 
The Twitter Search API searches against a sampling of recent tweets published in the past 
seven days. Data Collection includes user-generated updates collected directly from 
social media API as they allow subscription to a continuous live stream of data. Our data 
contains the following attributes: RetweetCount, IsFavorited, UserID, UserFriendsCount, 
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UserFavoritesCount, UserFollowersCount, TweetText, UserLanguage, TweetSentiment, 
and TweetVerb. We collected about 28,000 instances. Table 3 gives the description about 
the dataset. The Hadoop research cluster at University of North Carolina Charlotte was 
used to perform the experiments. This cluster has six nodes connected via ten gigabits per 
second ethernet network. 
Table 3 Sample data with sentiment analysis results 

ReTweet IsFavorited Friends Followers Language 

0 False 247 30,795 en 
0 False 42 527 13 

 Text Sentiment Verb 
0 RT @ThadSuggs: PLS HELP.SAVEA GRADE. Negative Help 
0 RT @CW_TheFlash: Thanks for watching! New 

episodes return January 24. 
Positive watching 

Figure 8 Tweets sentiment analysis (see online version for colours) 

 

We used action rules to change the emotion from negative to positive and neutral to 
positive, also to change from lower number of friends count to higher number of friends. 
Our data contains the following attributes: RetweetCount, IsFavorited,  
UserID, UserFriendsCount, UserFavoritesCount, UserFollowersCount, TweetText, 
UserLanguage, TweetSentiment, and TweetVerb. In Figure 8 we can see that most of the 
comments are negative. We focus on the issue of improving the comments emotion from 
negative to positive and neutral to positive by providing actionable patterns to improve 
the emotions. Also, we suggest actionable patterns to improve friends count. In our data, 
we noticed that positive comments have more favourites compared to others as shown in 
Figure 9. 
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Figure 9 Favourites count for various sentiments (see online version for colours) 

 

The methods suggested in previous section LERS, ARAS for classification and action 
rules mining were implemented in Java and tested with the above data set. 

Let us consider AR1 from Table 5. If user’s favourites count increases from 0–100 to 
1,001–5,000 and user’s followers count increases from 101–200 to 701–800 and user 
language is English, then tweet sentiment could be changed from neutral to positive. This 
rule is generated with a confidence of 100% and support 2 for the Twitter data with 
following attributes: RetweetCount, IsFavorited, UserID, UserFriendsCount, 
UserFavoritesCount, UserFollowersCount, UserLanguage and TweetSentiment. In future 
if more attributes relevant to the context of text like frequency of part-of-speech 
including adjectives is added then we anticipate that the action rules generated by our 
system would be more intuitive. 
Table 4 Single node and Hadoop cluster time comparison 

Experiment Time taken single node Time taken Hadoop 

Experiment 1 432 seconds 258 seconds 
Experiment 2 270 seconds 180 seconds 
Experiment 3 273 seconds 192 seconds 

Considering the recent growth of the amount of data collected nowadays, we use 
distributed implementation of the proposed method LERS and ARAS using Hadoop map 
reduce framework by Tzacheva et al. (2016a). We show that computation is much faster 
in the distributed framework than on single computer. The experiment results are shown 
in Table 4. We can scale to large social media data sizes. It is considered that the 
workload can be spread across two nodes and can increase the number of mappers and 
scale to very large size data and handle it appropriately. 
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Table 5 Example action rules generated 

Action rule no. Action rule 

AR1 (UserFavoritesCount, 0–100 → 1,001–5,000) ^ (UserFollowersCount,  
101–200 → 701–800) ^ (UserLanguage = en-gb)  (TweetSentiment, 

Neutral → Positive) [Support: 2, Old Confidence: 66%,  
New Confidence: 100%] 

AR2 (UserFavoritesCount, 101–200 → 701–800) ^ (UserFollowersCount,  
0–100 → 301–400) ^ (UserFriendsCount, 101-200 → 201–300) ^ 

(UserLanguage = en)  (TweetSentiment, Neutral → Positive) [Support: 2, 
Old Confidence: 80%, New Confidence: 100%] 

AR3 (UserFavoritesCount, 201–300 → 601–700) ^ (UserFollowersCount,  
5,001–10,000 → 301–400) ^ (UserFriendsCount, 501–600 → 701–800)  
(TweetSentiment, Neutral → Positive) [Support: 2, Old Confidence: 100%, 

New Confidence: 100%] 

Experiment 1: UserFriendsCount, following attributes were used to generate action rules: 
decision attribute – UserFriendsCount, stable attribute – UserLanguage, support – 2, 
confidence – 60%. Sample action rules generated for this experiment are given in  
Table 6. 
Table 6 Example action rules – experiment 1: change from class UserFriendsCount: low to 

high number of friends 

Single node action rules Hadoop action rules 

(TweetSentiment, negative → positive) ^ 
(UserFavoritesCount, 0–100 →  
10,001–15,000) ^ (UserFollowersCount,  
0–100 → 1,001–5,000) ^ (UserLanguage = pt) 

 (UserFriendsCount, 0–100 →  
1,001–5,000) [support: 2, old confidence: 
67%, new confidence: 100%] 

(TweetSentiment, negative → neutral) ^ 
(UserFavoritesCount, 0–100 → 5,001–10,000) 
^ (UserLanguage = it)  (UserFriendsCount, 

0–100 → 1,001–5,000) [support: 2, old 
confidence: 60%, new confidence: 100%] 

(TweetSentiment, Neutral → Positive) ^ 
(UserFavoritesCount, 0–100 →  
10,001–15,000) ^ (UserFollowersCount,  
0–100 → 1,001–5,000) ^ (UserLanguage = pt) 

 (UserFriendsCount, 0–100 →  
1,001–5,000) [support: 2, old confidence: 
76%, new confidence: 100%] 

(TweetSentiment, neutral → positive) ^ 
(UserFavoritesCount, 601–700 →  

1,001–5,000) ^ (UserLanguage = de)  
(UserFriendsCount, 0–100 → 1,001–5,000) 

[support: 2, old confidence: 100%, new 
confidence: 100%] 

(TweetSentiment, negative → neutral) ^ 
(UserFavoritesCount, 20,001–25,000 →  
601–700) ^ (UserFollowersCount, 0–100 → 
5,001–10,000) ^ (UserLanguage = en)  
(UserFriendsCount, 0–100 → 1,001–5,000) 
[support: 4, old confidence: 96%, new 
confidence: 100%] 

(TweetSentiment, very negative → neutral) ^ 
(UserFavoritesCount, 0–100 → 601–700) ^ 

(UserFollowersCount, 0–100 →  
5,001–10,000) ^ (UserLanguage = en)  

(UserFriendsCount, 0–100 → 1,001–5,000) 
[support: 2, old confidence: 100%, new 

confidence: 100%] 

Experiment 2: negative to positive, following attributes were used to generate action 
rules: decision attribute – TweetSentiment, stable attribute – UserLanguage, support – 2, 
confidence – 60%. Sample action rules generated for this experiment are given in  
Table 7. 
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Table 7 Example action rules – experiment 2: change class from TweetSentiment: negative to 
positive 

Single node action rules Hadoop action rules 

(UserFavoritesCount, 10,001–15,000 →  
601–700) ^ (UserFollowersCount, 101–200 → 
301–400) ^ (UserFriendsCount, 301–400 → 
701–800)  (TweetSentiment, negative → 
positive) [support: 2, old confidence: 60%, 
new confidence: 100%] 

(UserFavoritesCount, 0–100 → 601–700) ^ 
(UserFollowersCount, 5,001–10,000 →  

301–400) ^ (UserFriendsCount, 201–300 → 
701–800)  (TweetSentiment, negative → 
positive) [support: 2, old confidence: 100%, 

new confidence: 100%] 
(UserFavoritesCount, 101–200 →  
15,001–20,000) ^ (UserFollowersCount,  
101–200 → 701–800) ^ (UserLanguage = de) 

 (TweetSentiment, negative → positive) 
[support: 2, old confidence: 100%, new 
confidence: 100%] 

(UserFavoritesCount, 0–100 → 601–700) ^ 
(UserFollowersCount, 30,000-above →  

301–400) ^ (UserFriendsCount, 201–300 → 
701–800)  (TweetSentiment, negative → 
positive) [support: 2, old confidence: 100%, 

new confidence: 100%] 
(UserFavoritesCount, 501–600 → 601–700) ^ 
(UserFollowersCount, 101–200 → 301–400) ^ 
(UserFriendsCount, 801–900 → 701–800)  
(TweetSentiment, negative → positive) 
[support: 2, old confidence: 100%, new 
confidence: 100%] 

(UserFollowersCount, 5,001–10,000 →  
201–300) ^ (UserFriendsCount, 5,001–10,000 

→ 0–100) ^ (UserLanguage = es)  
(TweetSentiment, negative → positive) 
[support: 3, old confidence: 75%, new 

confidence: 100%] 

Experiment 3: neutral to positive, following attributes were used to generate action rules: 
decision attribute – TweetSentiment, stable attribute – UserLanguage, support – 2, 
confidence – 60%. Sample action rules generated for this experiment are given in  
Table 8. 
Table 8 Example action rules – experiment 3: change class from TweetSentiment: neutral to 

positive 

Single node action rules Hadoop action rules 

(UserFavoritesCount, 30,000–above →  
601–700) ^ (UserFollowersCount,  
20,001–25,000 → 301–400) ^ 
(UserFriendsCount, 101–200 → 701–800)  
(TweetSentiment, neutral → positive) 
[support: 2, old confidence: 66%, new 
confidence: 100%] 

(UserFavoritesCount, 30,000–above →  
601–700) ^ (UserFollowersCount,  

20,001–25,000 → 301–400) ^ 
(UserFriendsCount, 101–200 → 701–800)  

(TweetSentiment, neutral → positive) 
[support: 2, old confidence: 66%, new 

confidence: 100%] 
(UserFavoritesCount, 101–200 → 601–700) ^ 
(UserFollowersCount, 901–1,000 → 301–400) 
^ (UserFriendsCount, 201–300 → 701–800) 

 (TweetSentiment, Neutral → Positive) 
[Support: 2, Old Confidence: 66%, New 
Confidence: 100%] 

(UserFavoritesCount, 101–200 → 601–700) ^ 
(UserFollowersCount, 901–1,000 → 301–400) 

^ (UserFriendsCount, 201–300 → 701–800) 
 (TweetSentiment, neutral → positive) 
[support: 2, old confidence: 100%,  

new confidence: 100%] 
(UserFavoritesCount, 30,000–above →  
601–700) ^ (UserFollowersCount,  
30,000–Above → 301–400) ^ 
(UserFriendsCount, 201–300 → 701–800)  
(TweetSentiment, neutral → positive) 
[support: 2, old confidence: 100%, new 
confidence: 100%] 

(UserFavoritesCount, 5,001–10,000 → 
701–800) ^ (UserFollowersCount,  

1,001–5,000 → 301–400) ^ 
(UserFriendsCount, 101–200 → 201–300) ^ 
(UserLanguage = en)  (TweetSentiment, 

neutral → positive) [support: 2, old 
confidence: 77%, new confidence: 100%] 
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5 Conclusions 

This work proposed a new approach to analyse sentiment of tweets through mining 
actionable patterns via action rules. We suggest actions that can be undertaken to 
reclassify user sentiment from negative to positive and neutral to positive using 
comments. We also suggest actions of how users can increase their friends count. We 
provide implementation on both single machine and cloud distributed environment for 
scalability purpose. We compare the results with single machine implementation and 
distributed Hadoop MapReduce framework. Our experiments show that the processing of 
the proposed algorithm runs faster on distributed environment than on single machine. 
The proposed method can scale to accommodate large social media data size. Future 
work includes augmenting the data set with more syntactical parts including nouns and 
adjectives and to build lexicons for specific subjects. For example, financial, medical, and 
industrial topics. 
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