

 1

Assignment 2
Using Paraguin to Create Parallel Programs

C. Ferner and B. Wilkinson

Minor clarification Oct 11, 2013

Overview

The goal of this assignment is to use the Paraguin compiler to create parallel solutions
using MPI to run on a distributed-memory system.

Log in to babbage.cis.uncw.edu.

Setup

This part only needs to be done once. Edit the file .bash_profile in your home directory
(notice that the filename begins with a period). Enter the following lines at the bottom of
the file and save:

export MACHINE=x86_64-redhat-linux
export SUIFHOME=/share/apps/suifhome
export COMPILER_NAME=gcc
`perl $SUIFHOME/setup_suif -sh`

Note that the symbols on the last line are backsingle quotes, not single quotes.

Then run the command:

. .bash_profile

The periods are important, and there is a space between them.

Then create a directory in which to do this assignment and cd to that directory. You do
not need to provide screenshots of this first section in your submission document.

Hello World (22%)

Create a “hello world” program using the code in Figure 1. Make sure you include the
empty lines (those with only a semicolon).

 2

Compiling

Compile this program with the Paraguin compiler using this command:

scc -DPARAGUIN -D__x86_64__ -cc mpicc hello.c -o
hello.out

This command should all be on one line. Take a screenshot of the output from compiling
your program to include in your submission document.

If the program is correct, the compiler will produce a file called hello.out. You can also
see how the compiler parallelizes your program by producing a source file with MPI
commands. (This is not required.) To do this, use the command:

scc -DPARAGUIN -D__x86_64__ hello.c -.out.c

#ifdef PARAGUIN
typedef void* __builtin_va_list;
#endif

#include <stdio.h>

int __guin_rank = 0;

int main(int argc, char *argv[])
{

char hostname[256];

printf("Master process %d starting.\n", __guin_rank);

#pragma paraguin begin_parallel

gethostname(hostname, 255);
printf("Hello world from process %3d on machine %s.\n",

__guin_rank, hostname);

#pragma paraguin end_parallel

printf("Goodbye world from process %d.\n",
__guin_rank);

return 0;

}

Figure 1: Hello World Program

 3

This will create the file hello.out.c, which is the MPI version of the hello world program.
You are free to inspect and even modify it. You can compile this file to an executable
using mpicc to produce a file call hello.out.

Running

Create a job description file to submit your program to the SGE scheduler with qsub. To
execute the program, you need to submit a job to the Sun Grid Engine (SGE) job
scheduler. To do this, you will need to create a file call hello.sge with the contents
shown in Figure 2.

The first line of this script indicates that this is a shell script. The line #$ -pe orte 4
indicates to SGE that you want 4 processing elements (processors). The line #$ -N
Hello indicates that the output files should be named “HelloXXX”, where XXX
contains other characters to indicate what it is and the job number. The line #$ -cwd
tells SGE to use the current directory and the working directory (so that you output files
will go in the current directory). The line #$ -j y will merge the stdout and stderr
files into one file called “Hello.oXXX”, where XXX is the job number. Normally, SGE
would create separate output files for the stdout and stderr, but this isn’t necessary.

The line #$ -l h_rt=00:01:00 tells SGE to kill the job after a minute. This helps
to keep the system clean of old jobs. If you find that a job is still in the queue after it has

#!/bin/sh

Usage: qsub hello.sge

#$ -S /bin/sh

#$ -pe orte 4 # Specify how many processors we
want

-- our name ---
#$ -N Hello # Name for the job
#$ -l h_rt=00:01:00 # Request 1 minute to execute
#$ -cwd # Make sure that the .e and .o file
arrive in the working directory
#$ -j y # Merge the standard out and
standard error to one file

mpirun -np $NSLOTS ./hello.out

Figure 2: Job Submission File

 4

finished, you can delete it using qdel #, where # is the job number. If you expect your
job to take longer than a minute to run, you will need to increase this time.

The last line of the submission file tells SGE to run the hello program using MPI run and
the same number of processors as indicated in the #$ -pe orte 4 line above.

To submit your job to the SGE, you enter the command:

qsub hello.sge

You job is given a job number, which you will use for other SGE command. The output
of your program will be send to a filed called Hello.oXX, where XX is the job number.
There will also be a file called Hello.poXX, which you don’t need. You will want to
delete the output files you don’t need. Otherwise, your directory will fill up.

To see the list of jobs that have been submitted and have not yet been terminated, use the
command qstat. If you find that a job is still in the queue after it has finished, you can
delete it using qdel #, where # is the job number.

After your job has completed, you should get output in the file Hello.oXX, with contents
that should look something like that of Figure 3.

Re-run this program using different numbers of processors (up to 32). Take a screenshot
of the output of the hello world program after running on the largest number of
processors you are able to run it on. (That means that you only need to provide 1
screenshot of the output.)

What to submit

Your submission document should include the following:
1) Your name and school;
2) Whether you are a graduate or undergraduate student;
3) A copy of the hello world source program (hello.c not hello.out.c);
4) A copy of your SGE job submission file;
5) Screenshot from compiling your hello world program with Paraguin;

Figure 3: Hello world output

Master process 0 starting.
Hello world from process 0 on machine compute-0-0.local.
Hello world from process 1 on machine compute-0-0.local.
Hello world from process 2 on machine compute-0-0.local.
Hello world from process 3 on machine compute-0-0.local.
Goodbye world from process 0.

 5

6) Screenshot of submitting your job to the SGE schedule and output of qstat
showing your job queued up;

7) Screenshot of the output running on the largest number of processors for which
you are able to run successfully the program.

Matrix Multiplication (UG – 39% ; G – 35%)

Task 1 – Create the program

In this part of the assignment, you will be implementing the matrix multiplication
algorithm using the Scatter/Gather pattern. The Scatter/Gather pattern is actually done as
a template instead of a single pragma construct.

First you will need some input. Copy the following files from the directory
/home/cferner/working/work1/into your directory:

 input2x512x512Doubles
 output512x512mult

The first file contains two 512x512 matrices of a floating point numbers that you will use
as input. The other file contains the answers of applying matrix multiplication to the two
512x512 matrices in the input file. You will use these files to determine if your programs
are producing the correct output.

Create a program using the skeleton program from Appendix A. You need to fill in the
sections labeled "TODO". You will need to implement the algorithm to perform matrix
multiplication. In order to perform matrix multiplication, you will need to implement in
parallel the following formula:

 NjiBAC
N

k
jkkiji 0, allfor

1

0
,,,

 (2)

This will require 3 nested for loops. The outermost loop should be a forall loop.

Since each value in the resulting matrix is a dot product of the rows of A with the
columns of B, you won’t be able to simply scatter the B matrix. The reason is
because you are computing an entire row of the C matrix. To do this, you will need
EVERY column of the B matrix; in other words the entire matrix. So you will need
to broadcast the B matrix instead of scattering it.

 6

After you calculate the product, you will need to gather the partial results back onto the
master process. After the scatter/broadcast, computation, and gather, the master process
will take another time stamp (to calculate the time to perform matrix addition), then print
the answer.

After you are able to compile successfully your matrix multiplication with Paraguin, take
a screenshot of the compilation for your submission document.

Task 2 – Run the parallel version

Create a job submission file for this program. You will need to add the name of the input
file, input2x512x512Doubles, as another command line argument after your program on
the last line of the submission file. Run the program using the number of processors in the
range: 1, 4, 8, 12, 16, 20, 24, 28, and 32. Rename the output files to output.mult.1,
output.mult.4, output.mult.8, etc. After each run, execute the command:

diff output512x512mult output.mult.<P>

where <P> is the number of processors used.

If your program is implemented correctly, it should output the same answers as the
sequential version of the program. If so, then the result of the diff command should be
only 4 lines that look something like Figure 4. Use the elapsed times to create a graph of
the runtimes as a function of the number of processors. In other words, you should have a
graph with number of processors on the x-axis and seconds on the y-axis. Create a second
graph of speedup. Calculate the speedup using the single processor time as the sequential
time (which is actually not the same, but we’ll use it). You should also have on this graph
the ideal speedup curve for comparison.

Record the elapsed times for the parallelized program running on the different number of
processors. The elapsed time for the sequential version is the time reported in the
output512x512add file.Create graph of the execution times compared with sequential
execution and the speedup curve with linear speedup. Make sure that you provide axes
labels, a legend (of there is more than one line) and a title to the graphs. Include copies
of the graphs in your submission document.

What to submit

Your submission document should include the following:
1) A copy of your matrix addition source program;
2) A copy of the job submission file
3) Screenshot of compiling your program with Paraguin;
4) Screenshot of running the parallel version of the program (qsub and qstat);
5) Screenshot of running the diff command on the output files;

1c1
<elapsed_time= 0.332111 (seconds)

>elapsed_time= 0.298292 (seconds)

Figure 4: Example output from diff command

 7

6) And copies of your graphs.

Heat Distribution (UG – 39% ; G – 35%)

In this part of the assignment you will be using a stencil pattern to model the heat
distribution of a room with a fireplace. Although a room is 3 dimensional, we will be
simulating the room with 2 dimensions. The room is 10 feet wide and 10 feet long with a
fireplace along one wall as depicted in Figure 5. The fireplace is 4 feet wide and is
centered along one wall (it takes up 40% of the wall, with 30% of the walls on either
side). The fireplace emits 100º C of heat (although in reality a fire is much hotter). The
walls are considered to be 0º C. The boundary values (the fireplace and the walls) are
considered to be fixed temperatures.
Using a Jacobi Iteration, the heat distributed is calculated to look something like that of
Figure 6. Each value is computed as an average of its neighbors. There needs to be two
copies of the matrix. The newly computed values need to be stored into the second
matrix; otherwise the values being computed would not be based on the same values in
the previous iteration. Once all the new values are computed, the newly computed values
can replace the values in the last iteration.

Figure 5: 10x10 Room with a Fireplace

 8

Create a program to use the Paraguin stencil pattern to compute the heat distribution of
the room described above. The data should be a 3 dimensional array, where the size of
the 1st dimension is 2, and the sizes of the 2nd and 3rd dimensions is how ever many points
you decide to use. The number of points for the room should be large (more than
100x100). The more points there are, the smoother the simulation of the spread of heat.

1) Initialize the values in both copies of the room all zeros (degrees Celsius) except
for 40% of one wall centered where the values will be 100.

2) Using your matrix program as an example, set up a barrier and take a time stamp.
3) Use the Paraguin stencil pragma to indicate a stencil pattern

a. The number of iterations should be at least 5000 in order for the data to
converge. You can try larger and smaller values for the iterations to see if
the data changes or not. You would like the number of iterations to be just
large enough that the computed values do not change by significant sizes.

b. The compute function should be a function to calculate the average of the
value at location i and j and its nearest neighbors. Unlike the averaging
showed in Figure 6, this would be an average of 9 values as shown below:

Figure 6: Jacobi Iteration

 9

(The average should include the value at position i, j as well as the 8
neighbors.) The reason for using the value in position i, j as part of the
average for the new value for position i, j is to reduce the oscillations.

4) Take another time stamp and calculate and report the elapsed time.
5) Print the final values of the matrix

As with the matrix programs, compile your program with Paraguin and take a snapshot of
this process. Create a job submission file to execute your program on 1, 4, 8, 12, 16, 20,
24, 28, and 32 processors. The output should go into files named: output.heat.1,
output.heat.4, output.heat.8, etc. You should run the diff command on
these files against the first one to make sure each program produces the same output.
Include snapshots of these diff commands in your assignment submission document.

Also create a graph of the final data. Figure 7 and Figure 8 show two examples of
graphing the final data. The first was created using X11, and the second is a surface graph
using Microsoft Excel. See the course home page for help with creating graphics using
X11.

Figure 7: Graph of Heat Distribution
from X11

Figure 8: Graph of Heat Distribution
from Excel

0

20

40

60

80

100

D
e
gr
e
e
s

 10

(Required for Graduate Students; Extra Credit (8 points)
for Undergraduates

Monte Carlo Estimation of π (UG – 8% extra credit; G –
8%)

Using the sequential program to estimate π using the Monte Carlo algorithm, create a
program that can be parallelized using the Paraguin compiler. To do this, you will need
to:

1) Execute a barrier and take a time stamp;
2) Broadcast the number of iterations processors should use;
3) Run the creation of points within the square and count the number of points

within the semicircle;
4) Reduce (as a summation) the count back to the master;
5) Print the result, error, and elapsed time from the master. (The error can be

computed as the absolute difference between the value you computed and the true
value of π. You can use the value 3.1415926535 as the true value of π.

Compile this program, create a job submission file, and run the parallel program on 4, 8,
12, 16, 24, 28, and 32 processors. Record the results and create graphs of the results.
You should have a graph showing the error as a function of the number of processors,
and you should have a graph showing the error as a function of the elapsed time.

What to submit

Your submission document should include the following:
1) A copy of the Monte Carlo source program;
2) Screenshot from compiling your Monte Carlo program with Paraguin;
3) A copy of your job submission file;
4) Screenshot of the results from running your program;
5) And copies of your graphs.

 11

Appendix A – Matrix Multiplication Skeleton Program

#define N 512

#ifdef PARAGUIN
typedef void* __builtin_va_list;
#endif

#include <stdio.h>
#include <math.h>
#include <sys/time.h>

int __guin_rank = 0;

void print_results(char *prompt, double a[N][N]);

int main(int argc, char *argv[])
{
 int i, j, error = 0;
 double a[N][N], b[N][N], c[N][N];
 char *usage = "Usage: %s file\n";
 FILE *fd;
 double elapsed_time;
 struct timeval tv1, tv2;

 if (argc < 2) {
 fprintf (stderr, usage, argv[0]);
 error = -1;
 }

 if ((fd = fopen (argv[1], "r")) == NULL) {
 fprintf (stderr, "%s: Cannot open file %s for reading.\n",
 argv[0], argv[1]);
 fprintf (stderr, usage, argv[0]);
 error = -1;
 }

TODO: Broadcast the error have have all processors exit is there is an exit

 // Read input from file for matrices a and b.

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 fscanf (fd, "%lf", &a[i][j]);

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 fscanf (fd, "%lf", &b[i][j]);

 fclose(fd);

 12

 #pragma paraguin begin_parallel
 // This barrier is here so that we can take a time stamp
 // Once we know all processes are ready to go.
 #pragma paraguin barrier
 #pragma paraguin end_parallel

 // Take a time stamp
 gettimeofday(&tv1, NULL);

TODO: Start a parallel region
TODO: Scatter/Broadcast the input
TODO: Create a loop nest to compute the matrix multiplication of matrices a

and b and store the result in matrix c. The outermost loop should be
executed in parallel.

TODO: Gather the partial answers
TODO: End the parallel region

 // Take a time stamp. This won't happen until after the master
 // process has gathered all the input from the other processes.
 gettimeofday(&tv2, NULL);

 elapsed_time = (tv2.tv_sec - tv1.tv_sec) +
 ((tv2.tv_usec - tv1.tv_usec) / 1000000.0);

 printf ("elapsed_time=\t%lf (seconds)\n", elapsed_time);

 // print result
 print_results("C = ", c);

}

void print_results(char *prompt, double a[N][N])
{
 int i, j;

 #pragma paraguin begin_parallel
 printf ("\n\n%s\n", prompt);
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 printf(" %.2lf", a[i][j]);
 }
 printf ("\n");
 }
 printf ("\n\n");
 #pragma paraguin end_parallel
}

