
1

ITCS 4145/5145 Fall 2013
Assignment 5 CUDA Programming Assignment

B. Wilkinson, Nov 21, 2013 (minor change to measuring first launch)

The purpose of this assignment is to become familiar with writing, compiling and executing CUDA programs.
We will use cci-grid08, which has a 2496-core NVIDIA K20 GPU.1 In Part 1, you are asked to compile an
existing CUDA program that adds two vectors using a given make file. In Part 2, you are asked to write a
matrix multiplication program in CUDA and test on the GPU with various grid and block sizes. In Part 3, you
are asked to write a sorting program using the RankSort algorithm. Part 4 is for extra credit – a CUDA program
that implements perform Odd-Even Transposition Sort. In all your programs, a sequential version is to be
executed that runs on the CPU alone, for comparison purposes.

For this assignment, you may use your own computer if you have a NVIDIA GPU card and you
install NVIDIA CUDA Toolkit, instead of using coit-grid08. However you may not get as great a
speed-up, and finally you may wish to test on the K20.

Preliminaries (2%)

Login to cci-gridgw.uncc.edu and ssh to cci-grid08. You will be able to see your home directory on
the cluster. Create a directory called Assign5 and cd into this directory.

GPU limitations. Display the details of the GPU(s) installed by issuing the command:

 deviceQuery

Keep the output as you may need it. In particular, note the maximum number of threads in a block and
maximum sizes of blocks and grid. Also invoke the bandwidth test by issuing the command:

 bandwidthTest

Note the maximum host to device, device to host, and device to device bandwidths.

Part 1 Compiling and executing vector addition CUDA program
(33%)

In this part, you will compile and execute a CUDA program to perform vector addition. This program
is given below:

// VectorAdd.cu
#include <stdio.h>
#include <cuda.h>
#include <stdlib.h>
#define N 10 // size of vectors

1 Two other GPU server are available, coit-grid06.uncc.edu and cci-grid07, both of which have 448-core NVIDIA C2050
GPUs.

2

#define B 1 // blocks in the grid
#define T 10 // threads in a block

__global__ void add (int *a,int *b, int *c) {
 int tid = blockIdx.x * blockDim.x + threadIdx.x;
 if(tid < N) {
 c[tid] = a[tid]+b[tid];
 }
}

int main(void) {

int a[N],b[N],c[N];
int *dev_a, *dev_b, *dev_c;

cudaMalloc((void**)&dev_a,N * sizeof(int));
cudaMalloc((void**)&dev_b,N * sizeof(int));
cudaMalloc((void**)&dev_c,N * sizeof(int));

for (int i=0;i<N;i++) {

a[i] = i;
b[i] = i*1;

}

cudaMemcpy(dev_a, a , N*sizeof(int),cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b , N*sizeof(int),cudaMemcpyHostToDevice);
cudaMemcpy(dev_c, c , N*sizeof(int),cudaMemcpyHostToDevice);

add<<<B,T>>>(dev_a,dev_b,dev_c);

cudaMemcpy(c,dev_c,N*sizeof(int),cudaMemcpyDeviceToHost);

for (int i=0;i<N;i++) {

printf("%d+%d=%d\n",a[i],b[i],c[i]);
}

cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);

return 0;

}

Create a file called VectorAdd.cu containing the vector addition program above. Next, create a file
called Makefile and copy the following into it:

NVCC = /usr/local/cuda/bin/nvcc
CUDAPATH = /usr/local/cuda
NVCCFLAGS = -I$(CUDAPATH)/include

3

LFLAGS = -L$(CUDAPATH)/lib64 -lcuda -lcudart -lm

VectorAdd: VectorAdd.cu
 $(NVCC) $(NVCCFLAGS) -o VectorAdd VectorAdd.cu $(LFLAGS)

Be careful to have a tab here. (Very important)

To compile the program, type make VectorAdd (or make as there is only one build command).
Execute the program by typing the name of the executable (to include the current directory ./), i.e.
./VectorAdd. Confirm the results are correct.

What to submit from this part

Your submission document should include the following:

1) A screenshot of compiling and executing VectorAdd

Part 2 Matrix multiplication (35%)

Modify the CUDA program in Part 1 to perform matrix multiplication with N x N matrices. Use a
square 2-D grid and square 2D block structure. Incorporate the following features to enable
experimentation to be done on speed-up factor:

(a) Different sizes for the matrices – Use dynamically allocated memory and add keyboard input
statements to be to specify N.

(b) Add host code to compute the matrix multiplication on the host only.

(c) Add code to verify that both CPU and GPU versions of vector addition produce the same

correct results

(d) Different CUDA grid/block structures – Add keyboard statements to input different values for:

 Numbers of threads in a block (T)
 Number of blocks in a grid (B)

 Include checks for invalid input. Ensure that GPUs limitations are met from the data given in

deviceQuery (Preliminaries).

(e) Timing -- Add statements to time the execution of the code using CUDA events, both for the

host-only (CPU) computation and with the device (GPU) computation, and display results.
Compute and display the speed-up factor.

Arrange that the code returns to keyboard input after each computation with entered keyboard input
rather than re-starting the code and having kernel code re-launch. Include print statements to show all
input values.

4

During code development, it is recommended that the code is recompiled and tested after adding each
of (a), (b), (c), (d) and (e).

Modify the make file according to compile the code. Execute your code and experiment with four
different combinations of T, B, and N and collect timing results including speed-up factor. What is the
effect of the first kernel launch with one combination of T, B, and N, i.e. record the execution time
when the first time the kernel is executed and subsequent execution times the same kernel is executed
with the same parameters without exiting the main program? Discuss the results.

What to submit from this part

Your submission document should include the following:

1) A properly commented listing of your matrix multiplication program with the features (a) – (e)
specified incorporated.

2) Screenshots of executing your matrix multiplication program with four different combinations
of T, B, and N, displaying values and the speedup factor in each case.

3) An experiment showing the effect of the first kernel launch with one combination of T, B, and
N.

4) Discussion of the results

Part 3 Sorting (30%)

Write a CUDA program that implements Ranksort. Incorporate the following features to enable
experimentation to be done on speed-up factor:

(a) Generate numbers to be sorted using a random number generator. Add keyboard input
statements to be to specify the numbers of numbers.

(b) Add host code to compute sorting on the host only.

(c) Add code to verify that both CPU and GPU versions of vector addition produce the same

correct results

(d) Different CUDA grid/block structures – Add keyboard statements to input different values for:

 Numbers of threads in a block (T)
 Number of blocks in a grid (B)

 Include checks for invalid input. Ensure that GPUs limitations are met from the data given in

deviceQuery (Preliminaries).

(e) Timing -- Add statements to time the execution of the code using CUDA events, both for the

host-only (CPU) computation and with the device (GPU) computation, and display results.
Compute and display the speed-up factor.

5

Execute your code and experiment with four different combinations of T, B, and N and collect timing
results including speed-up factor.

What to submit from this part

Your submission document should include the following:

1) A properly commented listing of your sorting program with the features (a) – (e) specified
incorporated.

2) Screenshots of executing your sorting program with four different combinations of T, B, and N,
displaying values and the speedup factor in each case.

3) Discussion of the results

Part 4 Extra credit (undergraduate and graduate students, +30%).

Write a CUDA program to perform Odd-Even Transposition Sort. Incorporate features listed in Part 3.

What to submit from this part

As in Part 3

Grading

Every task and subtask specified will be allocated a score so make sure you clearly identify each part
you did. The quality of conclusions and discussions will factor into the grading.
What to submit

Assignment Submission

Produce a document that show that you successfully followed the instructions and performs all tasks
by taking screen shots and include these screen shots in the document. Give sufficient screen shots to
demonstrate each task and sub-task has been fully completed. Provide insightful conclusions. Submit
by the due date as described on the course home page. Include all code, not as screen shots but
complete properly documented code listing.

