
1

Assignment 3
MPI Tutorial

Compiling and running MPI programs

B. Wilkinson and Clayton Ferner: Modification date: Sept 16, 2014

This assignment is a tutorial to learn how to execute MPI programs and explore their
characteristics. First you will test your programs on your own computer using the provided
virtual machine (or with a native Linux installation). All the programs are provided. Both
command line (Part 1) and using Eclipse (Part 2) will be explored. Then, you will test the
programs on a remote cluster (Part 3) and measure the speedup. Part 4 is for graduate students
(extra credit for undergraduates)

Preliminaries – Software Environment

MPI is process-based where individual processes can execute at the same time on local or
distributed computers and explicit message-passing routines are used to pass data between the
processes.

You will need MPI software to compile and execute MPI programs. The provided VM has
OpenMPI and Eclipse-PTP already installed. The sample MPI programs and data files are in
~/ParallelProg/MPI. Eclipse-PTP is needed for Part 2.

If you are using your own Linux installation, you will need to install MPI software such as
OpenMPI or MPICH. How to install OpenMPI is described under the link “Installing OpenMPI”
found at from the link “VM software” on the course home page (Pre-assignment). The sample
MPI programs and data files can also be found there. Installing Eclipse-PTP can be found in link
“Installing Java and Eclipse-PTP”.

Cd to the directory where the sample MPI programs reside (~/ParallelProg/MPI).

Part 1 Using Command Line (Graduates 30%, Undergraduates 35%)

Hello World Program

A simple hello world program, called hello.c, is given below demonstrating MPI sends and
receives. The program is provided within the MPI directory.

#include <stdio.h>
#include "mpi.h"

main(int argc, char **argv) {
 char message[256];
 int i,rank, size, tag=99;
 char machine_name[256];

 MPI_Status status;

2

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 gethostname(machine_name, 255);

 if(rank == 0) {
 printf ("Hello world from master process %d running on %s\n",rank,machine_name);
 for (i = 1; i < size; i++) {
 MPI_Recv(message, 256, MPI_CHAR, i, tag, MPI_COMM_WORLD, &status);
 printf("Message from process = %d : %s\n", i, message);
 }
 } else {
 sprintf(message, "Hello world from process %d running on %s",rank,machine_name);
 MPI_Send(message, 256, MPI_CHAR, 0, tag, MPI_COMM_WORLD);
 }

 MPI_Finalize();
 return(0);
}

MPI routines are shown in red.

Task 1 Compiling and Executing Hello World Program

Compile and execute the hello world program. To compile, issue the command:

mpicc hello.c -o hello

from the MPI directory. Execute with the command:

mpiexec -n 4 ./hello

which will use 4 processes. So far, the four instances of the program will execute just on one
computer. You should get the output:

Hello world from master process 0 running on …
Message from process = 1 : Hello world from process 1 running on …
Message from process = 2 : Hello world from process 2 running on …
Message from process = 3 : Hello world from process 3 running on …

Comment on the how MPI processes map to processors/cores. Try 16 processes and see the CPU
usage (in Windows, the Task Manager).

Experiments with Code

Modify the hello world program by specifying the rank and tag of the receive operation to
MPI_ANY_SOURCE and MPI_ANY_TAG, respectively. Recompile the program and execute.
Is the output in order of process number? Why did the first version of hello world sort the output
by process number but not the second?

3

Include in your submission document for Task 1:

1. A screenshot or screenshots showing:

a. Compilation of the hello world program
b. Executing the program with its output

2. The effects of changing the number of processes
3. The effects of using wild cards (MPI_ANY_SOURCE and MPI_ANY_TAG)
4. Answer to the question about process order.

Matrix Multiplication

Multiplication of two matrices, A and B, produces matrix C whose elements, ci,j(0 <= i <n, 0 <=
j <m), computed as follows:ܥ௜,௝ ൌ ∑ ܽ௜.௝

௟ିଵ
௞ୀ଴ ܾ௞,௝ where A is an n x l matrix and B is a i x m

matrix:

The sequential code to compute A x B (assumed square N x N) could simply be:

 for (i = 0; i < N; i++) // for each row of A
 for (j = 0; j < N; j++) { // for each column of B
 c[i][j] = 0;
 for (k = 0; k < N; k++)
 c[i][j] = c[i][j] + a[i][k] * b[k][j];
 }

It requires N3 multiplications and N3 additions with a sequential time complexity of O(N3). It is
very easy to parallelize as each result is independent. Often the size of matrices (N) is much
larger than number of processes (P)1, so rather than having one process for each result, we can
have each process compute a group of result elements. In MPI, a convenient arrangement is to
take a group of rows of A and multiply that with B to create a groups of rows of C, which can
then be gathered using MPI_Gather():

1 Usually we map one process onto each processor so process and processor are the same, but not necessarily. It is
important not to confuse process with processor.

4

This does require B to be broadcast to all processes. A simple MPI matrix multiplication
program, called matrixmult.c, is given below and provided within the MPI directory:

#define N 512
#include <stdio.h>
#include <sys/time.h>
#include "mpi.h"

void print_results(char *prompt, double a[N][N]) {
 int i, j;
 printf ("\n\n%s\n", prompt);
 for (i = 0; i< N; i++) {
 for (j = 0; j < N; j++) {
 printf(" %.2lf", a[i][j]);
 }
 printf ("\n");
 }
 printf ("\n\n");
}

int main(int argc, char *argv[]) {
 int i, j, k, error = 0;
 double a[N][N], b[N][N], c[N][N];

 char *usage = "Usage: %s file\n";
 FILE *fd;

 double elapsed_time;
 struct timeval tv1, tv2;

MPI_Status status; // MPI variables
 int rank, P, blksz;

 MPI_Init(&argc, &argv); // Start MPI
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &P);

if ((rank == 0) && (N % P != 0)) { // Program only works if P divides evenly into N
 error = -1;
 printf("Error -- N/P must be an integer\n");
 } else blksz = N/P;

 if(rank == 0) { // open file
 if (argc< 2) {
 fprintf (stderr, usage, argv[0]);
 error = -1;
 }
 if ((fd = fopen (argv[1], "r")) == NULL) {

rank

i blksz

A B C

5

 fprintf (stderr, "%s: Cannot open file %s for reading.\n",argv[0], argv[1]);
 fprintf (stderr, usage, argv[0]);
 error = -1;
 }
 }

 if(rank == 0) { // broadcast any error and close down if error
 for (i = 1 ; i< P; x++) {
 MPI_Send(&error, 1, MPI_INT, i, 0, MPI_COMM_WORLD);
 }
 } else {
 MPI_Recv(&error, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
 }

 if (error != 0) { //terminate the process
 printf("This is process %d... An error occurred...I am shutting down....\n",rank);
 MPI_Finalize();

return 0;
 }

 if (rank == 0) { // read file
 for (i = 0; i< N; i++)
 for (j = 0; j < N; j++)
 fscanf (fd, "%lf", &a[i][j]);
 for (i = 0; i< N; i++)
 for (j = 0; j < N; j++)
 fscanf (fd, "%lf", &b[i][j]);
 }

 MPI_Barrier(MPI_COMM_WORLD); // Add a barrier prior to the time stamp.

 if (rank == 0) gettimeofday(&tv1, NULL);

 MPI_Scatter(a, blksz*N, MPI_DOUBLE, a, blksz*N, MPI_DOUBLE, 0, MPI_COMM_WORLD);// Scatter a
 MPI_Bcast(b, N*N, MPI_DOUBLE, 0, MPI_COMM_WORLD); // Broadcast the input matrix b

 for(i = 0 ; i < blksz; i++) {
 for(j = 0 ; j < N ; j++) {
 c[i][j] = 0;
 for(k = 0 ; k < N ; k++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
 }

 MPI_Gather(c, blksz*N, MPI_DOUBLE, &c, blksz*N, MPI_DOUBLE, 0, MPI_COMM_WORLD);

 if(rank == 0) {
 gettimeofday(&tv2, NULL);
 elapsed_time = (tv2.tv_sec - tv1.tv_sec) + ((tv2.tv_usec - tv1.tv_usec) / 1000000.0);
 printf ("elapsed_time=\t%lf (seconds)\n", elapsed_time);

// print_results("C = ", c); // used to check output
 }
 MPI_Finalize();
 return 0;
}

The program reads a data file than contains the two floating point N x N matrices to multiply
together and prints out the resultant matrix. N is defined as 512 (i.e. 512 x 512 matrices). The

6

name of the input file is given as a command line argument. An input test file
input2x512x512Doubles is provided and also the answer, output512x512mult, which is used
for checking results.

Task 2Compiling and Executing Matrix Multiplication Program

Compile and execute the matrix multiplication program. To compile, issue the command:

mpicc matrixmult.c -o matrixmult

from the MPI directory.

The program reads the input file. To execute the program, you will need to add the name of that
file (input2x512x512Doubles) as the final command line argument after your program on the
mpiexec command, for example:

mpiexec -n 4 ./matrixmult input2x512x512Doubles

One can experiment with a different number of processes. Unfortunately generally one will not
see a particular increase in speed on a personal computer because of the message passing
overhead. (VirtualBox limits the number of cores available. Go to Machines > Settings >
System > Processors to alter and reboot the OS.)

To check answers are correct, remove the // comments in front of theprint_results routine,
recompile, execute with re-directing the printout to a file, and use the diff command:

mpiexec -n 4 ./matrixmult input2x512x512Doubles > output.txt

diff output512x512Mult output.txt

Typical output is:

Include in your submission document for Task 2:

A screenshot or screenshots showing:

a. Compilation of the multiplication program
b. Executing the program with its output, with different numbers of processes
c. Use of the diff command

7

Part 2 Eclipse-PTP (Graduates 30%, Undergraduates 35%)

Eclipse-PTP (Eclipse with the tools for Parallel Applications Developers) can be used to compile
and execute MPI programs. In Eclipse, there are different project types for different
environments. MPI programs are done as C/C++ projects with build/compilation for MPI pre-
configured in Eclipse-PTP. Programs here will be C projects.

Start Eclipse on the command line by typing:

eclipse

Create/select a workbench location within the MPI directory (i.e.
~/ParallelProg/MPI/workspace) and go to the workbench. This workspace will be empty until
we create projects for the programs we want to execute:

Visible when cursor over this area

Projects

8

Task 1 Creating and executing Hello world program through Eclipse

(a) Creating project and adding source files

Create new C project (File > New > C project) called Hello of type “MPI Empty C project”2
with default settings:

2 Eclipse comes with sample programs pre‐installed for C, OpenMP, and MPI (“Hello World” and MPI Pi), which are
useful for testing the environment.

Executable:
MPI Empty C

Project Linux GCCProject name

Default
settings

Notice
default
command
is mpicc

Next

Empty project
created

9

Adding program source file

Select Hello project and create a source folder called src (File > New >Source Folder or right
click project > New >Source Folder):

Source
Folder

Source
Folder
created

10

Expand the Hello project and select the newly generated src folder. Select File > Import >
General > File System:

From “Import from directory”, browse for the directory that holds your hello.c files
(~/ParallelProg/MPI/). Click OK. Select the hello.c file to copy into the MPI/src project
folder.3

3In a later example, we will demonstrate using a link to the source file at their original location rather than copying it, which is
usually better.

Directory to find hello.c Select hello.c

11

(b) Build and Compile

Basic steps:

1. Set how to build (compile) project in Properties > ... Build

2. Build project (compile to create executable)

3. Set how to execute compiled program in Run Configurations

4. Run (execute) using the specified run configurations

2. Build

3. Set Run
Configurations

1. Right‐click
project to get
to Properties.
Leads to how
project should

be built.

4. Run as

In this project,
we will take the
standard build
configuration so
this will not be

altered.

12

Build project

Click Build icon (Hammer) to build the project (default “Debug” option):

Although building will happen automatically when a project is executed next, sometimes it is
handy to know if there are any build errors first.

Execution

To execute the program, first the Run Configurations need to be set up that specify local
execution, the software environment, etc. Select Run Configurations

Build

Notice
build
commands.
Done in
two steps –
stroll to
see.

Yes

Run
Configurations

13

Select “Parallel Application” and click the new configuration button:

Create a new run configuration called Hello. In the Resource tab, select the Target Type as
“Open-MPI-Generic-Interactive”, the connection type as “Local”.4 Set the number of
processes to say 4.Apply.

4 Selecting “Local” will generate a message confirming you want this and create local resources to do this. Select
“Don’t ask to run command again for this configuration” in the Run Command message when it appears to stop the
message. The message is most relevant when doing both local and remote executions.

New
configuration

Parallel
Application

Local

Configuration
name

Number of
processes

Apply

14

In the Application tab, set the Project name to “Hello” and browse for the path to the executable
(... /workspace/MPI/Debug/Hello).

Click RUN. (If RUN is grayed out, there are build or compile errors that prevent execution.)

Path to
executable

Run

Apply

Output

15

Include in your submission document for Task 1:

A screenshot or screenshots showing executing the hello world program with its output through
Eclipse

Task 2 Creating and executing Matrix Multiplication program through
Eclipse

The process for the matrix multiplication code is similar. We will go through the steps, this time
not copying the source file but referring to it in the original location, which generally is a better
approach. One additional step for the matrix multiplication program is to add an argument
specifying the input file input2x512x512Doubles in the Run Configuration.

Create an MPI project called MatrixMult and a source directory called src:

Now we will link source file matrixmult.c rather than copy it. Select the source folder src, right
click, and select NEW > FILE:

src folder

MatrixMult
project

16

Click on Advanced>> and enter the file name (matrixmult.c), check “Link to file in the file
system” box and enter the full path to the source file (browse for file) and Finish:

You should now see the source file:

Check

New File

Advanced

File name
to be used
in project

File
(full path)

Browse

17

Run Configuration. Now create a run configurations (MatrixMult). As before, in the Resource
tab, select the Target Type as “Open-MPI-Generic-Interactive”, the connection type as
“Local”. Set the number of processes.

In the Arguments tab, add the full path to the input file input2x512x512Doubles as an argument:

Make be sure to comment out the print_result() function call so that the output of the resulting
matrix is not printed to the console. Then run the project:

Full path to
input file

18

Re-directing Output

To check that the code produces the correct answer, the print statement is uncommented and the
output re-directed to a file, which can then be compared with the provided output file,
output512x512Mult. Re-directing output in Eclipse is done, not as an argument, but in the
Common tab. Check File and File System. Browse for the file and select:

Output

Output
File

Full path to
output File

File System

19

Uncomment the print_result() function call to output the result matrix and run the project.
Using the diff command will have to be done on the comment line as before.

Include in your submission document for Task 2:

1. A screenshot or screenshots showing executing matrix multiplication program with its output

through Eclipse
2. Screenshot or screenshots using the diff command showing output is correct.

Part 3 Using a remote cluster (Graduates 30%, Undergraduates 30%)

Now we will use the UNC-C cluster, as specified on the course home page. Details on using the
cluster can be found on the course home page. Carefully review these notes.

Task 1 Executing MPI programs

Connect to the remote cluster and make a directory in your home directory called MPI that will
be used for the MPI programs, and cd into that directory. Transfer all your MPI source programs
hello.c and matrixmult.c from the previous parts to that directory.

Compile and execute the MPI programs:

 Hello world program, hello.c
 Matrix multiplication program, matrixmult.c

on the remote cluster with 1, 8, 16, and 32 processors, using four servers, cci-gridgw.uncc.edu,
cci-grid05, cci-grid7, and cci-grid08. Establish the results are correct.

Include in your submission document for Task 1:

1. A screenshot showing the execution of the hello.c program on the remote cluster from
your account

2. A screenshot showing the execution of the matrixmult.c program on the remote cluster
from your account

3. For matrix multiplication, show the results of running the diff command comparing the
parallel output with the sequential outputs

Task 2: Record and analyze results

Record the elapsed times for the parallelized program running on the different number of
processors as well as the elapse time for the sequential version. Create a graph of these results
using a graphing program, such as a spreadsheet. You have to create a graph of the execution
times compared with sequential execution and the speedup curve with linear speedup. These
graphs should look something like the figures but the shape of the curves do not. Your curves

20

may show something entirely different. The figures below are just examples. Make sure that you
provide axes labels, a legend (of there is more than one line) and a title to the graphs. Include
copies of the graphs in your submission document.

Example Execution Time Graph

Example Speedup Graph

0

0.5

1

1.5

2

2.5

0 10 20 30 40

Ex
e
cu
ti
o
n
 T
im

e
 (
se
co
n
d
s)

Number of Processors

Parallel Execution

Sequential Execution

0

5

10

15

20

25

30

35

40

0 10 20 30 40

Sp
e
e
d
u
p

Number of Processors

Speedup of Matrix Multiplication

Speedup

Ideal Speedup

Execution time of Matrix Multiplication

21

Include in your submission document for Task 2:

1. A copy of your matrix multiplication program
2. A copy of your execution time and speedup graphs
3. A screenshot or screenshots showing:

a. Compilation of the program using mpicc
b. Results of running the diff command comparing the parallel output with the

sequential outputs
4. Copies of your graphs

Part 4 Changing the matrix multiplication program to handle any value
of N. For graduates students (10%) Extra credit for undergraduates (+10%)

The matrix multiplication code, as written, only works if P divides evenly into N. Modify the
program to handle any value of N. The stored matrices and messages should not be any larger
than necessary, i.e. simply padding out arrays with zeros is not acceptable.

Include in your submission document for Part 4:

1. Matrix multiplication program code that handles any value of N and screenshot showing it
executing correctly.

Grading

Every task and subtask specified will be allocated a score so make sure you clearly identify each
part/task you did. Make sure you include everything that is specified in the “Include in your
submission document” section at the end of each part. Include all code, not as screen shots of
the listings but complete properly documented code listing in the report.

Assignment Submission

Produce a single pdf document that show that you successfully followed the instructions and
performs all tasks by taking screenshots and include these screenshots in the document. Submit
by the due date as described on the course home page.

