
 Barry Wilkinson 2000. All rights reserved. Page 1

Multiprocessor Systems

Multiprocessor - computer system containing more than one processor.

Principal motive is to increase the speed of execution of the system.

Sometimes other motives, such as fault tolerance and matching the

application.

Apparent that increased speed should result when more than one processor

operates simultaneously.

 Barry Wilkinson 2000. All rights reserved. Page 2

Types of multiprocessor systems
(where each processor executes its own program)

Shared memory multiprocessor system - a natural extension of a single

processor system in which all the processors can access a common

memory.

Distributed memory multicomputer system -multiple interconnected

computers where each computer has its own memory.

Main memory

Processor

Instructions (to processor)
Data (to or from processor)

Conventional Computer

Each main memory location in the memory located its address. Addresses

start at 0 and extend to 2n − 1 when there are n bits in the address.

 Barry Wilkinson 2000. All rights reserved. Page 3

Shared Memory Multiprocessor System

Each processor can access any memory location. One address space.

Interconnection network

Memory modules

Processors

Interconnection networks

Various possible networks:

• Single bus

• Multiple buses (not much used)

• Rings

• Mesh

• Hypercube (popular in the 1980’s, not any more)

• Multistage interconnection networks (MINs)

Single bus approach used in small multiprocessor systems, for example

quad Pentium systems.

 Barry Wilkinson 2000. All rights reserved. Page 4

Processors

Bus request

Bus grant

Bus

Shared bus multiprocessor system

A natural extension to a single bus microprocessor systems.

Interconnection network

Shared memory multiprocessor system with caches

Natural to apply caches to a shared memory multiprocessor system.

Memory modules

Caches

Processors

Possible first
level cache

 Barry Wilkinson 2000. All rights reserved. Page 5

Cache Coherence

Significant additional factors to consider in using cache memory in a

multiprocessor environment, in particular maintaining accurate copies of

data in the multiple caches in the system.

Maintaining copies in all the caches the same is known as cache coherence

Any read should obtain the most recent value written. (Actually more

complicated that this.)

Write policy

Write-through is not sufficient, or even necessary, for maintaining cache

coherence, as more than one processor writing-through the cache does not

keep all the values the same and up to date.

 Barry Wilkinson 2000. All rights reserved. Page 6

Interconnection

Caches

Processors

x

x x

network

P0 P1 Pn

Memory modules

(a) Processors accessing x

Inconsistency with write through policy copy

(b) Processor 1 updating x

Interconnection

Caches

Processors

x

x x'

network

P0 P1 Pn

Memory modules

 Barry Wilkinson 2000. All rights reserved. Page 7

(c) After write-through

Interconnection

Caches

Processors

x’

x x'

network

P0 P1 Pn

Memory modules

Interconnection

Caches

Processors

x

x x'

network

P0 P1 Pn

Memory modules

(d) Invalidating or updating copy

 Barry Wilkinson 2000. All rights reserved. Page 8

Two possible solutions

1.Update copy in the cache of processor 0, or

2.Invalidate copy in the cache of processor 0

both of which require access to the cache of processor 0.

Update

Update writes all cached copies with the new value of x..

Not usually implemented because of the overhead of the update.

In any event, it may be not completely necessary because not all processors

may access the location again.

 Barry Wilkinson 2000. All rights reserved. Page 9

Invalidation

Done by resetting the valid bit associated with x in the cache. Now

processor 0 must access the main memory if it references x again, to bring

a new copy of x back into its cache. If copies existed in caches apart from

the cache of processor 1, these copies would also need to be invalidated.

Numerous variations of invalidate and update protocols developed in the

research community. We will describe used by manufacturers.

With invalidation, write back may be practiced rather than write-through to

reduce the memory traffic. Then there is only one valid copy in one cache,

and one processor has ownership of this copy.

Block

Cache

Processor 1

Cache

Processor 2

Main memory

Block in cache

7
6
5
4
3
2
1
0

Address
tag

False sharing

When more than one

processor accesses different

parts of a line but not the

actual data items.

 Barry Wilkinson 2000. All rights reserved. Page 10

False sharing can result in significant reduction in performance because, in
maintaining cache coherence, the smallest unit considered is the line.

False sharing can be reduced by distributing the data into different lines if
sharing is expected.

A task for the compiler, and requires both knowledge of the use of the data
and the architectural arrangements of the caches.

Alter the layout of the data stored in the main memory, separating data
only altered by one processor into different blocks.

May be difficult to satisfy in all situations.

Example

forall (i = 0; i < 5; i++)

a[i] = 0;

is likely to create false sharing as the elements of a, a[0], a[1], a[2],
a[3], and a[4], likely to be stored in consecutive locations in memory.

Would need to place each element in a different block, which would create
significant wastage of storage for a large array.

forall is a high level language construct that says do the body with each

value of i simultaneously.

 Barry Wilkinson 2000. All rights reserved. Page 11

Methods of Achieving Cache Coherence

For a single bus structure, snoop bus mechanism often used.

Snoop bus mechanism

In the snoop bus mechanism, a “bus watcher” unit with each processor/

cache observes the transactions on the bus and in particular monitors all

memory write operations. If a write is performed to a location which is

cached locally, this copy is invalidated - needs a protocol -see later.

Could invalid based upon only index (not compare tags).

Processor

Cache
controller

Cache
(RAM)

Bus interface

Snoop bus System bus

Other processors
each with cache
and controller

Main memory
attached to
system bus

Snoop bus mechanism

 Barry Wilkinson 2000. All rights reserved. Page 12

Four-state MESI (Modified/Exclusive/Shared/Invalid)
invalidate protocol

Perhaps the most popular snoop protocol with microprocessor

manufacturers.

Can be found in the internal data cache of Intel Pentium, the second level

Pentium cache controller, the Intel 82490 (Intel, 1994c), the Intel i860

processor (Intel, 1992b), and Motorola MC88200 cache controller

(Motorola, 1988b), among others.

Each line in the cache can be in one of four states:

1. Modified (exclusive) – The line is only in this cache and has been

modified (written) with respect to memory. Copies do not exist in

other caches or in memory.

2. Exclusive (unmodified) – The line is only in this cache and has not

being modified. It is consistent with memory. Other copies do not

exist in other caches.

3. Shared (unmodified) – This line potentially exists in other caches. It is

consistent with memory. To stay in this state, access to line can only

be for reading.

4. Invalid – This line has been invalidated and does not contain valid

data.

 Barry Wilkinson 2000. All rights reserved. Page 13

Two bits can be associated with each line to indicate the state of the line.

The modified (exclusive) and exclusive (unmodified) states are used to

indicate that the processor has the only copy of the cache line.

In the modified (exclusive) state, the processor has altered the contents of

the line from that kept in the main memory and hence a valid copy does

not even exist in the main memory. It will be necessary to write back the

line before any other cache can use the line.

Lines enter the invalid state by being invalidated by other processors, i.e.

this is an invalidate protocol.

MESI protocol – major transitions without write-once

Invalid
Shared

(unmodified)

Exclusive
(unmodified)

Modified
(exclusive)

Reset

Read

ReadWriteRead
Write

Local processor initiated
Remote processor initiated

WriteWrite

Read

Write access

Read
access

Write
access

Write
access

(shared)

Read
(not shared)

Read
access

 Barry Wilkinson 2000. All rights reserved. Page 14

Example Sequence of MESI Protocol State Changes

Main memory

Processor 1 Processor 2

Cache

I EUState change I

(a) Processor 1
reads x

x

Access
memory

Snoop

x

Processor 1 Processor 2

State change I SU

(b) Processor 2
reads x

Snoop

Access
memory

x

xx

EU SU

 Barry Wilkinson 2000. All rights reserved. Page 15

Processor 1 Processor 2

SU MEState change

(c) Processor 1
writes to x

x ' x

x

SnoopWrite once

SU I

Access
memory

Processor 1 Processor 2

State change I

(d) Processor 1
writes to x

x"
Write

x

x

ME

 Barry Wilkinson 2000. All rights reserved. Page 16

MESI protocol state changes from exclusive ownership
to shared

Processor 1 Processor 2

MEState change I

(a) Processor 2
reads x

x"

Access
memory

Snoop

x

Blocks

Processor 1 Processor 2

State change I

(b) Processor 1
writes back x"

ME SU

Access
memory

x"

x"

 Barry Wilkinson 2000. All rights reserved. Page 17

Processor 1 Processor 2

State change

(c) Processor 2
reads x" from memory

x"

x"

x"

I SUSU

Performance of Single Bus Network

A key factor in any interconnection network is the bandwidth - the

average number of requests accepted in a bus cycle.

Bandwidth and other performance figures can be found by one of four

basic techniques:

1. Using analytical probability techniques.

2. Using analytical Markov queuing techniques.

3. By simulation.

4. By measuring an actual system performance.

 Barry Wilkinson 2000. All rights reserved. Page 18

Probabilistic Techniques

Principal assumptions:

1. The system is synchronous and processor requests are only generated
at the beginning of a bus cycle.

2. All processor requests are random and independent of each other.

3. Requests which are not accepted are rejected, and requests generated
in the next cycle are independent of rejected requests generated in
previous cycles.

Assumption 2

Ignores characteristic that programs normally exhibit referential locality.
However, requests from different processors normally independent.

Assumption 3

Rejected requests are ignored and not queued for the next cycle. This
assumption is not generally true. Normally when a processor request is
rejected in one cycle, the same request will be resubmitted in the next
cycle. However, the assumption substantially simplifies the analysis and
makes very little difference to the results.

 Barry Wilkinson 2000. All rights reserved. Page 19

Bandwidth

Probability that a processor makes a (random) request for memory = r.

Probability that the processor does not make a request = 1 − r.

Probability that no processors make a request for memory = (1 − r)p

where there are p processors.

Probability that one or more processors make a request= 1 − (1 − r)p.

Since only one request can be accepted at a time in a single bus system,

the average number of requests accepted in each arbitration cycle (the

bandwidth, BW) is given by:

BW = 1 − (1 − r)p

Bandwidth of a single bus system
(using more accurate rate adjusted equations, see textbook)

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16
Processors

r = 0.8 r = 0.5

r = 0.1

r = 0.2

 Barry Wilkinson 2000. All rights reserved. Page 20

Key Observation,

Bus saturates - at about 8 processors with r = 0.5.

Not be that bad with cache memory as then r is much less.

Still, a single bus is only suitable for a small system.

