Condor Assignment
Using a scheduler to submit a job

Grid computing course team

Jeremy Villalobos, Jasper Land, B. Wilkinson, and C. Ferner
Oct 5, 2009
Instructors: This assignment requires Condor to be installed for steps 1 through 7. Step 8 requires a Globus installation with Condor-G. Delete step 8 if you do not have this installation. In the following, the systems being used are called coit-grid03.uncc.edu and coit-grid05.uncc.edu. Modify the instructions to suit.
Overview

The goal of this assignment is gain some experience on how to submit a job to a compute resource through a local scheduler. We will use the Condor scheduler and access it directly through its command line interface. It is also possible to access the local scheduler through Globus GRAM using the globusrun-ws –Ft Condor command in a Grid environment and also to access GRAM through the Condor-G interface.
It is recommended that you take screenshots at significant places as you proceed through the instructions for your report.
As you go through the tasks, make sure that you remove any jobs in the Condor queue that are stalled or running too long so as not to cause system problems for others. Significant delays can occurs in jobs moving through job queue.
Step 1: Getting Started

Logon to the designated system that has Condor installed. Make a directory called assignment4 and move into this directory, i.e. issue the commands:

mkdir assignment4
cd assignment4
All your program files for this assignment will be held in this directory, and all commands will be issued from this directory.

Step 2: Test Condor
(a) Check the status of the Condor pool

The Condor pool is a group of computers that can submit or execute programs given resource requests and restraints of both machines and programs. Before you begin submitting jobs to the Condor pool, it is nice to check its status. You can do this with the Condor command:

condor_status.

The output should look similar to the following:

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@coit-grid03. LINUX X86_64 Unclaimed Idle 0.000 250 0+00:25:04

slot2@coit-grid03. LINUX X86_64 Unclaimed Idle 0.000 250 30+10:53:00

slot3@coit-grid03. LINUX X86_64 Unclaimed Idle 0.000 250 5+16:29:17

slot4@coit-grid03. LINUX X86_64 Unclaimed Idle 0.000 250 30+12:32:14

slot10@coit-grid05 LINUX X86_64 Unclaimed Idle 0.000 4028 7+22:59:18

slot11@coit-grid05 LINUX X86_64 Unclaimed Idle 0.000 4028 7+22:59:19

slot12@coit-grid05 LINUX X86_64 Unclaimed Idle 0.000 4028 7+22:59:20

slot13@coit-grid05 LINUX X86_64 Unclaimed Idle 0.000 4028 7+22:59:21

slot14@coit-grid05 LINUX X86_64 Unclaimed Idle 0.000 4028 7+22:59:22

slot15@coit-grid05 LINUX X86_64 Unclaimed Idle 0.000 4028 7+22:59:23

slot16@coit-grid05 LINUX X86_64 Unclaimed Idle 0.000 4028 7+22:59:16

slot1@coit-grid05. LINUX X86_64 Unclaimed Idle 0.000 4028 0+03:10:04

slot2@coit-grid05. LINUX X86_64 Unclaimed Idle 0.000 4028 4+23:12:43

slot3@coit-grid05. LINUX X86_64 Unclaimed Idle 0.000 4028 7+22:59:19

slot4@coit-grid05. LINUX X86_64 Unclaimed Idle 0.000 4028 7+22:59:20

slot5@coit-grid05. LINUX X86_64 Unclaimed Idle 0.000 4028 7+22:59:21

slot6@coit-grid05. LINUX X86_64 Unclaimed Idle 0.000 4028 7+22:59:22

slot7@coit-grid05. LINUX X86_64 Unclaimed Idle 0.000 4028 7+22:59:23

slot8@coit-grid05. LINUX X86_64 Unclaimed Idle 0.000 4028 7+22:59:16

slot9@coit-grid05. LINUX X86_64 Unclaimed Idle 0.000 4028 7+22:59:17

 Total Owner Claimed Unclaimed Matched Preempting Backfill

 X86_64/LINUX 20 0 0 20 0 0 0

 Total 20 0 0 20 0 0 0

In the above example, coit-grid03.uncc.edu and coit-grid05.uncc.edu are in the Condor pool. The listing shows that there are 20 (virtual) machines or slots in the condor pool. The server coit-grid03.uncc.edu has two processors. Each processor is hyperthreaded. (Intel hyperthreading runs two virtual processors on one processor.) The server coit-grid05.uncc.edu consists of four quad-core processors, giving 16 cores listed as 16 slots. Notice also the available memory is shared among the virtual processors. Server coit-grid03.uncc.edu has 1GByte total. Server coit-grid05.uncc.edu has 64GByte main memory total.
Run the condor_status command again with -available:

condor_status –available

which lists only those machines that are available to run jobs.

What can you conclude from this in terms of submit and execute hosts?

(b) Create a test submit description file

Condor allows you to submit almost any type of C, C++, Perl Scripts, and Java Programs to its batch system. A universe defines an execution environment. Condor has several different universes that include Standard, Vanilla, Java, and Globus. Executables submitted to Condor have restrictions that they do have to adhere to. The executables cannot have any interactive input such as GUI’s, etc. However, you can still use STDIN, STDOUT, and STDERR for IO, except files are used instead.

In order to submit jobs through Condor, you need to create a text file that describes your job. Create a text file named hostname_test1 with the following contents:
Contents of hostname_test1:

This is a comment condor submit file for hostname job

Universe = vanilla

Executable = /bin/hostname

Output = hostname.out

Error = hostname.error

Log = hostname.log

Should_transfer_files = YES

When_to_transfer_output = ON_EXIT

Queue

In the submit description, you should specify the name of a log file, in this case hostname.log, as this file will contain important information on the state of the job. The output of the executable is directed to the text file named hostname.out.
(c) Submitting your job and checking its status

You are now ready to actually submit and run your job. The command to use is:

condor_submit hostname_test1

Below is a sample listing of the result of running this command

condor_submit condor_test1

Submitting job(s).

Logging submit event(s).

1 job(s) submitted to cluster 73.

The listing simply tells you that you successfully submitted one job to the Condor pool.You can check the status by using the command condor_q.
-- Submitter: coit-grid03.uncc.edu : <152.15.98.26:56504> : coit-grid03.uncc.edu

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

 73.0 test_wilkinson 9/22 11:32 0+00:00:00 R 0 0.0 hostname

1 jobs; 0 idle, 1 running, 0 held

Above you see that the job has been submitted to the Condor Pool and is the only job in the queue. The Job ID of this particular job is 73. Notice the “ST” column in the listing above. The “ST” column is where the status of your job is displayed. The status of the job is “I”, which means the job is currently idle, waiting to be executed. Other status symbols are “R” which stands for running, “C” for complete, an “X” if the job was removed via condor_rm, and “H” if the job was held.

When your job is completed, it will no longer appear in the Condor queue:

-- Submitter: coit-grid03.uncc.edu : <152.15.98.26:56504> : coit-grid03.uncc.edu

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 idle, 0 running, 0 held

You may have to do condor_q quickly after condor_submit to be able to see job in the queue as the job is very small.

(d) Check job output
Once the job has completed, you can check the output of your job in hostname.out, can be any machine in the pool, here either coit-grid03.uncc.edu or coit-grid05.uncc.edu. (hostname will not identify the virtual processor.)
Step 3: Managing Your Job

condor-q options

There are many different arguments that condor_q takes to give different output.

· condor_q –l gives you very detailed information about the job you are submitting.

· condor_q –run tells you which machines are running the jobs.

· condor_q –submitter <username> will display only the jobs submitted by user. Useful, if you want to see just your jobs, not every job in queue.
· condor_q –help to list all options.
Other management commands

The commands condor_rm, condor_hold, and condor_release aid in the management of your job. Below are some brief descriptions of what each command does.

· condor_rm allows you to remove a job given its Job ID or allows you to remove all jobs at once. You can only remove your jobs, not the jobs of other users.

· condor_rm jobID marks the job with the specified jobID for removal.

· condor_rm –all marks all the jobs you have in the Condor queue for removal.

· condor_rm –all -forcex to remove stuck jobs in the queue with the “X” status symbol. (Sometimes, a job might get stuck in the queue and it will not budge even when executing the command condor_rm –all, then use condor_rm –all -forcex).

· condor_hold allows you to place a job on hold given its Job ID or allows you to place all jobs on hold at once. Placing a job on hold will kill the job if it is running. Any job you place on hold will not attempt to restart until you have removed the hold via condor_release so that the job may be rescheduled.

· condor_hold jobID marks the job with the specified jobID to be placed on hold.

· condor_hold –all marks all the jobs you have in the Condor queue to be held.

· condor_release removes holds placed on a job and allows for that job to be rescheduled.

· condor_release jobID marks the job with the specified jobID to be released and rescheduled.

· condor_release –all marks all the jobs you have in the Condor queue to be released and rescheduled.

· condor_history gives you information about previously submitted jobs
Tasks: Submit a job consisting of the executable /bin/sleep
 with the argument 60 and immediately place on hold, record output for your report, and then release and record the output for your report. Determine which machine is running the job from the condor_q –run command. Run condor_history and record output for your report.
Step 4: Setting up so that email message sent when job completed.

One neat feature of Condor is that it can be set up so that you will receive an email message when the job has completed. This is done by having the lines:

notification = ALWAYS

notify_user=someone@somewhere.com

in your submit description file (before Queue). Add these lines to your submit description file in Step 2 (/bin/hostname) putting your email address for someone@somewhere.com) and resubmit your job. First try with your coit-grid03.uncc.edu email account (<username>@coit-grid03.uncc.edu). This will cause a message:

"You have new mail in /var/spool/mail/username"

 to be displayed on your console window when the job has completed: You can view your coit-grid03 email account with command:

mail

Type the email number to get contents of message (q to quit). Sample message:

This is an automated email from the Condor system

on machine "coit-grid03.uncc.edu". Do not reply.

Condor job 81.0

 /bin/hostname

has exited normally with status 0

Submitted at: Mon Sep 22 14:14:19 2008

Completed at: Mon Sep 22 14:14:22 2008

Real Time: 0 00:00:03

Virtual Image Size: 0 Kilobytes

Statistics from last run:

Allocation/Run time: 0 00:00:01

Remote User CPU Time: 0 00:00:00

Remote System CPU Time: 0 00:00:00

Total Remote CPU Time: 0 00:00:00

Statistics totaled from all runs:

Allocation/Run time: 0 00:00:01

Network:

 15.6 KB Run Bytes Received By Job

 21.0 B Run Bytes Sent By Job
Next alter the email address in the job description file to your personal email account and confirm that works also.
Step 5 Submitting your own C program

In this section, you will write your own simple program, compile it, and submit it. The program will be written in C and use the vanilla universe. Write a simple C program to compute  by a Monte Carlo method. Appendix A gives details of this method for computing  and some programming clues. Call the program pi.c. Compile the program using the regular cc Linux compiler on coit-grid03.uncc.edu with the command:

cc pi.c –lm –o pi

The –lm flag is to include the math library, which will be needed if you use any math library function (such as sqrt). In addition to this flag, you will need to include the statement #include <math.h> at the top of your program.

Test the program pi on coit-grid03.uncc.edu by executing with the command:

./pi

(./ is necessary nowadays to specify the current directory.)

Then test the program pi through Condor by following the steps that you took to execute a job previously, i. e. create a submit description file and issue condor_submit command. Record your output for your report. Determine which machine ran the job.
Step 6: Submitting your own Java Job to the Condor Java universe

As mentioned, Condor has several “Universes” each designed for a particular environment. So far, we have used the vanilla universe with simple executables (Linux commands and your own compiled C program). Now we shall try the Java universe. Java is different because the Java class file is executed by a java virtual machine (JVM), which is taken into account in the Java universe. Below is a submit description file named Javatest. This submit description file describes submission of a Java class file named Javatest.class to be executed on some machine’s JVM.

Contents of javatest:

universe = java

executable = Javatest.class

transfer_input_files= Javatest.class

arguments = Javatest moreargument
output = javatest.out

log = javatest.log

error = javatest.err

transfer_files = ALWAYS

should_transfer_files = YES

when_to_transfer_output = on_exit

queue

In the file above, we set the universe to be the Java universe and set the executable to be the Javatest.class file. The arguments attribute specifies the name of the class that the JVM will execute and it is always necessary to specify it. You can also specify what command line arguments should be passed to the program, indicated here with moreargument. If your Java program consists of multiple class files you can set the transfer_input_files attribute to a space separated list of class files.

Task: Re-write the C program to compute  in Task 5 in Java. Compile it, test it locally and then and submit it to Condor through the Java universe. Record the details and your output for your report.

You will probably need to compile the Java for a version compatible for all systems, for example version 1.5. The easiest way to do that is to use the command:

javac –target 1.5 YourProgramClassname.java
Step 7: Using ClassAds
As described in lecture notes/slides, Condor uses a matchmaking mechanism called ClassAds. Each resource has a machine ClassAd and a job can include a ClassAd in its submit description file.

(a) Resource ClassAds

Resource ClassAds can be displayed with the condor_status command using the –l option, i.e.:

condor_status –l
Will display all resource ClassAds of all resources. Issue this command. Repeat but limit it to one resource, e.g.:

condor_status –l slot1@coit-grid05.uncc.edu
You should get:

MyType = "Machine"

TargetType = "Job"

Name = "slot1@coit-grid05.uncc.edu"

Rank = 0.000000

CpuBusy = ((LoadAvg - CondorLoadAvg) >= 0.500000)

MyCurrentTime = 1222270876

Machine = "coit-grid05.uncc.edu"

PublicNetworkIpAddr = "<152.15.90.78:57349>"

COLLECTOR_HOST_STRING = "coit-grid03.uncc.edu"

CondorVersion = "$CondorVersion: 7.0.2 Jun 9 2008 BuildID: 89891 $"

CondorPlatform = "$CondorPlatform: X86_64-LINUX_RHEL5 $"

SlotID = 1

VirtualMachineID = 1

VirtualMemory = 196795

TotalDisk = 1064758188

.

.

.

Try also using –xml option to display the ClassAd in XML.
Examine the ClassAds on both coit-grid05.uncc.edu and coit-grid03.uncc.edu. Complete the table below from the ClassAds:

	Machine
	Java version
	Memory

(per slot, not total)
	Performance

(KFlops)

	coit-grid03.uncc.edu
	
	
	

	coit-grid05.uncc.edu
	
	
	

Notice the differences between coit-grid03.uncc.edu and coit-grid05.uncc.edu.
(b) Job ClassAd’s and running a job with a ClassAd
Modify your submit description file for the Java program in Step 6
 to include a ClassAd with a statement that will cause the job to run only on a machine with the Java version, performance and memory of coit-grid05.uncc.edu and resubmit the job. Demonstrate that the ClassAd works and causes the job to run only on coit-grid05.uncc.edu. You will probably need to make sure your jobs are long running (several minutes). Choose the number of random samples in your program sufficient large in your Java program. Use the command:
condor_q –run –submitter <username>
to see your jobs and the hosts they are running on.

Alter job ClassAd so that a match is impossible and re-test. The job should enter an I state in the queue. Remove the stalled job using the condor_rm command.
Step 8: Using DAGMAN
NOTE: Significant delays can occur before jobs appear in the Condor queue.

(a) A simple DAG file with a single program

Write a DAG file to run the program in Step 5 or 6 and test it with the command:

condor_submit_dag <dagfile name>

You should get an output such as:

Checking all your submit files for log file names.

This might take a while...

Done.

File for submitting this DAG to Condor : testDAG1.dag.condor.sub

Log of DAGMan debugging messages : testDAG1.dag.dagman.out

Log of Condor library output : testDAG1.dag.lib.out

Log of Condor library error messages : testDAG1.dag.lib.err

Log of the life of condor_dagman itself : testDAG1.dag.dagman.log

Condor Log file for all jobs of this DAG : /nfs-home/test_wilkinson/assignment4/javaPi.log

Submitting job(s).

Logging submit event(s).

1 job(s) submitted to cluster 123.

Apart from checking the queue, one can check the corresponding .log file for the job to see if job terminated normally.

(a) DAG file with two sequentially dependent programs
Modify the DAG file to execute two programs, one after the other. Any two programs can be used. Since DAGMAN uses named log files, choose submit description files with different names for their log files.
Step 8: Testing Condor-G
Condor-G is the name give to the version of Condor that interfaces to Globus GRAM, which then submits the job.

(a) Create a Proxy

Just as in previous assignments, before you can submit Globus jobs you will need to obtain a proxy. Create a proxy using the following command.

grid-proxy-init -old

It is necessary to use the “-old” argument because the Condor-G scheduler does not yet support the new proxy format provided with the Globus Toolkit 3.2/4.0. You will be prompted for your pass phrase, which is the same pass phrase that you used in assignment 2 to request a certificate.

(b) Create a test submit description file

As before, to submit jobs, you need to create a text file that describes your job.. Create a text file named condorG_test1 with the following contents:

Contents of condorG_test1:

This is a comment condor submit file for Condor-G uptime job

universe = grid

grid_resource = gt4 https://coit-grid03.uncc.edu:8440/wsrf/services/ManagedJobFactoryService Fork

Executable = /usr/bin/uptime

Log = condor_test1.log

Output = condor_test1.out

Error = condor_test1.error

should_transfer_files = YES

when_to_transfer_output = ON_EXIT

Queue

The file tells Condor that we want to execute the executable uptime
 in the Globus (grid) universe, using the Fork job manager located on coit-grid02.uncc.edu. The syntax of grid_resource line is:

grid_resource = [provider] [https://] [hostname] : [port] [job scheduler (Condor or Fork)]

(c) Submitting your job and checking its status and output

As below, you can now submit the job:

condor_submit condorG_test1

Below is a sample listing of the result of running this command

condor_submit condor_test1

Submitting job(s).

Logging submit event(s).

1 job(s) submitted to cluster 316.

The listing simply tells you that you successfully submitted one job to the Condor pool.

It might take a few minutes before your job is executed, in the meantime you can check the status by using the command condor_q. When your job is completed, it will no longer appear in the Condor queue and the files in assignment3 directory:
condor_test1 condor_test1.error condor_test1.log condor_test1.out

Check that the output of uptime is correct with the Linux cat command. Sample contents of condor_test1.out:

10:48:17 up 29 days, 6:59, 1 user, load average: 4.30, 4.06, 4.02
(d) Submitting your own program to Condor-G
Submit your simple C program to compute  by  by a Monte Carlo method to Condor-G and demonstrate it works when submitted that way.
Assignment Submission

Details regarding assignment submission are given in a separate document.
[image: image1.png]Appendix A Computing = by a Monte Carlo Method

The basis of Monte Carlo methods is the use of random selections in calculations. n/4 (and hence 7) can
be computed by a Monte Carlo method as follows: A circle is formed within a square as shown in Figure
1. The circle has unit radius so that the square has sides 2 x 2. The ratio of the area of the circle to the
square is given by

Areaofcircle _ n(1)2 _ =
Areaof square 2x2 4

! Total arca= 4

NI

Fig\ire 1

Points within the square are chosen randomly and a score is kept of how many points happen to lie within
the circle. The fraction of points within the circle will be /4, given a sufficient number of randomly
selected samples.

Only one quadrant of the construction need be used. One quadrant of Figure 1 is shown in Figure 2,
A random pair of numbers, (x,,y,) is generated, each between 0 and 1, and then counted if y2 +x2 < 1;
thatis,y, < /1 —x2.

! yiexl=1

1
Figure 2

Template for program for computing :

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#define pi ((double)(4.0*atan(1.0))) // value to compare pi against computed value
main() {

/* This program computes the value of PI using a Monte Carlo Method*/

double result;

int I, N = 100000000; // N is number of random samples

.

.

.

printf("Result for computed pi is %4.7f \n", result);

printf("Error is %7.5f\n",pi - result);
}

Clues for the program:

(i)
Code to generate random numbers:

There are several ways to generate random numbers. One way to generate a value for x randomly between 0 and n - 1 would be to use:

x = rand() % n;

 (which assumes the least significant digit of rand() using base-n representation is random). Another way (which I prefer) is:

x = (n * rand() / ((double) RAND_MAX));

Notes:

· The C function rand() produces numbers in the range [0, RAND_MAX] i.e. inclusive of RAND_MAX.
· rand() is actually a poor random number generator, but for the sake of ease can be used here.
(ii) Statement to check to see whether a point (xr, yr)is within circle:

if (yr <= sqrt(1 – xr * xr)) ….

Appendix B: Reference materials

Globus: The globusrun-ws commands: http://www.globus.org/toolkit/docs/4.0/execution/wsgram/rn01re01.html

The Official Condor Website:

http://cs.wisc.edu/condor
Condor Tutorials:

http://www.cs.wisc.edu/condor/tutorials/
Condor Example Submit Description Files:

http://www.cs.wisc.edu/condor/quick-start.html
Another Example of Condor Submit Description Files:

http://www.cs.wisc.edu/condor/manual/v6.5/condor_submit.html
Acknowledgements

This assignment is very loosely based upon the Condor assignment written by Jeffrey House for the Fall 2004 grid computing course.

� sleep <amount> waits the specified time before executing another command. Default units is seconds.

� or the C program in Step 5 if you were unable to do Step 6.

� uptime is a Linux command that simple displays the following information: the current time, how long the system has been running, how many users are currently logged on, and the system load averages for the past 1, 5, and 15 minutes. Type man uptime to get full information.

1

