
 Barry Wilkinson 2000. All rights reserved. Page 5

Review of Stored Program Concept

Stored Program Computer

Has a list of instructions held in a memory (stored program) which define

the actions of computer.

Consists of:

• Memory

• Processor

• Input circuits and devices

• Output circuits and devices

Processor fetches (machine) instructions from memory and performs

actions defined.

 Barry Wilkinson 2000. All rights reserved. Page 6

Babbage

Concept first proposed by Babbage in the 1800’s - his machine was

mechanical but had the main parts of a modern computer; an arithmetic

unit and controller (processor), memory (punched cards) - never

completed because the mechanical complexity (gears etc).

Internal Structure of Computer

Usually processor, main memory and I/O interfaces connect through

central “bus”, a collection of wires connecting all major components

through which information is transferred.

First used on minicomputers in 1970s (PDP 8 and PDP 11) and

subsequently on microprocessors and all present-day systems (with

variations e.g. multiple and dedicated buses).

 Barry Wilkinson 2000. All rights reserved. Page 7

Bus
(set of wires)

Input device(s) Output devices

InputMainProcessor Output
interface(s)memory interface(s)

Instructions
and data

From CSCI 3182

Main memory

Set of storage locations

Each location given a unique address (a binary number starting from zero)

Each “addressable” location holds fixed number of bits (binary digits) -

normally 8 bits. WHY?

Eight bits called a byte.

Any location can be accessed at high speed in any order (random access

memory).

 Barry Wilkinson 2000. All rights reserved. Page 8

2n locations require
n-bit address

0
1
2
3
4

2n−1

Address Memory

Memory
location

Memory used to hold machine instructions and data.

If more than 8 bits needed, consecutive locations used.

Then address given by address of first location.

First location can hold least significant or most significant byte depending

upon convention of processor:

 Barry Wilkinson 2000. All rights reserved. Page 9

0 1 2 30123

0
1
2
3

Memory

Most Least
significant
byte

significant
byte

Most Least
significant
byte

significant
byte

32-bit word32-bit word

Little endian
(little end first)

Big endian
(big end first)

Data path between processor and memory

Normal much more than 8 bits can be transferred simultaneously between
the processor and main memory - typically 32 bits or 64 bits for modest
performance systems:

Data bus

0 1 m-1
m m+1 m = 4 for 32 bit bus

m = 8 for 64-bit bus

MemoryProcessor

2m-1

Address

Address bus

Additional signals specify 1 byte, 2 bytes, 4 bytes etc.

 Barry Wilkinson 2000. All rights reserved. Page 10

BE0

BE7

Data bus

A31 - A3
Address bus

Memory modules

Processor

D63

D0

8
bits

Control bus

Example of a 64-bit processor bus (Pentium)

Machine Instructions

Binary encoded instructions that processor will execute. Held in memory.

Various possible formats.

The first part of the instruction typically specifies the operation (add,

subtract etc.) - the so-called op-code.

The rest of the instruction specifies the locations of the numbers

(operands) to be used in the operation and where the result is to be stored -

if an operation that uses stored numbers and produces a numeric result -

some operations alter the instruction sequence or produce other effects.

Op-code Identifies operands and result location

 Barry Wilkinson 2000. All rights reserved. Page 11

Op-code encoding

Suppose there were 100 different operations, add subtract, multiply,

divide, 7 bits would be sufficient (26 <= 100 < 27). Could allocate

one pattern for each operation:

op-code

ADD (Usually abbreviated to ADD)0000000

SUBTRACT (Usually abbreviated to SUB)0000001

MULTIPLY (Usually abbreviated to MUL)0000010

DIVIDE (Usually abbreviated to DIV0000011

. .

Sometimes a more complex encoding is used, say, the first bits specify a

class of operation and the rest of the op-code specifies the operation within

Instruction Formats
Basic way of identifying operands is by their addresses. Possible formats:

Operation

Addresses

Operation Result 2nd operand1st operand

(a) Three-address format

Operation 1st operand2nd operand

(b) Two-address format

Operation Register2nd operand

(c) Register-memory format

Operation

(d) One-address format

and result

(e) Zero-address format

2nd operand

Opcode

 Barry Wilkinson 2000. All rights reserved. Page 12

Identifying the operands and result location
Various methods, known generally as the addressing modes.

Principal addressing modes

Absolute addressing - Operand in memory and thememory address of the
operand is held in instruction - as in previous slide
Immediate Addressing - Operand held in the instruction.
Register Direct Addressing - Operand held in register specified in
instruction.
Register Indirect Addressing - Operand held in memory. The address of the
operand location is held in a register which is specified in instruction.
Register Indirect Addressing plus Displacement - Similar to register
indirect addressing except a displacement or offset held in the instruction
is added to register contents to form the effective address.
Implied Addressing - Some operations have an implicit location for the
operand and its address need not be specified.
PC relative addressing - used with instructions that can alter execution
sequence.

Processor

Reads (“fetches”) so-called machine instructions for the memory which

constitutes the executable program, and performance the actions specified

(“executes” them).

Each machine instruction will specify usually a simply operation such as

addition, and identifies the numbers to be used.

 Barry Wilkinson 2000. All rights reserved. Page 13

Control
Unit

IR

ALU
Registers

PC

Main memory

Control
Data Address

Processor
(representative)

Control
signals

signals

System
bus

Internal bus

A very simple processor

(Representative of an early microprocessor - not representative of a

modern processor)

A very simple processor will operate in two phases, a fetch cycle to fetch

an instruction and an execute cycle to execute the fetched instruction.

These two cycles are repeated as the program is executed. Usually

however processors will attempt to fetch the next instruction before the

previous one has been fully executed.

Really advanced processors (i.e. modern processors) may fetch multiple

instructions simultaneously and attempt to execute more than one

simultaneously.

 Barry Wilkinson 2000. All rights reserved. Page 14

(a) Fetch cycle

Control
Unit

IR

ALU
Registers

PC

Main memory

Control
Data Address

Instruction

Processor
(representative)

Control
signals

signals

System
bus

Internal bus

Select next
instruction

(b) Execute cycle

Control
Unit

IR

ALU
Registers

PC

Main memory

Control
Data Address

Operands

Processor
(representative)

Control
signals

signals

System
bus

Internal bus

Select operands
Select result locationand results

 Barry Wilkinson 2000. All rights reserved. Page 15

Summary

We can identify the main operating characteristics of the stored program

computer as follows:

1. Only elementary operations are performed (e.g., arithmetic addition,

logical operations).

2. The user (programmer) or compiler selects operations to perform the

required computation.

3. Encoded operations are stored in a memory.

4. Strict sequential execution of stored instructions occurs (unless

otherwise directed).

5. Data may also be stored in the same memory.

Characterizing Performance

MIPs

Traditional system figure of merit is MIPS (millions of instructions per

second), defined as:

MIPs Number of Instructions in Program

Program Execution Time 10
6×

---=

 Barry Wilkinson 2000. All rights reserved. Page 16

MFLOPs

The figure of merit, MFLOPS, (millions of floating point operations per

second) is defined as:

High performance processors may have very high MFLOP performance

i.e. thousands of MFLOPS, called gigaflops, GFLOPS.

Various benchmark programs exist with representative mixes of

instructions, for example, the SPECint92 and SPECfp92 UNIX

benchmarks.

MFLOPs Number of Floating Point Instructions in Program

Program Execution Time 10
6×

--=

Clock cycles per instruction (CPI)

Clock cycles per instruction (CPI) is defined as:

CPI is independent of the clock frequency

Can be used to compare different processor designs.

CPI can actually be less than one if processor is capable of executing more

than one instruction simultaneously (as most processors can since the mid

1990’s).

CPI Program execution time (in clock cycles)
Number of instructions in program

--=

 Barry Wilkinson 2000. All rights reserved. Page 17

Improvements in performance

1. Improvements in technology.

2. Software development.

3. Architectural enhancements.

Development of microprocessor families

Processors developed in “families” such that processors would be able to

execute programs of earlier processors.

Eight-bit microprocessors, that is, processors that can operate upon and

perform arithmetic on 8-bit numbers directly, in the mid- 1970s, typified

by the Intel 8080, Motorola MC6800 and Zilog Z-80.

Sixteen-bit microprocessors towards the end of the 1970s, e.g., Intel 8086

and Motorola MC68000, both introduced in 1978.

Thirty-two bit processors appeared in 1980s (e.g., Intel 386, Motorola

MC68020, and MC68030. Intel 486 and Motorola MC68040 continued the

trend of adding facilities within the chip (floating point units).

 Barry Wilkinson 2000. All rights reserved. Page 18

Development of microprocessor families cont.

Superscalar processors in early 1990s - more than one instruction can be

executed in each cycle, e.g. Intel Pentium and Pentium Pro, superscalar

versions of 486. Pentium II introduced in 1996, extra instructions for

multimedia applications (MMX technology).

Sixty-four bit processors in mid 1990s.

Also Intel pursuing a design in their Pentium III in which instructions are

packaged into groups for simultaneous execution.

Reduced Instruction Set Computer (RISC emerged in early 1980s.

Instruction set carefully chosen (perhaps less than 100 instructions) and a

few addressing modes (perhaps 2–5) – leads to processor that can operate

faster - now basis of all processors.

 Barry Wilkinson 2000. All rights reserved. Page 19

Pipelined processor design

A basic techniques to improve the performance - pipeline technique,

always applied in high performance systems.

The operation of the processor can be divided into a number of steps, e.g.:

1. Fetch instruction.

2. Fetch operands.

3. Execute operation.

4. Store results

or more steps.

Instructions

Fetch
unit

Operand
fetch unit Execute

Store
results

Processor

 Barry Wilkinson 2000. All rights reserved. Page 20

Memory hierarchy

Memory organized in levels of decreasing speed but decreasing cost/bit:

Main memory – random access memory

Secondary memory – not random access but not volatile

Usually being based upon magnetic technology.

Magnetic disk memory operates several orders of magnitude slower than

the main memory. Whereas main memory access time is in order of 20–

100 ns, access time on a disk is in range 5–20 ms. Difficult to improve

substantially. Gradual improvement over the years.

Virtual memory – a method of hiding the memory hierarchy.

Cache

High speed memory introduced between the processor and main memory:

Processor
Cache

memory
Main

memory

Secondary
memory

 Barry Wilkinson 2000. All rights reserved. Page 21

Instruction Set

The instructions that a processor can execute.

Complex Instruction Set Computers (CISC)

Early computers by necessity had small instruction sets. However during

the development of computers in the 1960’s and 1970’s, there was a trend

to add instructions to the instruction set sometimes for special purposes

(say to help the operating system) leading to sometimes very large number

of instructions and addressing modes in the instruction set.

Processor instruction sets became every complex. Idea was that better to

do in hardware if possible rather than in software.

Reduced instruction set computer (RISC)

The following issues originally lead to RISC concept:

1. The effect of the inclusion of complex instructions.
2. The best use of transistors in VLSI implementation.
3. The overhead of microcode.
4. The use of compilers.

The basic questions asked were “What effect on the design of the

processor does all these extra instruction have on the operation of the

processor?” and “Do the extra instructions indeed increase the speed of the

system?”

 Barry Wilkinson 2000. All rights reserved. Page 22

Example

DEC found 20% of VAX instructions required 60% of microcode but were

only used 0.2% of the time. Led to micro VAX-32 having slightly reduced

set of full VAX instruction set (96 per cent) but very significant reduction

in complexity.

Inclusion of complex instructions

The inclusion of complex instructions is key issue.

Even if adding complex instructions only added one extra level of gates to

a ten-level basic machine cycle, whole CPU has been slowed down by 10

per cent.

The frequency and performance improvement of the complex functions

must first overcome this 10 per cent degradation and then justify the

additional cost.

 Barry Wilkinson 2000. All rights reserved. Page 23

Use of transistors

Trade-off between size/complexity and speed. Greater VLSI complexity

leads directly to decreased component speeds.

With increasing circuit densities, a decision has to be made on best way to

utilize circuit area.

Is it to add complex instructions at risk of decreasing speed of other

operations, or should the extra space on the chip be used for other

purposes, such as a larger number of processor registers, caches or

additional execution units, which can be performed simultaneously with

the main processor functions?

Microcode

Factor leading to original RISC concept was changing memory

technology. CISCs often rely heavily on microprogramming (microcode)

in which fast control memory inside the processor holds microinstructions

specifying the steps to perform for each machine instruction.

Microprogramming first used at time when main memory was based upon

magnetic core stores and faster read-only control memory could be

provided inside the control unit.

With the move to semiconductor memory, gap between achievable speed

of main memory and control memory narrows.

Now, considerable overhead can appear in a microprogrammed control

unit, especially for simple machine instructions.

 Barry Wilkinson 2000. All rights reserved. Page 24

Compilers

There is increased prospect for designing optimizing compilers with fewer

instructions.

Difficult for compiler to identify situations where complex instructions can

be used effectively.

A key part of the RISC development is the provision for an optimizing

compiler which can take over some of the complexities from hardware and

make best use of registers.

RISC examples
IBM 801

Designed 1975–79 and publicly reported in 1982. Establishes many of the
features for subsequent RISC designs: Three-register instruction format,
with register-to-register arithmetic/logical operations. Only memory
operations are to load a register from memory and to store the contents of a
register in memory.

All instructions have 32 bits with regular instruction formats.

Programming features include:

• 32 general purpose registers.
• 120 32-bit instructions.
• Two addressing modes: base plus index; base plus immediate.
• Optimizing compiler.

Four-stage pipeline: instruction fetch; register read or address calculation;
ALU operation; register write.

 Barry Wilkinson 2000. All rights reserved. Page 25

. Early university research prototypes
RISC I/II and MIPS

RISC project –University of California at Berkeley

MIPS (Microprocessor without Interlocked Pipeline Stages) project –

Stanford University.

Both projects resulted in the first VLSI implementations of RISCs, the

Berkeley RISC I in 1982, and the Stanford MIPS and the Berkeley RISC

II, both in 1983.

. .

Table 1.1 Features of early VLSI RISCs

Features RISC I RISC II MIPS

Registers 78 138 16

Instructions 31 39 55

Addressing modes 2 2 2

Instruction formats 2 2 4

Pipeline stages 2 3 5

 Barry Wilkinson 2000. All rights reserved. Page 26

Early Commercial RISCs

Both the RISC I/II and MIPS led to commercial RISC processors:

SUN Sparc processor is derived from the Berkeley RISC II processor.

MIPS Computer System Corporation was established purposely to develop
Stanford MIPS processor, and a series of processors appeared, including
the R2000, R3000, R4000, R5000, etc.

Motorola MC88100 RISC 32-bit microprocessor, introduced in 1988 is
maybe first RISC produced by major CISC microprocessor manufacturer.

Later RISCs also incorporated superscalar operation (executing more than
one instruction in one clock cycle). Examples include IBM RS 6000, DEC
Alpha family and PowerPC family.

Examples of 64-bit superscalar processors include the Alpha 21164, MIPS
10 000, PowerPC 620 and the UltraSparc.

RISC Instruction Set Design

Processor characteristics

Use of memory and registers

Theme is to design for maximum speed avoiding the use of memory
whenever possible because memory is slower to access than registers.

Load and store will be only instructions for accessing memory – leads to
processors of this type as having a Load/Store instruction format.

 Barry Wilkinson 2000. All rights reserved. Page 27

For greater flexibility, a three-register instruction format used for
arithmetic operations.

Thirty-two integer registers are commonly chosen. Compromise between
providing compilers with enough registers, and having too many registers
to save beforecontext switch. Also as larger register file slower.

The thirty-two registers will be called R0–R31. Some registers given
certain uses in additional to their general purpose nature.

One register will permanently store the number zero. Often R0 although it
could be any register. (DEC Alpha processor, for example, uses R31 to
hold zero.)

Floating Point Instructions

All present-day processors provide for floating point numbers, and have
instructions to perform arithmetic on floating point numbers.

Usually, separate registers are provided for holding floating point numbers,
say F0 to F31.

The numbers always nowadays use the industry standard IEEE standard
floating point formats (ANSI/IEEE 754-1985)

– either 24 bits (rarely used single precision), 32 bits (single extended
precision), 64 bits (double precisions), or 80 bits (a double extended
precision format).

One register could be used to hold zero in floating point format

 Barry Wilkinson 2000. All rights reserved. Page 28

Operand and instruction size

Closely linked to allowable complexity of fabrication technology. Thirty-
two bits provide reasonable precision for integers, but by the late 1990s,
64-bit processors became quite common, coupled with 64-bit memory
addressing.

Very few significant architectural differences between processors with
different operand sizes in terms of control techniques – the main
differences are in number of gates to make up the registers and ALUs etc.
and number of internal data lines.

Need to specify size of the number being processed, 8 bits, 16 bits, 32 bits,
64 bits (or greater).

The size of 8 bits is provided principally to handle ASCII characters.
The 16-bit size not particularly useful. The other sizes provided for
increasing precision at expense of increasing memory requirements.

Instructions length of 32 bits is commonly chosen for RISCs,

Not possible to specify even a 32-bit constant or 32 bit address in a 32-bit
instruction.

 Barry Wilkinson 2000. All rights reserved. Page 29

Size of the memory address

n bits in the address allows 2n locations to be addressed.

As the allowable complexity of chips increases, so more bits are provided
to address memory.

1970s – 16-bit addresses, providing for 64 Kbytes.

1980s – Increased to 20 bits (Intel 8086), 24 bits (Motorola MC68020)

1990 –1995 – 32-bit addresses providing up to 232 bytes (4 gigabytes)

Thirty-two bit bits easily accomodates typical main memory sizes, .

Present TREND

64 bits, provides for main memory up to 264 bytes (??? gigabytes). This

size of main memory unlikely to be practical for many years (if ever) but

ensure longevity of design.

 Barry Wilkinson 2000. All rights reserved. Page 30

Instruction formats

Register-register instructions

Example:

ADD R2,R3,R4 ;R2 = R3 + R4

Using one register, R0, to hold zero, can create a register move operation,

i.e., to copy the contents of R4 into R5:

ADD R5,R4,R0 ;R5 = R4 (+0)

so that a specific register move instruction unnecessary.

31 26 25 21 20 16 15 11

UnusedRs2Rs1Rd

Destination Source 1

Opcode

Source 2Operation

Register-register instruction format (R-R-R format)

010

 Barry Wilkinson 2000. All rights reserved. Page 31

Sub Op-Codes

Could use remaining currently unused bits in instruction to specify a sub-

operation, perhaps an operation associated with a functional unit. Then

primary opcode specifies class of operations processed by functional unit.

31 26 25 21 20 16 15 11

UnusedRs2Rs1Rd

Destination Source 1

Opcode

Source 2Operation

Register-register instruction format with sub op-code

0

Sub op-code

Arithmetic operation
specified

ADD
SUB
MUL
DIV
etc.

Register-register-constant format

Very common requirement to be able to load or add a constant to a register.

– generally referred to immediate addressing because the constant is part

of the instruction and immediately follows the rest of the instruction. Term

literal is sometimes used to convey the idea of the value being literally

available.

Example

ADD R2,R3,16 ;R2 = R3 + 16

Constant held in instruction would be sign-extended to the number of bits

of the register.

 Barry Wilkinson 2000. All rights reserved. Page 32

31 26 25 21 20 16 15

Rs1Rd

Destination Source 1

Opcode

Source 2Operation

Register-constant instruction format (R-R-I format)

16-bit Constant

0

Loading large constant into a register

Single instruction cannot be used to load large constant into a register.

Either:
• Use memory location with a memory load

instruction. or

• Provide extra instructions to load parts of the register.

 Barry Wilkinson 2000. All rights reserved. Page 33

Early RISC processors with 32-bit register used extra instruction (a “load

upper” instruction) for loading 32-bit constant into 32-bit register.

Example

To load 12345678 (hexadecimal) into a 32-bit register R2:

LDU R2,1234 ;R2 = 1234

ADD R2,R2,5678 ;R2 = R2 + 5678

This sequence not be sufficient for 64-bit registers – unfortunate

connection between the instruction set and the size of registers.

Register-memory format

For loading registers from memory locations and storing registers in

memory locations.

One addressing mode, register indirect addressing with offset, provides an

addressing mode from which most other addressing can be created.

 Barry Wilkinson 2000. All rights reserved. Page 34

Register-memory format

Example:

LD R1,100[R2];Contents of memory location

;whose address is given by contents

;of R2 + 100 is copied in R1

ST 200[R8],R6;R6 is copied into memory location

;whose address is given by R8 + 200

Rd Rs1

Rs2 Rs1

31 26 25 21 20 16 15

Rs1Rd

Destination Address register

Opcode

Operation

Load/store instruction formats (using R-R-I format) - version 1

16-bit Offset

0

31 26 25 21 20 16 15

Rs1Rs2

Address register

Opcode

Operation

16-bit Offset

0

Source

(a) Load format

(b) Store format

Notice change order

 Barry Wilkinson 2000. All rights reserved. Page 35

31 26 25 21 20 16 15 11

Rs1

Address register

Address register

Opcode

Operation

Load/store instruction formats (using R-R-I format) - version 2

11-bit Offset

0

31 26 25 21 20 16 15 11

Rs2

Rd

Source

Opcode

Operation

11-bit Offset

0

Destination

(a) Load format

(b) Store format

Rs1 Unused

Unused

10

10

Control Flow

Instructions to alter execution sequence dependent upon computed value.

Needed to implement high level statements such as if, while, do-while, etc.

Compilers must translate statements such as:

if (x != y) && (z < 0) {
a = b + 5;
b = b + 1;

}

into machine instructions.

Unreasonable to try to provide a unique machine instruction for this IF

statement because of the vast number of possible IF statements.

Need to extract essential primitive operations for machine instructions.

 Barry Wilkinson 2000. All rights reserved. Page 36

Decompose into simple IF statements of the form:

if (x relation y) goto L1;

where relation is any of usual relations allowed in high level languages

(<, >, >=, <=, ==, !=), i.e.:

if (x != y) && (z < 0) {
a = b + 5;
b = b + 1;

}
into

if (x == y) goto L1;
if (z => 0) goto L1;
a = b + 5;
b = b + 1;

L1:

There is more than one way of creating above IF statement.

There is more than one way of implementing:

if (x relation y) goto L1;

as one or more machine instructions.

Here, we will start with the very common conditional code register

approach and then some alternatives which may be preferable for high

performance processors.

 Barry Wilkinson 2000. All rights reserved. Page 37

Conditional Code Register Approach

The most common is to decompose the IF statement into two machine

instructions:

• one instruction that tests the boolean condition “(x

relation y)” and

• a second instruction which performs the “goto L1” if

the relationship is true.

The result of test of the first instruction is stored in a so-called condition

code register (CCR) for the second intruction to read.

Example
The if statement:

if (x == y) goto L1;

could be implemented by a sequence of two instructions:

CMP R1,R2 ;Compare R1 & R2 (holding x & y)

BE L1 ;Conditional branch, goto L1 if zero

L1:

Z

Write
Read

Condition code register

Z = 1 if R1 - R2 = zero otherwise Z = 0

Subtract R2 from R1
and load CCR
(SUB could be used but this
would overwrite one operand
if 2-address instruction.)

Mnemonic BZ (branch if zero) also used

 Barry Wilkinson 2000. All rights reserved. Page 38

Conditional Code Register Flags

To cope with every possible Boolean condition, i.e. <, ≤, =, > , ≥, need more

than one flag in CCR, zero (Z), and negative (S for sign) necessary for

basic conditions, and one conditional branch instruction for each

condition:

Other flags in CCR that usally exist include carry (C), and overflow (O)

Conditional Branch Instructions

Mnemonic Condition C notation Flags checked*

BL Branch if less than < S

BG Branch if greater than > S + Z

BGE Branch if greater or equal to>= S

BLE Branch if less or equal to <= S + Z

BE Branch if equal == Z

BNE Branch if not equa1 != Z

* assuming 2’s complement representation and not taking into account any

overflow conditions. Separate conditional branch instructions necessary

for unsigned numbers.

 Barry Wilkinson 2000. All rights reserved. Page 39

Specifying Target Location (L1)
PC-Relative Addressing

Mostly, condition branch instructions are used to implement small changes

in sequences or program loops of relatively short length.

PC-Relative Addressing - the number of locations from the address of the

present (or next) instruction is held in the instruction as an offset.

Offset is added to the program counter to obtain the effective address.

Also good programming practice to limit sequence changes to a short

distance from the current location to avoid difficult to read code.

Helps make code relocatable. (i.e. code can be loaded anywhere in

memory without having to change the branch and other addresses.)

Branch op-code Offset

We have decomposed the IF statement:

if (x relation y) goto L1

into two sequential actions:

compare: (x - y);Set condition codes S,O,C,Z, etc.

branch: if (certain condition codes set) goto L1

 Barry Wilkinson 2000. All rights reserved. Page 40

The problem with CCR approach

• Requires the first action (compare) to be

perfomed completely before the second

action (branch) can be started.

• The two instruction must be performed

sequentially and generally be next to each

other.

• Hence, limits the processor from executing

instructions simultaneously or not in program

order (which can improve performance).

Avoiding use of condition code register

Combined test and branch instruction

An alternative which both avoids the use of a condition code register and

eliminates the necessity of a sequence of two sequential instructions is to

combine the two instructions into one conditional branch instruction.

These instruction compares the contents of two registers, and branches

upon a specified condition:

 Barry Wilkinson 2000. All rights reserved. Page 41

Combined test and branch instructions

BEQ R1,R2,L1 ;Branch to L1 if R1 = R2

BNE R1,R2,L1 ;Branch to L1 if R1 ≠ R2

BL R1,R2,L1 ;Branch to L1 if R1 < R2

BLE R1,R2,L1 ;Branch to L1 if R1 ≤ R2

BG R1,R2,L1 ;Branch to L1 if R1 > R2

BGE R1,R2,L1 ;Branch to L1 if R1 ≥ R2

A separate instruction is needed for each condition (as in the CCR

approach).

Strictly not all are necessary (Which ones form a sufficient subset?)

Combined Test and Branch Instruction Format

31 26 25 21 20 16 15

Rs1Rs2

Source 2 Source 1

Opcode

Operation

Combined test and branch instruction format (using R-R-I format)

16-bit Offset

0

 Barry Wilkinson 2000. All rights reserved. Page 42

Problems with this approach:

• Complex instruction!

• Limited space for offset to L1

Testing for zero

Testing for zero is a very common operation in programs. Could provide a
“branch if zero” and “branch if not zero”, instructions specifically, i.e.:

BEQZ R3,L1 ;Branch to L1 if R3 = 0

BEQNZ R3,L1 ;Branch to L1 if R3 ≠ 0

though in our case it is easy to accomplish with R0, i.e.:

BEQ R3,R0,L1 ;Branch to L1 if R3 = 0

BNE R3,R0,L1 ;Branch to L1 if R3 ≠ 0

Advantage of having special instructions for testing for zero is there is
more space in the instruction to specify L1 as a bigger offset. Also a very
fast circuit could be used to test for zero.

 Barry Wilkinson 2000. All rights reserved. Page 43

In many high level statement situations what at first sight appears to
require a more complex test can be reduced to test for zero.

For example, the C loop:

for(i = 0; i < 10; i++) b[i] = a[i];

can be reduced to

for(i = 0; i != 10; i++) b[i] = a[i];

which requires a test for (i - 10) == 0.

Code sequence could even be re-arranged to:

for(i = 9; i != 0; i--) b[i] = a[i];
b[i] = a[i];

Using general-purpose register to hold condition codes

Instruction performs a compare operation, creating condition code values

loaded into a general-purpose register specified in instruction. Subsequent

branch instruction inspects register loaded with condition codes.

Allows us to separate the two instructions in the program more easily.

 Barry Wilkinson 2000. All rights reserved. Page 44

Example

The “set on less” instruction found on the MIPS RISC processor.

The “set on less” instruction sets the destination register to 1 if one source
register is less than the other source register.

Then a “branch on not equal or not zero” can be used for the relationship
“less than”, i.e.:

STL R3,R2,R1 ;R3 = 1 if R2 < R1

BNE R3,R0,L1 ;Branch to L1 if R3 ≠ 0, if R2 < R1

Jump instructions

The jump instruction causes an unconditional change of execution

sequence to a new location.

Necessary to implement more complicated IF constructs, FOR, and

WHILE loops.

Using J as the opcode mnemonic, the jump instruction is:

J L1 ;jump to L1

As with branch instructions, PC-relative addressing is used.

No registers need be specified.

 Barry Wilkinson 2000. All rights reserved. Page 45

31 26 25

Opcode

Operation

Jump instruction format (I format)

26-bit Offset

0

Jump Instruction with register-indirect addressing

An “address register” specified in the instruction holding the address of the

location holding the next instruction to be executed. Used, for example, to

implement SWITCH/CASE statements in a high level language. May also

be necessary for procedure return operations (see later).

J [R1] ;jump to location whose address is in R1

or even:

J 100[R1];jump to location whose address is in
;R1 plus 100.

Now target address is specified as an absolute address, rather than as a

relative address.

 Barry Wilkinson 2000. All rights reserved. Page 46

31 26 25 21 20 16 15

Rs1Unused

Address register

Opcode

Operation

Jump instruction format with register indirect addressing

16-bit Offset

0

Procedure calls

Essential ingredient of high level language programs – the facility to

execute procedures, code sequences, that are needed repeatedly through a

main program, rather than duplicate the code.

 Barry Wilkinson 2000. All rights reserved. Page 47

Two basic issues to resolve in implementing procedures:

• A mechanism must be in place to be able to
jump to procedure from various locations in
calling program (or procedure), and to be
able to return from called procedure to the
right place in calling program (or procedure).

• A mechanism must be in place to handle
passing parameters to the procedure, and to
return results (if a function).

Also usually when a procedure is called, registers being used by the calling
procedure must be saved, so that they can be reused by the called
procedure.

Methods to implement Procedures

CALL/RET instructions

Special machine instructions for both procedural call and procedural return

in the complex instruction set tradition, often called CALL and RET:.

CALL – simply an unconditional jump to the start of procedure, with the
added feature that the return address (the address of the next instruction
after the call) is retained somewhere.

RET – to return to the main program after execution of procedure - simply
an unconditional jump to the location having the address given by the
return address.

 Barry Wilkinson 2000. All rights reserved. Page 48

CALL Prog1

RET

Main program
Procedure Proc1

Next instruction

CALL Prog1
Next instruction

Procedure calls using CALL and RET instruction

Second call
to procedure

Stacks

Most common method of holding return addresses – last-in-first-out queue

(LIFO), stack, Can be implemented in main memory or using registers

within the processor. Historically, main memory stacks have been used

because they allow almost limitless nesting and recursion of procedures.

A register called a stack pointer is provided inside processor to hold the

address of the “top” of the stack (the end of the stack where items are

loaded are retrieved).

 Barry Wilkinson 2000. All rights reserved. Page 49

Stack pointerStack
100
101
102
103
104

100

As items are placed on the stack, the stack grows, and as items are

removed from the stack, the stack contracts. Although not shown in figures

here, normally memory stacks are made to grow downwards, i.e., items are

added to locations with decreasing addresses. Why?

as item added

CALL Prog1

RETURN

Main program
Procedure Proc1

Next instruction

CALL Prog1
Next instruction

Second call
to procedure

Return Address

Stack pointerStack

After second call

 Barry Wilkinson 2000. All rights reserved. Page 50

Nested Procedure Calls
Stack provides storage for each return address for nested/recursive calls.

CALL Prog1

RET

Main program
Procedure

Next instruction

Return Address

Stack pointerStack

After third call

RET

Procedure

RET

Procedure

CALL Prog2

CALL Prog3

Return Address

Return Address

Proc1 Proc2 Proc3

Suppose 32-bit addresses are stored on the stack. Then 4 bytes would be

needed for each address, and the stack pointer would be decremented by

four each time an address is added to the stack, and incremented by four as

addresses are removed from the stack.

Part of CALL instruction is to decrement the stack pointer by 4.

Part of RET instruction is to increment stack pointer by 4.

 Barry Wilkinson 2000. All rights reserved. Page 51

Passing parameters using a stack

Stack can be used to hold parameters passed to called procedure and
passed back from called procedure. Processors which use CALL and RET
instructions also usually provide instructions for passing items on the
stack, and for taking items off the stack, called PUSH and POP
instructions.

• PUSH – PUSH instruction decrements the
stack pointer before (or after) an item is
copied onto the stack.

• POP – POP increments the stack pointer after
(or before) an item is copied from the stack.

Before the call and return address is pushed onto the stack, parameters are
pushed onto the stack. Then within the procedure, the parameters are
“popped” off the stack.

Saving registers

The stack can be used to save the contents of registers prior to the call (or

immediately after the call inside the procedure).

Upon return (or immediately before) the registers can be restored from the

contents of the stack.

Saving/restoring registers is probably best done inside called procedure.

 Barry Wilkinson 2000. All rights reserved. Page 52

Stack Frame

Convenient to specify the group of locations on the stack which contains

all the parameters, results, and return address relating to one procedure as a

stack frame and have another pointer (frame pointer) to point to the current

stack frame.

Using Registers

Results could be returned faster using registers.

A stack is really only needed for nested or recursive procedures.

The stack frame of a procedure that does not call another procedure (or

itself) could easily be held in processor registers

 Barry Wilkinson 2000. All rights reserved. Page 53

Co-routines, those routines that call each other alternately, also do not need

to use a stack for the return address. A single register can be used to hold

the return address. The DEC Alpha processor has a specific instruction for

handling co-routines.

Allocated registers – Some processor designs allocate certain registers for

local use within a procedure and others as global registers available

throughout the program. Compilers and programmers are intended to

comply with these allocations.

Register window

The Berkeley RISC project introduced concept of providing internal

registers called the register window to simplify and increase speed of

passing parameters and to provide local registers for each procedure.

Idea adopted in SUN Sparc processor (which have followed Berkeley

design).

 Barry Wilkinson 2000. All rights reserved. Page 54

RISC register window

Registers for
procedure 1

Registers available
to all procedures

Register file

Registers for
procedure 4

Registers for
procedure 3

Registers for
procedure 2

Current window
pointer

RISC II register window

0:10
0:15

0:26

0:31

Window 0

1:10
1:15

1:26

1:31

2:10

2:15

2:26

2:31 Window 2

7:317:26
7:15

7:10

6:31

6:26

6:15

6:10

Window 6

Window 7

Window 1

x:0

x:9

Global
registers

Current window
pointer, CWP

 Barry Wilkinson 2000. All rights reserved. Page 55

Jump and Link Instruction

“jump and link”, JAL, will jump to the location whose address is specified

in the instruction and will store the return address in R31.

Return simply unconditional jump to location whose address given in R31.

For nesting, R31 will be stored in a memory stack, using another register

as a stack pointer, R29.

Jump and Link Code

The code required would look like:

SUB R29,R29,4 ;Decrement stack pointer (4 bytes)

ST [R29],R31 ;Store last return address on stack

JAL Proc_label ;jump to proc_label, and store

;return address in R31

LD R31,0[R29] ;After return from call, restore

;previous return address in R31

ADD R29,R29,4 ;Increment stack pointer

 Barry Wilkinson 2000. All rights reserved. Page 56

To return at the end of the procedure we simply have:

J [R31] ;jump to location whose address is in
;R31

To store parameters as well on the stack before the call, we would have:

SUB R29,R29,4

ST [R29],R31

SUB R29,R29,4

ST [R29],parameter1

SUB R29,R29,4

ST [R29],parameter2

JAL Proc_label

 Barry Wilkinson 2000. All rights reserved. Page 57

Pipelined Processor Design

A basic techniques to improve the performance - pipeline technique,

always applied in high performance systems. Adapted in RISCs and all

processors.

The operation of the processor can be divided into a number of steps, e.g.:

1. Fetch instruction.
2. Fetch operands.
3. Execute operation.
4. Store results

or more steps.

Space-Time Diagram

Unit 2 Unit 3 Unit 4 Unit 5Unit 1 Unit 6 Unit 7
OutputInput

Unit 1

Unit 7

Unit 6

Unit 5

Unit 4

Unit 3

Unit 2

T1
1

T1
6 T2

6

T1
4

T3
5T2

5T1
5

T2
4 T3

4 T4
4

T1
7 T2

7 T3
7 T4

7 T5
7 T6

7 T7
7

T6
3 T7

3 T8
3 T9

3 T10
3 T11

3

T5
4 T6

4 T7
4 T8

4 T9
4 T10

4

T7
2 T8

2 T9
2 T10

2 T11
2 T12

2

T8
1 T9

1 T10
1 T11

1 T12
1 T13

1

T3
6 T4

6 T5
6 T6

6 T7
6 T8

6

T4
5 T5

5 T6
5 T7

5 T8
5 T9

5

T4
1

T1
3

T1
2

T3
1

T2
3

T3
2T2

2

T4
3T3

3

T5
2T4

2

T5
1 T6

1 T7
1

T5
3

T6
2

T2
1

Processing first task

Time

(a) Units

(b) Space-Time diagram

 Barry Wilkinson 2000. All rights reserved. Page 58

Pipeline data transfer

Two methods of implementing the information transfer in a pipeline:

1. Asynchronous method.

2. Synchronous method.

Task

1st
unit

n th
unit

3rd
unit

2nd
unit

Ready signal Acknowledge signal

(a) Asynchronous method

Final
result

Partial results
and parameters

 Barry Wilkinson 2000. All rights reserved. Page 59

Task

1st
unit

n th
unit

3rd
unit

2nd
unit

(b) Synchronous method

Final
result

Clock

Synchronous method - Pipeline Staging Latches

Usually, pipelines are designed using latches (registers) between units

(stages) to hold the information being transferred from one stage to the

next. This transfer occurs in synchronism with a clock signal:

Latch Stage Stage StageLatch Latch

Clock

Latch

Data

 Barry Wilkinson 2000. All rights reserved. Page 60

Replicated units

Units

0

1

2

n − 1

n results collected

Each unit performs
a task in n cycles

n cycles later
n tasks applied
simultaneously

An alternative to pipelining - using multiple units each doing the complete
task. Units could be designed to operate faster than the pipelined version,
but the system would cost much more.

Speed-Up

Speed-up available in a pipeline can be given by:

The potential maximum speed-up is n, though this would only be achieved

for an infinite stream of tasks and no hold-ups in the pipeline.

Speed-up
T1
Tn
------ sn

n s 1–()+
-------------------------= =

 Barry Wilkinson 2000. All rights reserved. Page 61

Efficiency

Efficiency is given by:

where ti is time unit i operates.

Efficiency

ti
i 1=

n

∑
n overall operating time()×
---=

s
n s 1–()+
-------------------------=

Speed-up
n

----------------------=

Two stage overlap

(a) Stages

(b) Timing with equal stage times

(c) Timing with unequal stage times

Unit A Unit B

Unit A

Unit A

Unit B

Unit B

Free

Time

Time

 Barry Wilkinson 2000. All rights reserved. Page 62

Overall processing time given by:

where T(Ai) = time of ith operation in A, and T(Bi) = time of ith operation

in B.

Processing time
i 1=

n 1–

∑= Max(T(Ai), T(Bi−1))

EX

IF

IF = Fetch unit
EX = Execute unit

Fetch 1st

Execute 1st

instruction

instruction

Fetch 4th
instruction

Fetch 2nd
instruction

Fetch 3rd
instruction

Execute 2nd
instruction

Execute 3rd
instruction

Two Stage Fetch /Execute Pipeline

Time

Instructions

Fetch
unit

Execute
unit

(a) Fetch/execute stages

(b) Space-time diagram with ideal overlap

 Barry Wilkinson 2000. All rights reserved. Page 63

A Two-Stage Pipeline Design

Fetch unit Execute unit

Memory

PC

Instruction

Address

MDR

MAR

+4

IR

ALU

Registers
Control

Latch

Fetch/decode/execute pipeline

Instructions

Fetch
unit

Execute
unit

(a) Fetch/decode/execute stages

Decode
unit

Execute

Fetch

(b) Ideal overlap Time

Fetch 1st
instruction

Fetch 2nd

Decode 1st
instruction

Decode 3rd Decode 4th
instruction

Execute 1st
instruction

Execute 2nd
instruction

Execute 3rd

Fetch 3rd Fetch 4th
instructions

Fetch 5th

Decode 2nd
instructionDecode

instruction instruction instruction

instruction

instruction

 Barry Wilkinson 2000. All rights reserved. Page 64

Instruction
fetch unit

Operand Execute Operand
fetch unit store unit

Four-Stage Pipeline

unit

Instruction

Instruction 1 Instruction 2 Instruction 3 Instruction 4 Instruction 5

Instruction 1

Instruction 1

Instruction 1

Instruction 2

Instruction 2

Instruction 2

Instruction 3

Instruction 3 Instruction 4

IF = Instruction fetch unit
OF= Operand fetch unit
EX= Execute unit
OS= Operand store unit

Four-Stage Pipeline Space-Time Diagram

IF

OF

EX

OS

Time

 Barry Wilkinson 2000. All rights reserved. Page 65

IF = Instruction fetch unit
OF= Operand fetch unit
EX = Execute unit
OS = Operand store unit

Four-stage Pipeline “Instruction-Time Diagram”

An alternative diagram:

IF OF EX OS

Time

1st

2nd

3rd

4th IF OF

EX OSIF OF

IF OF EX

Instruction

Information Transfer in Four-Stage Pipeline

Register-Register Instructions

ADD R1, R2, R3

ADD

R3

R2

R1

R3

ADD

R3

V2

V1

ResultPC

IF OF EX OS

R1 Values

Register file

R3,result

Clock

Instruction

Address

Memory

ALU

Latch R2

Instruction

 Barry Wilkinson 2000. All rights reserved. Page 66

Instruction fetch Operand fetch Execute Operand write

Instruction Data memory
(registers/cache)

ALU

Data memory
(registers/data cache)memory

MAR MDR IR

Alternative way of depicting pipeline showing data register twice

 Four-Stage Pipeline

Branch Instructions

Bcond R1, R2, L1

Bx

R1

R2

L1

Bx

V1

V2

L1

ResultPC

IF OF EX/BR OS

R1 Values

Register file

True/False, L1

Clock

Instruction

Address

Memory

ALU

R2

L1+

Test

This stage not used

 Barry Wilkinson 2000. All rights reserved. Page 67

Simpler Branch Instruction

BZ R1, L1

BZ

R1

L1

BZ

V1

L1

ResultPC

IF OF EX/BR OS

R1 Value

Register file

True/False, L1

Clock

Instruction

Address

Memory

L1
+

Test

Load and Store Instructions

Need at least one extra stage to handle memory accesses. Early RISC
processor arrangement was to place memory stage (MEM) between EX
and OS as below

LD R1, 100[R2]

LD

R1

R2

100

R1

LD

R1

V2

100

AddrPC

IF OF EX

MEMValue

Register file

R1,value

Clock

Instruction

Address

Instruction

ALU

R2

R1

Value

OS

LD

Data memory

memory

DataAddress

Compute effective address

+

 Barry Wilkinson 2000. All rights reserved. Page 68

ST 100[R2], R1

ST

R1

R2

100

V1

ST

V1

V2

100

AddrPC

IF OF EX

MEMValue

Register file

Clock

Instruction

Address

Instruction

ALU

R2

OS

ST

Data memory

memory

DataAddress

Compute effective address

+

This stage not used

Note: Convenient to have separate instruction and data memories
connecting to processor pipeline - usually separate cache memories, see
later.

Instructions

(a) Units

(b) Instruction usage

Fetch
instruction

Fetch
operands Access

Memory

Store
results

from registers in register
Execute

(Compute)

Load

Store

Arithmetic

Branch

Usage of Stages

 Barry Wilkinson 2000. All rights reserved. Page 69

More Pipeline Stages

Example

Seven-stage instruction pipeline with two stages for accessing memory

IF1 IF2 OF EX MEM1 MEM2 OS

Instruction Pipeline Hazards

Major causes for breakdown or hesitation of an instruction pipeline:

1. Resource conflicts.

2. Procedural dependencies (caused notably by branch instructions).

3. Data dependencies between instructions

All are caused by having more than one instruction being executed in the

pipeline at any instant.

 Barry Wilkinson 2000. All rights reserved. Page 70

Resource conflicts

Occur when a resource such as memory or a functional unit is required by

more than one instruction at the same time.

Solutions

Resource conflicts can always be resolved by duplicating the resource, for

example having two memory module ports or two functional units.

For main memory/cache memory conflicts

• Have only load and store instructions

accessing memory - then a single pipeline

unit to access data memory ok.

• Separate pipeline units for reading/writing

data and for instruction fetch.

 Barry Wilkinson 2000. All rights reserved. Page 71

Early solution

Fetch two instructions and then execute them sequentially.

Fetch/execute overlap

Two

Fetch
unit

(a) Fetch/execute stages

Fetch

(b) Fetching two instructions simultaneously
Time

Execute
unit

Fetch 1st/2nd
instructions Free

Execute 1st
instruction Free

Execute 3rd
instruction

Free
Fetch 3rd/4th
instructions Free

Execute 2nd
instructionDecode

Instructions

Procedural dependencies and branch instructions

Effect of conditional branch instruction in a pipeline

Start-up
Conditional

branch
instruction

Abandon
instructions

Stages

Target computed

Next
instruction

 Barry Wilkinson 2000. All rights reserved. Page 72

Typically, 10–20 per cent of instructions in a program are branch

instructions.

Example of effect

• Five-stage pipeline
• 10 ns steps
• Instruction which subsequently cleared the

pipeline at the end of its execution occurred
every ten instructions

Average instruction processing of ten instructions:

i.e. a 40 per cent increase in instruction processing time.

9 10 ns 1 50 ns×+×
10

--- 14 ns=

Conditional branch instructions used in programs for:

1. Creating repetitive loops of instructions, terminating the loop when
a specific condition occurs (loop counter = 0 or arithmetic
computational result occurs).

2. To exit a loop if an error condition or other exceptional condition
occurs.

Branch usually occurs in 1 when the terminating test is done at the end of

the loop (as in DO–WHILE or REPEAT–UNTIL statements)

Does not usually occur in 2 or when the terminating test is done at the

beginning of a loop (as in FOR and WHILE statements).

 Barry Wilkinson 2000. All rights reserved. Page 73

To implement the FOR loop FOR (i=0;i<=100;i++) loop body,

we might have:

SUB R4,R4,R4
ADD R5,R0,100

L2: BL R5,R4,L1 ;Exit if i > 100
.

Loop body
.

ADD R4,R4,1
J L2

L1:

where i is held in R4. R5 is used to hold the terminating value of i.

To implement the WHILE loop WHILE (i==j) loop body, we might

have:

L2: BNE R4,R5,L1
.

Loop body
.

J L2
L1:

where i is held in R4 and j is held in R5.

 Barry Wilkinson 2000. All rights reserved. Page 74

To implement the DO loop body WHILE (i==j), we might have:

L2: .
Loop body

 .
BEQ R4,R5,L2

Simple change from WHILE to DO–WHILE would change the type of

branch instruction.

Strategies to reduce number of times pipeline breaks
down due to conditional branch instructions

1. Instruction buffers to fetch both possible instructions.

2. Delayed branch instructions.

3. Dynamic prediction logic to fetch the most likely next instruction

after a branch instruction.

4. Static prediction.

 Barry Wilkinson 2000. All rights reserved. Page 75

Instruction buffers

Memory

Fetch
unit

Buffer for
sequential
instructions

Buffer for target
(non-sequential)

instructions

Remainder of
instruction pipeline

BrU

Replicating first stages of pipeline

IF OF EX

OS

MEM
IF OF EX

Fetch sequential

Fetch from

instructions

target location

Register file

 Barry Wilkinson 2000. All rights reserved. Page 76

Delayed branch instructions

Execute

Fetch
Branch

instruction
Next

instruction

Execute
next inst.

Branch if
selected

(a) Two-stage pipeline Time

Compute
address

Fetch

Other
stages

Branch
instruction

Branch if
selected

(b) n-stage pipeline

Next instructions

Time

Branch
outcome
is known

Compute
address

 Barry Wilkinson 2000. All rights reserved. Page 77

Example

ADD R3,R4,R5
SUB R2,R2,1
BEQ R2,R0,L1

.
L1: .

.

Move the add instruction to after the branch, i.e.:

SUB R2,R2,1
BEQD R2,R0,L1
ADD R3,R4,R5

.
L1: .

.

With all branches automatically delayed, use a NOP instruction whenever

an instruction could not be found to place after the branch, i.e.:

SUB R2,R2,1
BEQ R2,R0,L1
NOP

.

.
L1: .

.

A compiler can easily insert these NOPs.

 Barry Wilkinson 2000. All rights reserved. Page 78

Prediction logic

Various methods of predicting the next address, mainly based upon

expected repetitive usage of the branch instruction.

Usual form of prediction look-up table is a branch history table, also

called more accurately a branch target buffer -similar to a cache.

Instruction pipeline with branch history table (prediction logic not shown –
sequential instructions taken until correct target address loaded)

Address

Instruction

Fully associative look-up table
Instruction
address

Target
address

Valid
bit

Load actual target
address

Program
counter

Fetch
unit

Search
table

Instruction pipeline

 Barry Wilkinson 2000. All rights reserved. Page 79

One-bit prediction

One-bit prediction, we always get a misprediction when a branch

instruction implementing the loop is last encountered as we then fall

through the loop rather than repeat the body.

However, usually we encounter the complete loop again, i.e. the program

comes back to re-execute the loop.

In that case, we get another misprediction if the prediction is updated from

the last misprediction.

Hence, given a loop with n repetitions, 2 will be mispredicted and n − 2

will be predicted correctly with a single bit predictor.

Two-bit prediction

One two-bit prediction algorithm is based upon the history of previous
actions of a branch instruction as shown below.

History refers to the last two actions of a specific branch instruction.
Only in one case is the prediction not to take the branch, and that is when
the previous two times the branch instruction was executed, the branch was
not taken; instead execution continued sequentially.

Two-bit prediction

History of branch actions Prediction

Branch taken Branch taken Take branch

Branch not taken Branch taken Take branch

Branch taken Branch not taken Take branch

Branch not taken Branch not taken Not take branch

 Barry Wilkinson 2000. All rights reserved. Page 80

History = TT
Predict: Take

History = NT
Predict: Take

History = NN
Predict:

History = TN
Predict: Take

Not take

Taken Not Taken
Not TakenTaken

Taken

Taken
Not Taken

Not Taken

Two-bit predictor based upon history of branches

Actual result of branch

T = taken
N = not taken

Based upon the history of the branch predictions, that is, the prediction is

only changed after two mispredictions, as described below.

Alternative two-bit prediction

History of predictions Prediction

Prediction correct Prediction correct Keep prediction

Prediction not correct Prediction correct Keep prediction

Prediction correct Prediction not correct Keep prediction

Prediction not correct Prediction not correct Change prediction

 Barry Wilkinson 2000. All rights reserved. Page 81

Predict: Take Predict: Take
Predict:
Not take

Taken Not Taken

Not Taken

Taken

Taken

TakenNot Taken

Not Taken

Two-bit predictor based upon history of predictions

Actual result of branch

T = taken
N = not taken

Predict:
Not take

Two-bit predictor using saturating counter

Every not taken branch causes a move to a state to the right, saturating in

the rightmost state, while every taken branch causes a move to the left,

saturating in the leftmost state.

The two left states cause a prediction to take the branch while the two right

states cause a prediction not to take the branch. (This counter could be

extended to more bits, or different predictors could be used.)

 Barry Wilkinson 2000. All rights reserved. Page 82

Predict: Take Predict: Take
Predict:
Not take

Taken

Not TakenNot Taken

Taken

Taken Taken

Not Taken

Not Taken

Two-bit saturation counter predictor

Actual result of branch

T = taken
N = not taken

Predict:
Not take

Correlation Predictors (two-level predictors)

The actions of branch instructions will often depend upon the actions of

previous branch instructions, not necessarily the same branch instructions.

In correlation predictors, the history of branch instruction generally is

recorded.

 Barry Wilkinson 2000. All rights reserved. Page 83

Branch history register

Branch pattern table

0 1

1

1

0

1

shift

Last
branch
result
(0 = not taken
1 = taken)

2-bit predictor shown

Prediction based upon entry
and predictor algorithm

Two-level (adaptive) predictor

Static prediction

Static prediction makes the prediction before execution.

A very simple hardware prediction – always chooses one way (either

always taken, or always not taken).

“Predict never taken” is done in the Motorola 68020 - essentially no

prediction.

 Barry Wilkinson 2000. All rights reserved. Page 84

Compiler Prediction

Passed to processor by selection of branch instruction

Have a conditional branch instruction which has additional fields to

indicate the likely outcome of the branch. Single bit could be provided in

the instruction which is a 1 for the fetch unit to select the target address (as

soon as it can), and a 0 for the fetch unit to select the next instruction.

31 26 25 21 20 16 15

Rs1Rd

Destination Source 1

Opcode

Source 2Operation

Branch instruction format with a prediction bit

16-bit Offset

0

Prediction bit
1 to select target
0 to select program counter

 Barry Wilkinson 2000. All rights reserved. Page 85

Data dependencies

Describes the normal situation that the data that instructions use depend

upon the data created by other instructions.

Three types of data dependency between instructions,

• true data dependency

• antidependency

• output dependency.

True data dependency

Occurs when value produced by an instruction is required by a subsequent

instruction. Also known as flow dependencies because dependency is due

to flow of data in program and also called read-after-write hazards because

reading a value after writing to it.

Example

1. ADD R3,R2,R1 ;R3 = R2 + R1
2. SUB R4,R3,1 ;R4 = R3 - 1

“data” dependency between instruction 1 and 2.

In general, they are the most troublesome to resolve in hardware.

 Barry Wilkinson 2000. All rights reserved. Page 86

True data dependency in a four-stage pipeline.

Fetch
unit

Execute
unit

(a) Stages

(b) True data dependency

Operand
fetch

Instructions

Operand
store

Instructions

IF OF OS

IF OF EX OS

IF OF EX OS

Read

ADD R3,R2,R1

SUB R4,R3,1

WriteRead

EX

R1, R2 R3 R3
Read-after-write hazard

Antidependency

Occurs when an instruction writes to a location which has been read by a

previous instruction.

Also called an antidependency (and a write-after-read hazard).

Example

1. ADD R3,R2,R1 ;R3 = R2 + R1
2. SUB R2,R3,1 ;R2 = R3 - 1

Instruction 2 must not produce its result in R2 before instruction 1 reads

R2, otherwise instruction 1 would use the value produced by instruction 2

rather than the previous value of R2.

 Barry Wilkinson 2000. All rights reserved. Page 87

Antidependencies in a single pipeline

In most pipelines, reading occurs in a stage before writing and an

antidependency would not be a problem. Becomes a problem if the

pipeline structure is such that writing can occur before reading in the

pipeline, or the instructions are not processed in program order - see later.

Output dependency

Occurs when a location is written to by two instructions. Also called write-

after-write hazard.

Example

1. ADD R3,R2,R1 ;R3 = R2 + R1
2. SUB R2,R3,1 ;R2 = R3 - 1
3. ADD R3,R2,R5 ;R3 = R2 + R5

Instruction 1 must produce its result in R3 before instruction 3 produces its

result in R3 otherwise instruction 2 might use the wrong value of R2.

 Barry Wilkinson 2000. All rights reserved. Page 88

Output dependencies in a single pipelne

Again the dependency would not be significant if all instructions write at

the same time in the pipeline and instructions are processed in program

order. Output dependencies are a form of resource conflict, because the

register in question, R3, is accessed by two instructions. The register is

being reused. Consequently, the use of another register in the instruction

would eliminate the potential problem.

Detecting hazards

Can be detected by considering read and write operations on specific
locations accessible by the instructions. In terms of two operations, read
and write, operating upon a single location:

• A read-after-write hazard exists if read operation occurs before
previous write operation has been completed, and hence read
operation would obtain incorrect value (a value not yet updated).

• A write-after-read hazard exists when write operation occurs
before previous read operation has had time to complete, and again
the read operation would obtain an incorrect value (a prematurely
updated value).

• A write-after-write hazard exists if there are two write operations
upon a location such that the second write operation in the pipeline
completes before the first.

Read-after-read hazards, in which read operations occur out of order, do
not normally cause incorrect results.

 Barry Wilkinson 2000. All rights reserved. Page 89

Read/write hazards

1st instruction

2nd instruction

Write

1st instruction

2nd instruction

1st instruction

2nd instruction

Write

Write

Write

Read

Read

(c) Write-after-write

(a) Read-after-write

(b) Write-after-read

Pipeline
stages

Matematical Conditions for Hazard
(Berstein’s Conditions)

A potential hazard exists between instruction i and instruction j when at

least one of the following conditions fails:

For read-after-write O(i) ∩ I(j) = φ

For write-after-read I(i) ∩ O(j) = φ

For write-after-write O(i) ∩ O(j) = φ

O(i) indicates the set of (output) locations altered by instruction i; I(i)

indicates the set of (input) locations read by instruction i, and φ indicates

an empty set.

 Barry Wilkinson 2000. All rights reserved. Page 90

Example

Suppose we have code sequence:

1. ADD R3,R2,R1 ;R3 = R2 + R1
2. SUB R5,R1,1 ;R5 = R1 - 1

entering the pipeline. Using these conditions, we get:

O(1) = (R3), O(2) = (R5)
I(1) = (R1,R2)
I(2) = (R1).

The conditions: (R3) ∩ (R1) = φ, (R2,R1) ∩ (R5) = φ, (R3) ∩ (R5) = φ,

are satisfied and there are no hazards

Berstein’s Conditions can be extended to cover more than two

instructions. Number of hazard conditions to be checked becomes quite

large for a long pipeline having many partially completed instructions.

Satisfying conditions are sufficient but not necessary in mathematical

sense. May be that in a particular pipeline a hazard does not cause a

problem.

 Barry Wilkinson 2000. All rights reserved. Page 91

Pipeline interlocks

A relatively simple method of maintaining a proper sequence of read/write
operations is to associate a 1-bit tag with each operand register.

This tag indicates whether a valid result exists in the register, say 0 for not
valid and 1 for valid.

A fetched instruction which will write to the register examines the tag and
if the tag is 1, it sets the tag to 0 to show that the value will be changed.

When the instruction has produced the value, it loads the register and sets
the tag bit to 1, letting other instructions have access to the register.

Any instruction fetched before the operand tags have been set has to wait.

Register read/write hazard detection using valid bits (IF, instruction fetch;
RD, read operand; EX, execute phase; WR write operand)

IF RD EX WR

IF RD EX WR

IF RD EX WR

1st instruction
(register write)

2nd instruction
(register read)

3rd instruction
(register read)

General purpose
register file Valid bits

Reset
valid

bit

Read valid bit and
operand if bit set

 Barry Wilkinson 2000. All rights reserved. Page 92

Example

Suppose the instruction sequence is:

1. ADD R3,R4,4
2. SUB R5,R3,8
3. SUB R6,R3,12

There is a read-after write dependency between instruction 1 and
instruction 2 (R3) and a read-after-write dependency between instruction 1
and instruction 3 (again R3).

In this case, sufficient to reset the valid bit of the R3 register to be altered
during stage 2 of instruction 1 in preparation for setting it in stage 4.

Both instructions 2 and 3 must examine the valid bit of their source
registers prior to reading the contents of the registers, and will hesitate if
they cannot proceed.

Caution

The valid bit approach has the potential of detecting all hazards, but write-

after-write (output) hazards need special care.

 Barry Wilkinson 2000. All rights reserved. Page 93

Example
Suppose the sequence is:

1. ADD R3,R4,R1
2. SUB R3,R4,R2
3. SUB R5,R3,R2

(very unlikely sequence, but poor compiler might create such redundant
code).

Write-after-write dependency between instruction 1 and instruction 2.
Instruction 1 will reset valid bit of R3 in preparation to altering its value,
and move through the pipeline. Instruction 2 immediately behind it would
also reset valid bit of R3 because it too will alter its value, but will find the
valid bit already reset. If instruction 2 were to be allowed to continue,
instruction 3 immediately behind instruction 2 would only wait for the
valid bit to be set, which would first occur when instruction 1 writes to R3.
Instruction 3 would get value generated by instruction 1, rather than value
generated by instruction 2 as called for in the program sequence.

Correct algorithm for setting valid bit

WHILE destination register valid bit = 0 wait.

Set destination register valid bit to 0 and proceed.

 Barry Wilkinson 2000. All rights reserved. Page 94

Forwarding

Refers to technique of passing result of one instruction directly to another

instruction to eliminate the use of intermediate storage locations.

Can be applied at compiler level to eliminate unnecessary references to

memory locations by forwarding values through registers rather than

through memory locations. Would generally increase speed, as accesses to

processor registers are normally faster than accesses to memory locations.

Forwarding can also be applied at the hardware level to eliminate pipeline

cycles for reading registers that were updated in a previous pipeline stage.

In that case, eliminates register accesses by using faster data paths.

Internal forwarding

Internal forwarding is hardware forwarding implemented by processor
registers or data paths not visible to the programmer.

Example

ADD R3,R2,R0
SUB R4,R3,8

Subtract instruction requires contents of R3, which is generated by the add
instruction. The instruction will be stalled in the operand fetch unit waiting
for the value of R3 to be come valid.

Internal forwarding forwards the value being stored in R3 by the operand
store unit directly to the execute unit.

 Barry Wilkinson 2000. All rights reserved. Page 95

Internal forwarding in a four stage pipeline

(a) Stages

(b) Forwarding

Instructions

IF OF OS

IF OF EX OS

IF OF EX OS

ADD R3,R2,R0

SUB R4,R3,8

Write

EX

R3

Time

Forward
R3

R3

IF Stall OF EX

Stall

Forward

OS

The concept of forwarding can be taken further by recognizing that
instructions can execute as soon as the operands they require become
available, and not before.

Each instruction produces a result which needs to be forwarded to all
subsequent instructions that are waiting for this particular result.

Adder Subtractor Subtractor

Forwarding using multiple functional units

R3
Operand values

 Barry Wilkinson 2000. All rights reserved. Page 96

Higher performance processor design

Superscalar processors

A conventional “scalar” processor executes scalar instructions, i.e.,
instructions operating upon single operands such as integers.

A superscalar processor is a processor which executes more than one
(scalar) instruction concurrently.

Superscalar operation is achieved by fetching more than one instruction
simultaneously, and then executing more than one instruction
simultaneously.

Given a pipeline structure, a superscalar processor requires more than one
pipeline, one pipeline for each instruction to be processed concurrently.

Superscalar processor timing with two pipelines

Instruction 2

Instruction 1 Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7 Instruction 9

Instruction 8 Instruction 10

Instruction 2

Instruction 1 Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 2

Instruction 1 Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Time

Instruction
fetch

Operand
fetch

Execute

Instruction 2

Instruction 1 Instruction 3

Instruction 4

Operand
store

Memory
access

Instruction 2

Instruction 1

 Barry Wilkinson 2000. All rights reserved. Page 97

Data memory
Register file

IF

EX

Instruction
memory

OF EX Mem OS

OF Mem OS

Dual pipeline processor

Example - Original Pentium processor

Instruction
memory

IF

Execute
units

OSOF

ALU

Branch

Load

Data memory

Superscalar design with specialized execution units

Store

Instructions
issued to
execution

units

Example - Pentium Pro/II processors

 Barry Wilkinson 2000. All rights reserved. Page 98

In-order issue of instructions – Instructions send for execution in program
order

Out-of-order issue of instructions – Instructions send for execution not in
program order (instructions allowed to overtake stalled instructions).

Either way, usually instructions may finish execution out-of-order (out-of-
order completion).

In-order completion is rarely enforced. For example in the sequence:

MUL R1,R2,R3
ADD R4,R5,R6

even if we issue the MUL instruction before the ADD instruction, the
MUL instruction is likely to require more cycles and will complete after
the ADD instruction.
All dependencies are a definite problem in superscalar processors with
their multiple pipelines and out-of-order issue/out-of-order completion.

Another factor which does not occur in scalar designs but appears in

superscalar designs is a resource conflict for a functional unit.

Example

ADD R1,R2,R3
SUB R4,R5,R6

No instruction dependencies. However suppose only one ALU is provided,

responsible for both addition and subtraction. Clearly both ADD and SUB

instructions cannot be executed together in such a design. The number of

functional units provided will be a compromise between cost and possible

resource conflicts.

 Barry Wilkinson 2000. All rights reserved. Page 99

Implementing out-of-
order instruction issue

Representative processor

Address Data

Register file

Instruction fetch

Main memory

Instruction memory
(cache memory)

ALU Shifter BranchLoad Store

Functional units

Data memory

Superscalar (integer) processor model

Operand fetch
Store operands

Instruction Window

To achieve out-of-order issue, an instruction buffer called an instruction

window is used. Placed between fetch and execute stages to hold

instructions waiting to be executed. Instructions are issued from the

window whenever it is possible to execute the instructions, which occurs

when the operands the instruction needs are available and the functional

unit required for the operation is free.

 Barry Wilkinson 2000. All rights reserved. Page 100

The instruction window can be implemented in two ways:

1. Centralized or

2. Distributed.

Centralized instruction
window

Address Data

Register file

Instruction fetch

Main memory

Instruction memory
(cache memory)

ALU Shifter BranchLoad Store

Functional units

Data memory

Superscalar processor with centralized instruction window

Central instruction
window

OperandsIssue
instructions

Store operands

 Barry Wilkinson 2000. All rights reserved. Page 101

Opcode
Destination

register Operand 1 Operand 2

Operation Operand value IDID

Instruction window contents

Operation Operand value IDID
Operation ID Operand value IDID
Operation Operand value Operand valueID
Operation ID Operand value IDID

1
2
3
4
5

Instruction
Operand 1 Operand 2

register register

Distributed instruction
window

Instruction buffers called reservation
stations are placed at the front of each
functional unit.

Address Data

Register file

Instruction fetch

Main memory

Instruction memory
(cache memory)

ALU Shifter BranchLoad Store

Functional units

Data memory

Reservation stations (without renaming, see later)

Reservation
station

Forward operands to
reservation stations

Store operandsOperand fetch
Tag result register

 Barry Wilkinson 2000. All rights reserved. Page 102

Register renaming

Antidependencies and output dependencies caused essentially by reusing
storage locations, i.e., they are resource conflicts. Consequently the effects
of these dependencies can be reduced by duplicating the storage locations.

Example

ADD R1,R2,R4;R1 = R2 + R4
ADD R2,R1,1 ;R2 = R1 + 1
ADD R1,R4,R5;R1 = R4 + R5

has several dependencies. (It also has a resource conflict if there is only
one adder.) By introducing new registers, R1* and R2*, we have:

ADD R1,R2,R4;R1 = R2 + R4
ADD R2*,R1,1;R2* = R1 + 1
ADD R1*,R4,R5;R1* = R4 + R5

eliminating the antidependency and output dependency.

Clearly we cannot keep creating new registers throughout the program.

Solution is to rename existing registers temporarily. R1 might be

temporarily be called R1a, R1b, R1c … as R1 is being reused in the

program, and similarly for other registers, i.e.

ADD R1a,R2a,R4a
ADD R2b,R1a,1
ADD R1b,R4,R5

Known as register renaming. Can remove both antidependencies and

output dependencies, and is implemented in hardware. New register

instances are created and destroyed when there are no outstanding

references to the stored values.

 Barry Wilkinson 2000. All rights reserved. Page 103

Reorder buffer

Here a first-in, first-out queue with
entries dynamically allocated to
instruction register results.

Address Data

Register file

Instruction decode

Main memory

Instruction memory
(cache memory)

ALU Shifter BranchLoad Store

Functional units

Data memory

Reorder buffer with reservation stations

Reorder
buffer

Forwarding

Operand fetch
Tag result register

Register
Result value Tag

From decoder

Compare

number

register
numbers

From functional
units

Update

To register file

registers

Reorder buffer organization

1 35

128
127

125

2
4

8

25 132
30 131

1 129

5 0

3 124

Currently results
not valid and hence

update held up

Number generated

e.g. R25 now referred
to as register R132

by processor

 Barry Wilkinson 2000. All rights reserved. Page 104

New instruction

Instruction
writes to
register?

Allocate entry at input
of reorder buffer

Write contents back
to register file

Results
at buffer outlet

valid?

Do nothing

Do nothing Deallocate entry

Write register contents
to buffer entry

Yes

No

Yes

No

from decoder

Reorder buffer update algorithm

Results from
functional units

The simple valid bit approach described earlier for the single pipeline

structure is insufficient or may not get best perfromance for more complex

multiple functional unit pipelines with out-of-order issue and completion.

For that, more complex control is necessary.

 Barry Wilkinson 2000. All rights reserved. Page 105

Example

1. ADD R4, R2, R1
2. MUL R3, R4, R5
3. SUB R4, R6, R7

Instruction 2 is dependent upon instruction 1 and cannot be issued until

instruction 1 writes its result to R4. Instruction 3 has valid input operands

and could be issued before instruction 2 (or even before instruction 1).

However, it must not write its result to R4 before instruction 1 writes its

results to R4 and instruction 2 has read R4.

CDC 6600 Scoreboard (historical)

CDC 6600 computer system introduced the concept of a scoreboard which
holds information to control when operands could be fetched and
instruction execution can start and when results could be stored:

• If a structural hazard exists, for example a suitable functional
unit is not available, the instruction is stalled.

• The instruction is also stalled if a write-after-write hazard exists,
(a form of structural hazard - destination register being reused).

• Otherwise, the instruction is issued to a suitable function unit.

Operands are provided when available under the control of the scoreboard.
Similarly, the scoreboard controls when results can be written (when write-
after-read hazards are not present). Original CDC6600 scoreboard only of
historical significance but devilishly difficult - so lets do it!.

 Barry Wilkinson 2000. All rights reserved. Page 106

Unit

Add

Busy Operation Fi Fj Fk Qj Qk Rj Rk

Functional unit

Function Result
register

ID

Source
register

IDs

Unit producing
result in source
register given

in Fj

e.g. ADD

Unit producing
result in source
register given

in Fk

Yes/
No

Yes/
No

Yes/
No

Source
registers

ready

CDC 6600 Scoreboard information on functional unit

X1 Xi Xn

Functional
unit ID
that will
produce

result for Xi

CDC 6600 Scoreboard information regarding source of register results

Register

 Barry Wilkinson 2000. All rights reserved. Page 107

Fetch instruction

Select functional unit
Set its busy flag if not already busy

else stall instruction

Transfer i/j/k fields form instruction
to unit Fi/Fj/Fk fields

Functional unit
scoreboard

Set Qj/Qk fields by reading from
register scoreboard

Register
scoreboard

Read

Reserve register for
functional unit output

(Set functional unit ID)

Write

If source register read flags set
read operands

Write

Write

Read

Perform function unit operation

Make request to release result
Request release signal

Write result in register

Go store result

when get permission

Fetch operands (IF)

Execute (EX)

Store result (OS)

CDC 6600
Scoreboard
algorithm

Reservations

Write results and
set ready flags

Interrupt handling

Term interrupt is the name given to a mechanism whereby the processor

can stop executing its current program and respond to an event. This event

could be within the processor or external to the processor. Requires that

program being executed is stopped to execute interrupt service routine.

After this routine executed, original program must be restarted.

When an interrupt occurs in a pipelined processor, instructions in the

pipeline will be at various stages of completion.

Interrupts can be handled as precise interrupts or imprecise interrupts.

 Barry Wilkinson 2000. All rights reserved. Page 108

Precise Interrupts

In precise interrupts, interrupt takes effect at an exact point within the

pipeline. The following three conditions must be satisfied:

• All instructions issued prior to the instruction being interrupted
are completely executed.

• All instructions issued after the instruction being interrupted are
abandoned. The process state must not have been modified by
these instructions.

• The interrupted instruction is either abandoned (without modify
the process state) or allowed to be completely executed.

For a precise interrupt, sufficient information must to stored to enable the

processor to restart at the exact point where it was interrupted.

nth (n - 1)th (n - 2)th (n - 3)th
instruction instructioninstructionintruction

IF OF EX OS

Interrupt mechanism in pipeline

PC

Abandon instructions Execute instructions

Saved
PC

-2

 Barry Wilkinson 2000. All rights reserved. Page 109

Imprecise interrupt

Precise interrupts can be very difficult and expensive to implement in a

superscalar processor.

For an imprecise interrupt, not all information is stored to enable the

processor to restart exactly where it was interrupted.

 Barry Wilkinson 2000. All rights reserved. Page 110

2000 Update

Processor design concepts of recent interest

Branch Predication

Used in Intel IA-64/Merced processor (Intel’s new processor - not
compatible with Pentium III). Proposed earlier by others (University of
Illinois).

Used instead of traditional branch instructions (with branch prediction) to

provide more opportunity for parallel execution. Replace branch

instruction with an instruction which sets a “predicate” register to TRUE

and another “predicate” register to FALSE. Then have “predicated”

instructions - regular machine instructions but with add field which

specifies which predicate register must be TRUE for the instruction to

complete. Can start execution of the predicated instruction before that but

it must not retire its results unless predicate is TRUE.

 Barry Wilkinson 2000. All rights reserved. Page 111

p1: ADD R1,R2,R3 p2: SUB R1,R2,R3

Test condition
set predicate registers
P1 and P2 accordingly

Example

if (condition) R1 = R2 + R3; else R1 = R2 - R3;

Start executing both instructions even before predicates set.

Only allow one to write to R1, the one in which the predicate is TRUE

Predicated code

CMPZ R1,R2,P1,P2 ;if R1>R1, set P1=TRUE, P2= FALSE
;else set P1 = FALSE, P2 = TRUE

P1: ADD R1,R2,R3
P2: SUB,R1,R2,R3

Could have the predicate generators (CMPZ above) predicated itself.

(Actual Intel notation for predicate generator may be different.)

P1/P2 are single bits which turn instruction on/off

 Barry Wilkinson 2000. All rights reserved. Page 112

Advantages of predicated code

• Allows instructions to be executed
simultaneously and “speculatively”

• Reduces branch misprediction penalties and
hence can produced significantly faster code -
Intel/HP quote 50% fewer branches and 37%
faster code

• Most useful when branch prediction is hard to
do accurately, e.g. in sorting, data
compression, non-deterministic applications.

Instructions can be fetched/grouped together (see later)

Disadvantages

• Requires a completely new instruction set -
cannot be fully grafted onto existing
machines* - hence Intel’s completely new
design.

• Speculatively executing instructions is
wasteful of resources within the processor, if
there is a high probability that the instructions
will have to be abandoned

* Some existing processor do have “conditional move” instructions, but

not full predication.

 Barry Wilkinson 2000. All rights reserved. Page 113

Speculative Load

Loading data from memory before it is needed to reduce the effects of

memory latency. Done by moving the load instruction to earlier in the

program than where it would normally be needed - “hoisted” to an earlier

point.

Compilers can do this to some extent anyway.

Problem occurs when the hoisting is across a branch instruction and a

memory exception occurs, e.g. an invalid address, segmentation fault. This

would generate an exception even if the load was not needed finally, i.e.

the branch was down the path not needing the load.

 IA-64 solution

Have two instructions:

• A speculative load instruction, ld.s, which
performs the load operation without loading
the destination register. If an exception
occurs, a flag is set.

• A check instruction, chk.s, which checks
whether an exception occurred. If it has, an
exception handler is called, otherwise the
destination is loaded.

The speculative load is placed as early as possible in the code. The check is

placed where the result is needed. Check can be predicated.

 Barry Wilkinson 2000. All rights reserved. Page 114

ld.s
.
.
.

br L1
.
.
.

L1: .
.
.

chk.s
use data from memory location

Memory

Register

Access memory

Complete transfer
into register

NaT bitException

Advantages of Speculative Load Instructions

• Hides the memory latency, a significant factor
in obtaining improved performance. Intel
quotes a 79% improvement when combined
with predication (August et al, 1998)

• Particularly effective with many memory
(cache) accesses such as in large databases,
operating systems.

• Scheduling flexibility to obtain parallelism

 Barry Wilkinson 2000. All rights reserved. Page 115

Intel/Hewlett-Packard IA-64 Architecture

Based upon VLIW (very long instruction word) concept proposed in

1980’s.

Independent instructions packaged into groups and sent toprocessor.

Processor executed group of instructions simultaneously (if sufficient

internal resources available).

Instruction level parallelism where the compiler made the decision on

which instructions were to be executed together.

Simple processor as it did not detect parallelism itself during execution.

Intel/HP call their version “EPIC - Explicit Parallel Instruction

Computing.”

IA-64 instruction format

13 bits 6 bits

GPR = specifies one of 128 general-purpose registers

opcode predicate GPR GPR GPR

7 bits 7 bits 7 bits

Instruction 2 Instruction 1 Instruction 0 Template

8 bits40 bits40 bits40 bits

128 bits

 Barry Wilkinson 2000. All rights reserved. Page 116

Sources of further information

W.-M. Hwu, “Introduction to Predicated Execution,” IEEE Computer,
January 1998, pp. 49-50.
M. S. Schlansker and R.R. Rau, “EPIC: Explicitly Parallel Instruction
Computing,” IEEE Computer, February 2000, pp. 37-45.
C. Dulong, “The IA-64 Architecture at Work,” IEEE Computer, July 1998,
pp. 24-32.
C. Zheng and C. Thompson, “PA-RISC to IA-64: Transparent Execution,
No Recompilation,” IEEE Computer, March 2000, pp. 47-52. (see also
other articles in this issue.)
“Inside Intel’s Mersed A Strategic Planning Discussion An Executive
White Paper,” Aberdeen Group, Inc. Boston MA, July 1999. (See
www.aberdeen.com)

