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Memory Design

Cache Memory

Processor operates much faster than the main memory can.

To ameliorate the sitution, a high speed memory called a cache memory

placed between the processor and main memory.
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Main memory

Processor

High speed

X

Xcache memory

Data transfer

Data transfer

Cache Memory

Memory access time – the time between the submission of a memory
request and the completion of transfer of information into or from the
addressed location.

Normally, access time for read and write operations the same, and we will
assume this. 

Memory cycle time – the minimum time that must elapse between two
successive operations to access locations in the memory (read or write).
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If programs were executed purely in sequence, from one memory address
onwards, and the same instructions were never re-executed, caches would
cause an additional overhead as information would first have to be trans-
ferred from the main memory to the cache and then to the processor and
vice versa. The access time would then be:

ta = tm + tc

where tc = cache access time and tm = main memory access time.

Fortunately though code is generally executed sequentially, virtually all
programs repeat sections of code and repeatedly access the same or
nearby data. This characteristic is embodied in the Principle of Locality.

Principle of Locality

Found empirically to be obeyed by most programs. Applies to both

instruction references and data references, though more likely in instruc-

tion references.Two aspects:

1. Temporal locality (locality in time) – individual locations, once refer-

enced, are likely to be referenced again in the near future.

2. Spatial locality (locality in space) – references, including the next

location, are likely to be near the last reference. (References to the

next location are sometimes known as sequential locality.)
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Temporal locality is found in instruction loops, data stacks and variable

accesses

Spatial locality describes the characteristic that programs access a number

of distinct regions. Sequential locality describes sequential locations being

referenced and is a main attribute of program construction. It can also be

seen in data accesses, as data items are often stored in sequential locations.

Temporal locality is essential for an effective cache.

Spatial locality helpful when we design a cache as we shall see, but it is not

essential.

Taking advantage of temporal locality

Suppose a memory reference is repeated n times in all during a program

loop and, after the first reference, the location is always found in the cache,

then the average access time would be:

where n = number of references.

Average access time
ntc tm+( )

n
------------------------ tc

tm
n
-----+= =
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Example

If tc = 5 ns, tm = 50 ns and n = 10, the average access time would be 10 ns,

as opposed to 50 ns without the cache. 

Taking advantage of spatial locality

To take advantage of spatial locality, we will transfer not just one byte or

word from the main memory to the cache (and vice versa) but a series of

sequential locations called a line or a block. (Both terms are used in the

literature – we shall use the term line.)

For best performance, the line should be transferred simultaneously across

a wide data bus to the cache, with one byte or word being transferred from

each memory module. This also enables the access time of the main

memory to be matched to the cache.
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Bus

Memory modules

Processor

Cache

0 1 2 3 4 5 6 7
8

Address

9 10 11 12 13 14 15

Cache memory with multiple memory modules (wide word length memory)

Byte

Line

location

Memory address

ByteLine

Number of memory modules, m say, is chosen to produce a suitable match

in the speed of operation of the main and cache memories.

For a perfect match, m would be chosen such that mtc = tm.

The cache words could subsequently be accessed by the processor in

sequential order from the cache in another mtc seconds.
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The average access time of these words when first referenced would be

2mtc/m = 2tc.

Should the words be referenced n times in all, the average access time

would be:

Average access time
2tc n 1–( )tc+

n
-----------------------------------

n 1+( )tc
n

---------------------= =

Example

If a cache has an access time of 5 ns and the main memory has an access

time of 50 ns, eight main memory modules would allow eight words to be

transferred to the cache in 200 ns, or an average of 200/8 ns per word. With

ten references in all, we have:

The average access time is approximately tc for large n..

Average access time 25 9 5×+( )
10

----------------------------- 7 ns= =
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Hit Ratio

– the probability that the required word is already in the cache. A hit
occurs when a location in the cache is found immediately, otherwise a
miss occurs and a reference to the main memory is necessary.

The cache hit ratio, h, (or hit rate) is defined as:

The miss ratio (or miss rate) is given by 1 − h.

h Number of times required word found in cache
Total number of references

----------------------------------------------------------------------------------------------------------------=

Average access time

Average access time, ta, given by:

ta = tc + (1 − h)tm

assuming again that the first access must be to the cache before an access
is made to the main memory. Only read requests are consider so far.

Example

If hit ratio is 0.85 (a typical value), main memory access time is 50 ns and
cache access time is 5 ns, then average access time is 5+0.15×50 = 12.5 ns.

THROUGHOUT tc is the time to access the cache, get (or write) the
data if a hit or recognize a miss. In practice, these times could be dif-
ferent.
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Alternative equation

ta = thit + (1 − h)tmiss_pen

where thit = the time to access the data should be it in the cache (the hit
time) and tmiss_pen is the extra time require if the data is not in the cache
(the miss penalty), i.e.

Averge memory access time = hit time + miss rate × miss penalty

This form is used by Hennessy and Patterson (1996).

Our equations can be put in this form
by simply substitution thit for tc and tmiss-pen for tm

In a practical system, each access time will be given as an integer number
of machine cycles This can be applied to all equations. For example, in
the previous equation, typically the hit time will be 1–2 cycles. The cache
miss penalty is often in the order of 5–20 cycles.

Cache Memory Organizations

Need a way to select the location within the cache. The memory address of

its location in main memory is used.

Three ways of selecting cache location:

1. Fully associative

2. Direct mapped

3. Set associative

Main memory

Processor

High speed

X

Xcache memory

AddressData

On a
cache
miss
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Fully Associative Mapping
Both memory address and data stored together in the cache. Incoming
memory address is simultaneously compared with all stored addresses
using the internal logic of the cache memory.

MainCache

Memory address from
processor

memory

DataAddress
Compare with
all stored
addresses
simultaneously

Address found

Main memory accessed
if address not in cache

Access location

Address not
found in cache

Requires one address comparator
with each storeed address
(Content-addressable memory)

Caches organize their stored information into groups of consecutive bytes
called lines (or blocks). Each line could be say 16 bytes. With 32-bit
processors, we might need to access a word consisting of 4 bytes:

Cache

Access word in line

Memory address from
processor

Line
Compare with
all stored
addresses
simultaneously

Address found

Address Word 0Word 1Word 2Word 3

Word Byte

Select byte in word
if necessary

Word within line Byte within word

2 2



 Barry Wilkinson  2000.  All rights reserved. Page 11

Fully associative cache needs an algorithm to select where to store

information in cache, generally over some existing line (which would have

to be copied back to the main memory if altered).

Must be implemented in hardware. (No software)

The replacement algorithm should choose a line which is not likely to be

needed again in the near future, from all the lines that could be selected.

Common Algorithms

1. Random selection

2. The least recently used algorithm (or an approximation to it).
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Least Recently Used (LRU) Algorithm

The line which has not been referenced for the longest time is removed

from the cache. 

The word “recently” comes about because the line is not the least used, as

this is likely to be back in memory. It is the least used of those lines in the

cache, and all of these are likely to have been recently used otherwise they

would not be in the cache.

Can only be implemented in hardware fully when the number of lines that

need to be considered is small (see later).

Direct Mapping

Data held in cache at an address given by lower significant bits of main
memory address. Line selected from lower significant bits of memory
address. Remaining higher significant bits of address stored in cache:

Tag

Compare

Cache

Different

Same

Access word in line

Memory address from
processor

Index

Read

Tag Word 0

Word

Main
memory

accessed
if tags do
not match

Word 1Word 2Word 3

Index

Byte

One external

High speed RAM

address comparator

Line
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Sample Direct-Mapped Cache Design

8192-byte direct mapped cache with 32-byte line organized as eight 4-byte
words. 32-bit memory address.

Tag

Compare

Cache

Same Access word/byte in line

Memory address from processor

Index

Read

Tag Word 0

Word

Word 1Word 2Word 3

Index

Byte

Line

Word 4 Word 5 Word 6 Word 7

23

5

819

32
27

256
(28)

Tag has 19 bits

Advantages of Direct Mapped Caches

1. No replacement algorithm necessary.

2. Simple hardware and low cost.

3. High speed of operation.

Major Disadvantage

Performance drops significantly if accesses are made to different

locations with the same index.

(As the size of cache increases, the difference in the hit ratios of the direct

and associative caches reduces and becomes insignificant.)
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Set-Associative Mapping

Allows a limited number of lines, with the same index and different tags,

in the cache. A compromise between a fully associative cache and a direct

mapped cache.

Cache divided into “sets” of lines. A four-way set associative cache would

have four lines in each set.

The number of lines in a set is known as the associativity or set size. Each

line in each set has a stored tag which, together with the index (set

number), completes the identification of the line.

Tag

Compare

Cache

Main
memory

accessed
if tags do
not match

Same

Memory address from processor

Index

Tag Data Tag Data Tag Data Tag Data

Access word

Line

4-way Set-Associative Cache

Word Byte

First, index of address from processor used to access set. Then, all tags of
selected set compared with incoming tag. If match found, corresponding
location accessed, otherwise access main memory.
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Set-Associative Cache Replacement Algorithm

Need only consider the lines in one set, as the choice of set is

predetermined by the index in the address.

Typically, the set size is 2, 4, 8, or 16. A set size of one line reduces the

organization to that of direct mapping and an organization with one set

becomes fully associative mapping.

Set-associative cache has been popular for internal caches of

microprocessors. Examples: Motorola MC68040 (4-way set associative),

Intel 486 (4-way set associative), Intel Pentium (two-way set associative).

Valid Bits

In all caches, at least one a valid bit is provided in the cache with each line.

Valid bit set to a 1 when the contents of the line is valid. Checked before

accessing line. Needed to handle the start-up situation when a cache will

hold random patterns of bits.
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Valid Bits continued

In some systems, size of the line is larger than data path between the cache

and the memory so that only part of a line that can be transferred between

the main memory in one transfer. Multiple transfers will be necessary to

fill the line from the main memory and to transfer altered lines back to the

main memory.

It is possible for the line not to hold all the words associated with that line

during the period that words are being transferred into the cache one after

the other; some words might be from a previous line. Then a valid bit is

needed which each part of the line.

Fetch policy

Three strategies for fetching bytes or lines from the main memory to the

cache:

1. Demand fetch.

2. Prefetch.

3. Selective fetch.
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Demand fetch - fetching a line when it is needed on a miss.

Prefetch - fetching lines before they are requested.

Simple prefetch strategy - prefetch (i + 1)th line when ith line is initially

referenced (assuming that the (i + 1)th line is not already in the cache) on

the expectation that it is likely to be needed if the ith line is needed.

Selective fetch - policy of not always fetching lines, dependent upon some

defined criterion. Then, the main memory rather than the cache to hold the

information. Individual locations could be tagged as non-cacheable.

May be advantage to lock certain lines so that these are not be replaced.

Hardware could be provided within the cache to implement such locking.

Write Operations

As reading a word in the cache does not affect it, no discrepancy between

the cache word and copy held in main memory.

Writing can occur to cache words and then copy held in main memory

different.

Two principal alternative mechanisms to update the main memory:

• Write through

• Write back
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Write-Through

In the write-through mechanism, every write operation to the cache is

repeated to the main memory, normally at the same time.

Main memory

Processor

Cache

X

X

AddressData

On every
write reference

On write miss may only write to main memory
and not bring into the cache.
(“no-write-on-miss” or “no write allocate”, see later)

Write-through equations

With transfers from main memory to the cache on all misses (read and
write):

ta = tc + (1 − h)tm + w(tm − tc)

where tm = time to transfer line to cache, assuming the whole line must be
transferred (and it can be done in one transaction) and w = fraction of
write references.

(tm − tc) is additional time to write word to main memory whether hit or
miss, given that both cache and main memory write operations occur
simultaneously but main memory write must complete before subsequent
cache operation can proceed. 
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Example

Suppose tc = 25 ns, tm = 200 ns, h = 99 per cent, w = 20 per cent, and the

memory data path fully matches the cache line size. The average access

time would be 62 ns.

Multiple transfers to transfer line

If line is longer than the external data path, separate data transfers are

needed for each word of a line. Then 

ta = tc + (1 − h)tb + w(tm − tc)

where tb = btm and there are b transfers to transfer the complete line.

This modification applies to all the equations.
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Fetch-on-write (miss)

Describes a policy of bringing a word/line from the main memory into the

cache for a write operation.

No-Fetch-on-write (miss)

Describes a policy of not bringing a word/line from the main memory into

the cache for a write operation.

The term allocate on write is sometimes used for fetch on write because a

line is allocated for an incoming line on cache miss. Non-allocate on write

corresponds to no fetch on write.

No-Fetch-on-write equation for write-through cache

The average access time with a no fetch on write policy is given by:

ta = tc + (1 − w)(1 − h)tm + w(tm − tc) 

The hit ratio will generally be slightly lower than for the fetch on write

policy because altered lines will not be brought into the cache and might

be required during some read operations, depending upon the program.

No fetch on write often practiced with a write-through policy. Why?
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Allows the cache to be accessed while multiple previous memory write

operations proceed. “Non-blocking” cache.

Data Address

Write

Processor Cache
Main

memory

Read

Cache with write buffer

The write-through scheme can be enhanced by incorporating buffers:

Write-Back (or copy back)

Write operation to main memory only done at line replacement time. At
this time, line displaced by incoming line written back to main memory.

Main memory

Processor

Cache

X

X

AddressData

X written back to main memory
Y

Reference to Y, a miss

when location used by incoming line (Y)

Only necessary if X altered in cache
Requires an altered (“dirty”) bit with line
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Write-Back Equations

“Simple” write-back:

ta = tc + (1 − h)tm + (1 − h)tm = tc + 2(1 − h)tm

One (1 − h)tm for writing a line back to memory, other (1 − h)tm for

fetching a line from memory.

Write-back normally handles write misses as fetch on write. Why?

Write-Back with write back of modified lines

Write-back mechanism usually only writes back lines that have been

altered. The average access time now becomes:

ta = tc + (1 − h)tm + wb(1 − h)tm = tc + (1 − h)(1 + wb)tm

where wb is the probability that a line has been altered (fraction of lines

altered). 

The probability that a line has been altered could be as high as the proba-

bility of write references, w, but is likely to be much less, as more than

one write reference to the same line is likely and some references to the

same byte/word within the line likely. 
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Instruction and Data Caches

Several advantages if separate cache into two parts, one holding the data (a

data cache) and one holding program instructions (an instruction or code

cache):

• Write policy would only have to be applied to the data cache 
(assuming instructions are not modified.

• Designer may choose to have different sizes for the instruction 
cache and data cache, and have different internal organizations 
and line sizes for each cache.

• Separate paths could be provided from the processor to each 
cache, allowing simultaneous transfers to both the instruction 
cache and the data cache.

Instruction
fetch
unit

Memory
access

unit

Instruction pipeline

Instruction
cache

Data
cache

Main memory

Data paths

Processor

Instructions Data

Commonly
inside the 
processor

Particularly convenient in a pipeline processor, as different stages of the
pipeline access each cache:
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Replacement policy

Policy to select a line to remove for an incoming line. (Not applicable for
direct mapping which does not allow any choice).

Must be implemented in hardware, preferably such that selection can be
made completely during main memory cycle for fetching new line.

Ideally, line replaced will not be needed again in the future. However,
such future events cannot be known and decision has to made based upon
facts that are known at the time. Classified as usage-based or non-usage-
based.

A usage-based replacement algorithm for the fully associative cache needs
to take the usage (references) to all stored lines into account.

A usage-based replacement algorithm for a set-associative cache needs to
take only the lines in one set into account at replacement time.

Random replacement algorithm

Perhaps the easiest replacement algorithm to implement is a pseudo-

random replacement algorithm.

A true random replacement algorithm would select a line to replace in a

totally random order, with no regard to memory references or previous

selections; practical random replacement algorithms can approximate this

algorithm.
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First-in first-out replacement algorithm

Removes the line which has been in the cache for the longest time.

The first-in first-out algorithm would naturally be implemented with a

first-in first-out queue of line addresses, but can be more easily

implemented with counters. - not usually implemented.

Least recently used algorithm for a cache

The line which has not been referenced for the longest time is removed

from the cache. Only those lines in the cache are considered.

The word “recently” comes about because the line is not the least used as

this is likely to be back in memory. It is the least used of those lines in the

cache, and all of these are likely to have been recently used otherwise they

would not be in the cache.

LRU algorithm popular for cache systems and can be implemented fully

when the number of lines involved is small. Several ways the algorithm

can be implemented in hardware for a cache.
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Reference Matrix Method

The reference matrix method can be derived from the following definition

(for 4 lines):

B5 = 1 when line 3 is more recently used than line 2.

B4 = 1 when line 3 is more recently used than line 1.

B3 = 1 when line 3 is more recently used than line 0.

B2 = 1 when line 2 is more recently used than line 1.

B1 = 1 when line 2 is more recently used than line 0.

B0 = 1 when line 1 is more recently used than line 0.

The bits B5, B4, B3, B2, B1 and B0 can be arranged as an upper triangular

matrix of a B × B bits (B0 the first row, B1 and B2 the second row, and B3,

B4, B5 the third row).

When the ith line is referenced, all the bits in the ith row of the matrix are

set to 1 and then all the bits in the ith column are set to 0. (Prove)

The least recently used line is one which has all 0’s in its row and all 1’s

in its column, which can be detected easily by logic. (Prove)
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implementation using reference matrix
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Select pair then line
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Flags indicating
least recently used
line of pairs

Line

Replacement algorithm using a tree selection

L3 L2 L1 L0

B0

B2 B1

Flag indicating
least recently used
pair of lines of the 4 lines

2K4K 8K 16K 32K
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1.0

0.5

0.05

Program C

Program A

Program B

Cache size

General Cache Performance Characteristics

Miss Ratio against Cache Size
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Miss Ratio against Line Size

0.01

0.1

1.0

0.5

0.05

4 8 16 32 64 128

32

256

1024

4096

32768

Instruction/data cache

Instruction cache

Cache size

Line size (bytes)

Has a minimum
(Why?)

Processor

First-level
cache(s)

Second-level
cache

Main memory

Second Level Caches
Most present-day systems use two levels of cache.

First-level cache access time matches processor. Second-level cache access
time between main memory access time and first level cache access time:

Usually separate data and instruction caches

Unified cache holding code and data
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Second level cache equation

Can extend our previous equations to cover a second-level cache.
Expanding tc in:

ta = tc + (1 − h)tm

we get:

ta = [tc1 + (1 − h1)tc2] + (1 − h2)tm

where tc1 is the first-level cache access time, tc2 the second-level cache
access time, tm the main memory access time, h1 is the first-level cache hit
ratio, and h2 is the combined first/second-level cache hit ratio, considering
the two caches are one homogeneous cache system.

Most microprocessor families provide for second-level caches.

Memory Management

Methods of managing the memory hierarchy in a computer system.

Two separate issues for memory management:

1. Handling the main and disk memory hierarchy.

2. Providing memory protection.
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Paging/Virtual Memory

Objective - to make the main and secondary memories seem as though all

the memory was all main random access memory. Based upon dividing

memory space into pages that are transferred between the memories

automatically. 

The user is given the impression of a very large main memory space

(virtual memory ) which hides the actual memory space (the real memory

space).

Separate addresses are used for the virtual memory space and the real

memory space.

The actual memory addresses are called real addresses

The program generated addresses are called virtual addresses.

Real and virtual memory spaces both divided into blocks of words called

pages.

Pages (selectable)size might be between 64 bytes and 4 Kbytes, depending

upon design.
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Virtual memory 
system Processor

disk
memory

Main
memory

Page Line

Page Line

Virtual address to
real address

translation

Real address

Virtual address

Memory
hierarchy

Data path

Main memory
translation

tables

disk memory
translation tables

Update Hit

Miss
(Page fault)

0

 Very small virtual memory system

9
3
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89
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Free

4
5
7

131

Free
Free

0
67
68

0
1
2
3

30
31

32
33
34
35

219
220
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1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

208 209 210 211 212 213 214 215

216 217 218 219 220 221 222 223

Secondary
memory
access

Main
memory
access

Main memory (32 pages)

Secondary memory (192 pages)

Page tables
Virtual
page

address

Real
page

address
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 Principle of Locality

Just as Principle of Locality causes caches to be successful, Principle of
Locality makes paging successful. References are grouped into particular
regions and many, if not all, locations are referenced several times.

Program page references

Stack Main program Procedures Data
Addresses

Translation look-aside buffer (TLB)

Number of pages in a modern computer system too large to hold all the

main memory page table in a very high speed look-up table.

Given program characteristics embodied in the Principle of Locality, only

those page addresses predicted as most likely to be used need be translated

in hardware. The rest of the page references are initially handled by

reading a main memory page look-up table.

The high speed page address translation memory holding the most likely

referenced page entries is known as a translation look-aside buffer (TLB)
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Translation look-aside buffer

Virtual address
from processor

Real address
to main memory

Page Line

OR

Load
TLB

TLB

Main memory
page tables

Real page address

Miss

Hit

Miss

Access
disk

memory

Page Line

Access main
memory page

tables

Data and Instruction TLBs

Since most processor have caches and separate data and instruction caches,

it is reasonable to use separate TLBs for each type of reference.

A reference to data will use one TLB to translate its virtual address into a

real address.

A reference to an instruction will use another TLB to translate its virtual

address into a real address.
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Address translation

There are three basic hardware techniques to translate the virtual page

address into a real page address:

1. (Pure) direct mapping.

2. Associative mapping.

3. Set-associative mapping.

(Pure) direct mapping address translation

Virtual address
from processor

High speed memory
holding real page

addresses

Real page
address

Real address
to main memory

0

n

Page n Line

LinePage
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(Pure) direct mapping technique shown not suitable for a TLB.

Direct method suitable for the main memory and second memory page

tables, and will be the basis of these tables.

Fully associative mapping address translation

Virtual address
from processor

Real address
to main memory

Page n Line

Associative memory

Compare with
all stored virtual

addresses
simultaneously

Virtual
page

Real
page
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Fully associative method is used in some TLBs.

However, large fully associative TLBs may be expensive to create and will

operate slower than set-associative TLBs. Most TLBs are now set-

associative. This does not come without a performance consideration as we

shall see.

Set-associative mapping address translation (one-way)
Virtual address
from processor

Real address
to main memory

i

Line

High speed
random access memory

IndexTag
i

Real page
Tag address

Compare tags

Comparator

Page

Hashing
function

(see text)
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Many systems use two- or four-way set-associative TLBs.

Examples

Intel 486 has a 32-entry four-way set-associative TLB.

Motorola 68040 has two 64-entry four-way set-associative TLBs, one for

the data cache and one for the instruction cache.

Pentium has two data TLBs, one 64 entry 4-way dual port TLB for 4 Kbyte

pages and one 8 entry 4-way dual port TLB for 4 Mbyte pages and one

instruction 32-entry 4-way TLB.

Hashing Functions

Set-associative TLB with index directly addressing the TLB has major

disadvantage that only n pages with virtual addresses having the same

lower page bits (index bits) can be translated with a set size of n.

The set size is often only one or two. The chance of virtual addresses

having the same lower page bits is quite high.

To counteract this effect, alter bits accessing TLB, or “hash” bits to

“randomize” the virtual page address before accessing the TLB. 
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IBM 3033 page hashing function

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Page Line

⊕ ⊕⊕ ⊕ ⊕

Hashed index

Exclusive-OR
operations

Page size

Various page sizes used in paging schemes, from small pages of 64 bytes

through to very large pages of 512 Kbytes. A common page size has been 4

Kbytes. Some systems provide for different page sizes for flexibility.

Example

Two page sizes can be selected in the Intel Pentium, either 4-Kbyte or 4-

Mbyte pages. system software.

A small page of 64 bytes might be suitable for code while a larger page of

512 bytes might be suitable for data. A very large page size of say 4

Mbytes might suit graphics applications.
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Small page size

• Time taken in transferring a page between the main memory and the

disk memory is short

• Large selection of pages from various programs can reside in main

memory.

• Also reduces the storing of superfluous code which is never referenced.

• Necessitates a large page table

• Table fragmentation increases. This is the term used to describe the

effect of memory being occupied by mapping tables and hence being

unavailable for code/data.

Large page size

• Requires a small page table but the transfer time is generally longer.

• Unused space at the end of each page is likely to increase – an effect

known as internal fragmentation - on average, the last page of a

program is likely to be 50 per cent full.
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Multilevel page mapping

Page table giving all virtual/real page associations for main memory
requires considerable memory. To reduce this requirements, use two- or
multilevel mapping

Virtual address
Page Line

Table descriptor
register

Page tables

Real address

Handling page faults

A page fault occurs whenever page referenced is not already in main

memory, i.e. when a valid page entry not found in TLB and main memory

page tables.

When page fault occurs, the required page must be located in the disk

memory using the disk memory page tables, and a page in the main

memory must be identified for removal if there is no free space in the main

memory.
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Three policies to consider when handling page faults:

1. Fetch policy – to determine when pages are loaded into the main
memory.

2. Placement policy – to determine where pages are to be placed in main
memory.

3. Replacement policy – to determine which page in the main memory to
remove or overwrite.

Normal fetch policy - demand paging - wait until a page fault occurs and

then loading the required page from the disk memory.

Placement policy - Original policy was to maintain one free page in the

main memory for the incoming page. Another page is removed afterwards

to create a free page for the next incoming page.
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Page replacement algorithms

Can be classified as:

1. Usage-based algorithms.

2. Non-usage-based algorithms.

In a usage-based algorithm the choice of page to replace is dependent

upon how many times each page in the main memory has been referenced.

Non-usage-based algorithms use some other criteria for replacement.

Implementing usage-based algorithms

Hardware is necessary to record when pages are referenced.

Use (or accessed) bit with each page entry - set if corresponding page

referenced and automatically reset when the bit is read. Use bits are read

under program control.

Use bits usually scanned at perhaps after 1 ms of process time to obtain an

approximation of the usage.



 Barry Wilkinson  2000.  All rights reserved. Page 44

Page table has other bits to assist the replacement algorithm:

Modified (or written, changed or dirty) bit. - set if write operation

performed on any location within page. Not necessary to write an

unaltered page back to disk memory if a copy maintained there.

Very occasionally, unused bit set to 1 when the page loaded into main

memory and reset to 0 when subsequently referenced. May be helpful

to ensure that page demanded not removed before being used.

Protection bits - concerned with controlling access to pages.

Random replacement algorithm

Page is chosen randomly at page fault time; there is no relationship

between the pages or their use. Does not take the principle of locality of

programs into account. Simple to implement but is not widely applied to

TLBs.

Examples

VAX 11/780 translation buffer (TLB), the TLB in the Intel i860 RISC

processor.
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Least recently used replacement algorithm

Page which has not been referenced for the longest time is transferred out

at page fault time.

Poses practical problems for a true implementation since there are many

pages to consider.

A common approximation - at intervals, say after every 1 ms, all of use bits

are examined by the operating system and automatically reset when read.

A record of the number of times the bits are found set to 1 would give an

approximation of the usage in units of the interval selected.

Approximation becomes closer to a true LRU algorithm as the interval is

decreased. 

TLB performance

If the page address is not found in the TLB, a TLB miss occurs, and a sig-
nificant overhead occurs in searching the main memory page tables, even
when the page is already in the main memory.

The TLB like a data cache. Basic cache equations also apply to TLB, i.e.
the address translation time, tt, is given by:

tt = ttlb + (1 − htlb)tmt

where ttlb is the translation time of the TLB (hit or miss) and tmt is the trans-
lation time looking in main memory tables on a TLB miss.

The TLB miss ratio is given by (1 − htlb). Typically the TLB miss ratio (miss
rate) is very low indeed, perhaps less than 0.05 per cent.
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TLB miss ratio against size
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Virtual memory systems with cache memory

Can insert cache after TLB virtual/real address translation, so that the

cache holds real address tags and the comparison of addresses is done with

real addresses.

Alternatively, can insert cache before TLB virtual-real translation so that

the cache holds virtual address tags and the comparison of addresses is

done using virtual addresses.

Former case, which is much less complicated and has fewer repercussions

on the rest of the system design.
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Addressing cache with real addresses

Common to perform the TLB virtual-real translation at the same time as

some independent part of the cache selection operation to gain an

improvement in speed.

Fully associativeTLB with a 
direct mapped cache
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One-way set-associative TLB 
with a direct mapped cache
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Addressing cache with virtual addresses

If the cache is addressed with virtual addresses, these addresses are

immediately available for selecting a word within the cache. Only on a

cache miss would it be necessary to translate a virtual address into a real

address, and there is more time then.

Potential increase in speed over a real addressed cache.

Complications

Possible for different virtual addresses in different processes to map into
same real address. Such virtual addresses known as synonyms – from the
word denoting the same thing(s) as another but suitable for different
contexts.

Synonyms occur:

• If the addressed location is shared between processes
• If programs request the operating system to use different virtual

addresses for the same real address.
• When an input/output device uses real addresses to access main

memory accessible by the programs.
• Can also occur in multiprocessor systems when processors share

memory using different virtual addresses.

It is also possible for the same virtual address generated in different
processes to map into different real addresses.
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Handling Synonyms

• Process or other tags could be attached to the addresses to differentiate

between virtual addresses of processes,

• Synonyms could be disallowed by placing restrictions on virtual

addresses.

• Could be handled by use of a reverse translation buffer (RTB). On a

cache miss, the virtual address is translated into a real address using

the virtual-real translation look-aside buffer (TLB) to access the main

memory. When the real address has been formed, a reverse translation

occurs to identify all virtual addresses given under same real address.

Real addressed cache access time

(At least) six combinations of accesses:

1. Address in the translation look-aside buffer, data in the cache.

2. Address in the translation look-aside buffer, data in the main memory.

3. Address in the cache, data in the cache.

4. Address in the cache, data in the main memory.

5. Address in the main memory, data in the cache.

6. Address in the main memory, data in the main memory.
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Example

Suppose no overlap between translation look-aside buffer translation and

cache access (a rather unlikely situation) and the following times apply:

Translation look-aside buffer address translation time

(or to generate a TLB miss) = 25 ns

Cache time to determine whether address in cache = 25 ns

Cache data fetch if address in cache = 25 ns

Main memory read access time = 200 ns

Translation look-aside buffer hit ratio = 0.9

Cache hit ratio = 0.95

Access times and probabilities of the various access combinations are:
:

Average access time is given by:
(75 × 0.855) + (250 × 0.045) + (125 × 0.09025) + (300 × 0.00475) + (300
× 0.00475) + (475 × 0.00025) = 89.63 ns

Access times and probabilities of the various access combinations

Access time Probabilities

25 + 25 + 25 = 75 ns 0.9 × 0.95 = 0.855

25 + 25 + 200 = 250 ns 0.9 × 0.05 = 0.045

25 + 25 + 25 + 25 + 25 = 125 ns 0.1 × 0.95 × 0.95 = 0.09025

25 + 25 + 25 + 25 + 200 = 300 ns 0.1 × 0.95 × 0.05 = 0.00475

25 + 25 + 200 + 25 + 25 = 300 ns 0.1 × 0.05 × 0.95 = 0.00475

25 + 25 + 200 + 25 + 200 = 475 ns 0.1 × 0.05 × 0.05 = 0.00025
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Segmentation

Purpose of segmentation is to organize the programs in memory so that the

operating system can relocate programs in the main and disk memory

easily, and to provide protection from unauthorized access/execution.

Although the way this is done looks similar to virtual memory/paging, not

the same purpose as paging which has a hardware motive, to manage the

memory hierarchy in an automatic way. 

A segment is a block of contiguous locations. Segments may be of

different sizes since programs are of different sizes.

Each address generated by the processor -logical address - is composed of

a segment number and a displacement within the segment.

Segment number is translated into the start of the segment in memory and

offset added to form the physical address .
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Segmentation address translation

Logical address

Segment table
pointer

Segment Offset

Segment
table

+

+

Physical address

Important aspect

The segment number and offset are separate entities and any alteration to

the offset by the program cannot affect the segment number.

Once the maximum offset is reached (assuming that the segment grows

with increasing addresses) adding one to the offset should create an error

condition.
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Segment table

Incorporates additional information, including:

1. Segment length.

2. Memory protection bits.

3. Bits for the replacement algorithm.

Segment length

Length of each segment stored to prevent programs referencing a location

beyond the end of a particular segment. If the offset in the virtual address

is greater than the stored length (limit) field, an error signal is generated.
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Memory Protection

Memory protection involves preventing specified types of access to the

addressed location and discarding or stopping the address translation

occurring. The protection applies to all of the locations in the segment and

not to particular locations. Typically, by setting bits in the segment tables,

any segment can be assigned as allowing:

1. Read access

2. Write access

3. Execute access

for user, group, and system (e.g. UNIX).

Replacement algorithm

Can be similar to the replacement algorithm in a paged system except that

it needs to take the varying size of the segments into account when

allocating space for new segments.

Use flag usually sufficient to implement a replacement algorithm or

approximations to a replacement algorithm.
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Segment Unused Unused SegmentSegment

Placement algorithm

The variable size of segments causes some additional problems in main

memory allocation. During operation, with segments returned to the disk

memory, the main memory will become a “checkerboard”: 

External fragmentation. - leaving small spaces which cannot be used sub-

sequently. 

Placement algorithms

• first fit

• best fit

• worst fit. 
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Paged segmentation

Segmentation and paging are usually combined, to gain the advantages of
both systems, i.e. the logical structure of segmentation and the hardware
mapping between main and disk memory of paging. 

Process 1 Process 2

Main memory

Process 3 Process 4

Paged segmentation address translation
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Two-level paging with segmentation
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