
1

Notes on creating graphical output

X-11 graphics

B. Wilkinson, Jan 30, 2012

Assignments and projects may require graphical output, which is especially relevant for problems such
as the heat distribution problem to show the heat contours or the N-body problem to show movement
of bodies. When executing programs on a remote server such as coit-grid01.uncc.edu, the graphical
output has to be forwarded to the client computer for display. In these notes, we will explain how to
create and forward basic X11 graphics.1

X-11 graphics

X-11 refers to version 11 of the X Window System first developed in the 1980’s. It is chosen because
it is part of the Linux distribution, it is relatively easy to write simple graphics, and easy to forward to a
client. It is said to be “almost universally” used on Unix-like systems [Wikipedia X Window System].
The ability to forward the graphics is critical in our application. X is a client-server model that relies
on an X-server running on the client:

Making the Connection

Most people will be using a Windows PC for the client. If so, it is necessary to get an X server and
client running on the PC. Perhaps the easiest way to do this at no cost is to install Xming X Window
server, which is small and very quick to install and use a PuTTY terminal configured to forward X11.
X11 forwarding is enabled in PuTTY by first selecting SSH > X11. Check “enable X11 forwarding”
with X display location “localhost:0” and then going back to Session and entering the host name.
(Note: DOT NOT load a previously saved host name first as it will not include X11 forwarding. It can

1 Note: Rather than use the basic X 11 libraries directly as described here, one could use other graphics libraries that use X
11 forwarding such as Cairo if the libraries are installed.

Client Computer

X server

X client
terminal
(xterm)

Server

coit‐grid01.uncc.edu

2

be saved afterwards to include X11 forwarding.) Start the local Xserver before connecting to the
remote sever.

Alternatively you can install Cygwin with the X server (Cygwin/X) at no cost and operate the PC as a
Linux-like system. This installation takes long time (hours) when you select all the packages. Make
sure you select the X11 libraries. Once installed, start the X server and xterm connecting to the X
server and login through the xterm. To forward X-11 graphics from the xterm, include the –X option:

ssh coit-grid01.uncc.edu –X –l <username>

You will also need to specify your username on the remote server with the –l option if it different to
the local PC.

Test the connection and forwarding by running xclock in the background:

xclock &

Servers without an external Internet connection

coit-grid05.uncc.edu is not accessible directly and one needs to first ssh into one of the servers having
an external Internet connect such as coit-grid01.uncc.edu2 remembering to forward X11 graphics (-X
option) and then ssh from coit-grid01.uncc.edu to coit-grid05.uncc.edu, again remembering to forward
X11 graphics, i.e. from coit-grid01.uncc.edu:

ssh coit-grid05.uncc.edu –X

Test the connection and forwarding by running xclock in the background. The clock graphics should
forward back through the two servers and to your client machine. (You would get two clocks if you
also forwarded one from the first server.)

coit-grid06.uncc.edu is not accessibly off-campus and the similar procedure is necessary to reach it
from off campus.

X-11 drawing code

Before calling any X 11 routine to draw a figure, you have to first do a rather long sequence of code to
set up the X window environment, which is given below and you can just copy:

...
#include <X11/Xlib.h> // X11 library headers
#include <X11/Xutil.h>
#include <X11/Xos.h>

#define X_RESN 800 /* x resolution */
#define Y_RESN 800 /* y resolution */
...

int main (int argc, char **argv) {

2 or coit-grid02.uncc.edu, coit-grid03.uncc.edu, coit-grid04.uncc.edu, or coit-grid07.uncc.edu.

3

...

/* --------------------------- X11 graphics setup ------------------------------ */

 Window win; /* initialization for a window */
 unsigned int width, height, /* window size */
 win_x,win_y, /* window position */
 border_width, /* border width in pixels */
 display_width, display_height, /* size of screen */
 screen; /* which screen */

 char *window_name = "My graphics program", *display_name = NULL;
 GC gc;
 Unsigned long valuemask = 0;
 XGCValues values;
 Display *display;
 XSizeHints size_hints;
 Pixmap bitmap;
 XPoint points[800];
 FILE *fp, *fopen ();
 char str[100];

 XSetWindowAttributes attr[1];

 if ((display = XOpenDisplay (display_name)) == NULL) { /* connect to Xserver */
 fprintf (stderr, "Cannot connect to X server %s\n",XDisplayName (display_name));
 exit (-1);
 }

 screen = DefaultScreen (display); /* get screen size */
 display_width = DisplayWidth (display, screen);
 display_height = DisplayHeight (display, screen);

 width = X_RESN; /* set window size */
 height = Y_RESN;
 win_x = 0; win_y = 0; /* set window position */

 border_width = 4; /* create opaque window */
 win = XCreateSimpleWindow (display, RootWindow (display, screen),
 win_x, win_y, width, height, border_width,
 BlackPixel (display, screen), WhitePixel (display, screen));

 size_hints.flags = USPosition|USSize;
 size_hints.x = win_x;
 size_hints.y = win_y;
 size_hints.width = width;
 size_hints.height = height;
 size_hints.min_width = 300;
 size_hints.min_height = 300;

 XSetNormalHints (display, win, &size_hints);
 XStoreName(display, win, window_name);

 gc = XCreateGC (display, win, valuemask, &values); /* create graphics context */

 XSetBackground (display, gc, WhitePixel (display, screen));
 XSetForeground (display, gc, BlackPixel (display, screen));
 XSetLineAttributes (display, gc, 1, LineSolid, CapRound, JoinRound);

 attr[0].backing_store = Always;
 attr[0].backing_planes = 1;
 attr[0].backing_pixel = BlackPixel(display, screen);

 XChangeWindowAttributes(display, win, CWBackingStore | CWBackingPlanes | CWBackingPixel, attr);

 XMapWindow (display, win);
 XSync(display, 0);

/* --------------------------- End of X11 graphics setup ------------------------------ */

... /* continue with N-body code */

4

Once that is done, you get down to the business of drawing an image, using routines such as

XClearWindow(display, win); // clear window for next drawing

XSetForeground(display,gc,(long) color); // color of foreground (object to be drawn)

XDrawPoint (display, win, gc, x, y); // draw point at location x, y in window

XFillArc (display,win,gc,x,y,width,height,angle1,angle2); // draw arc/circle

XFlush (display); // necessary to write to display

The long integer color is a 24-bit number that specifies the color, as give in the Wikipedia entry for X-
11 color names. For example, 0xDC143C would give Crimson. (Note: the number can be given as a
hexadecimal number.) To create a circle with XFillArc(), the start and end angles would be 0 and
23040 (degrees x 64). You drawing routines can be repeated in a loop to display movement. Include
usleep() or sleep() to get the appropriate speed for the motion.

Compiling C code with X-11 graphics

Assuming a single file (separate files might be better), you will need to add the following directory
paths and libraries to the command to compile the program:

-I/usr/openwin/include -L/usr/openwin/lib -L/usr/X11R6/lib -lX11

Make file

A make file is most convenient now that the compilation command is getting very long. For example,
a file called “makefile” with the contents:

Nbody:
 cc -o Nbody Nbody.c -lm

Nbody-G:
 cc -I/usr/openwin/include -o Nbody-G Nbody-G.c -L/usr/openwin/lib -
L/usr/X11R6/lib -lX11 -lm

would compile either a regular C program, Nbody.c, or a graphics output version Nbody-G.c with the
commands:

make Nbody
make Nbody-G

Note the commands in the make file, (cc … in the example) MUST begin with a tab character.

Useful references

Wikipedia entry: X-11 color names http://en.wikipedia.org/wiki/X11_color_names
Xming software: http://sourceforge.net/projects/xming/
Xming home page: http://www.straightrunning.com/XmingNotes/
Cygwin home page http://cygwin.com/
XLib Manual http://tronche.com/gui/x/xlib/
X11 graphics routines http://tronche.com/gui/x/xlib/graphics/

