Assignment 3
MPI Tutorial
Compiling and running MPI programs

B. Wilkinson and Clayton Ferner: Modification date: Sept 16, 2014

This assignment is a tutorial to learn how to execute MPI programs and explore their
characteristics. First you will test your programs on your own computer using the provided
virtual machine (or with a native Linux installation). All the programs are provided. Both
command line (Part 1) and using Eclipse (Part 2) will be explored. Then, you will test the
programs on a remote cluster (Part 3) and measure the speedup. Part 4 is for graduate students
(extra credit for undergraduates)

Preliminaries — Software Environment

MPI is process-based where individual processes can execute at the same time on local or
distributed computers and explicit message-passing routines are used to pass data between the
processes.

You will need MPI software to compile and execute MPI programs. The provided VM has
OpenMPI and Eclipse-PTP already installed. The sample MPI programs and data files are in
~/ParallelProg/MPI. Eclipse-PTP is needed for Part 2.

If you are using your own Linux installation, you will need to install MPI software such as
OpenMPI or MPICH. How to install OpenMPI is described under the link “Installing OpenMPI”
found at from the link VM software” on the course home page (Pre-assignment). The sample
MPI programs and data files can also be found there. Installing Eclipse-PTP can be found in link
“Installing Java and Eclipse-PTP”.

Cd to the directory where the sample MPI programs reside (~/ParallelProg/MPI).
Part 1 Using Command Line (Graduates 30%, Undergraduates 35%)
Hello World Program

A simple hello world program, called hello.c, is given below demonstrating MPI sends and
receives. The program is provided within the MPI directory.

#include <stdio.h>
#include "mpi.h"

main(int argc, char **argv) {
char message[256];
inti,rank, size, tag=99;
char machine_name[256];

MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

gethostname(machine_name, 255);

if(rank == 0) {
printf ("Hello world from master process %d running on %s\n",rank,machine_name);
for (i=1;i<size;i++){
MPI_Recv(message, 256, MPI_CHAR, i, tag, MPI_COMM_WORLD, &status);
printf(*Message from process = %d : %s\n", i, message);

} else {
sprintf(message, "Hello world from process %d running on %s" ,rank,machine_name);

MPI_Send(message, 256, MPI_CHAR, 0, tag, MPI_COMM_WORLD);
}

MPI_Finalize();
return(0);

}
MPI routines are shown in red.
Task 1 Compiling and Executing Hello World Program
Compile and execute the hello world program. To compile, issue the command:
mpicc hello.c -0 hello
from the MPI directory. Execute with the command:
mpiexec -n 4 ./hello

which will use 4 processes. So far, the four instances of the program will execute just on one
computer. You should get the output:

Hello world from master process O running on ..

Message from process = 1 : Hello world from process 1 running on ..
Message from process 2 - Hello world from process 2 running on ..
Message from process = 3 : Hello world from process 3 running on ..

Comment on the how MPI processes map to processors/cores. Try 16 processes and see the CPU
usage (in Windows, the Task Manager).

Experiments with Code

Modify the hello world program by specifying the rank and tag of the receive operation to
MPI_ANY_SOURCE and MPI_ANY_TAG, respectively. Recompile the program and execute.
Is the output in order of process number? Why did the first version of hello world sort the output
by process number but not the second?

Include in your submission document for Task 1:

1. A screenshot or screenshots showing:
a. Compilation of the hello world program
b. Executing the program with its output
2. The effects of changing the number of processes
3. The effects of using wild cards (MP1_ANY_SOURCE and MPI_ANY_TAG)
4. Answer to the question about process order.

Matrix Multiplication
Multiplication of two matrices, A and B, produces matrix C whose elements, ¢;;(0 <=1i<n, 0 <=

j <m), computed as follows:C; ; = ¥y a; ; by, ; Where A is an n x | matrix and B is a i x m
matrix:

_ Column S
Multiply j i reLic,Tlts
2\

Row
|/ .

A x B = C

'
|

The sequential code to compute A x B (assumed square N x N) could simply be:

for (i = 0; 1 < N; i++) // Tor each row of A
for g =0; jJ <N; j+t) { // for each column of B
c[illi] = O;

for (k = 0; k < N; k++)
Y cliliy]l = clillil + a[i]l[k] * bIK]L[i];

It requires N* multiplications and N* additions with a sequential time complexity of O(N®). It is
very easy to parallelize as each result is independent. Often the size of matrices (N) is much
larger than number of processes (P)*, so rather than having one process for each result, we can
have each process compute a group of result elements. In MPI, a convenient arrangement is to
take a group of rows of A and multiply that with B to create a groups of rows of C, which can
then be gathered using MPI_Gather():

! Usually we map one process onto each processor so process and processor are the same, but not necessarily. It is
important not to confuse process with processor

rank

blksz I i Ea———se e

This does require B to be broadcast to all processes. A simple MPI matrix multiplication
program, called matrixmult.c, is given below and provided within the MPI directory:

#define N 512
#include <stdio.h>
#include <sys/time.h>
#include "mpi.h"

void print_results(char *prompt, double a[N][N]) {
inti,j;
printf ("\n\n%s\n", prompt);
for (i =0; i< N; i++) {
for G =0;) <N; j++) {
printf(" %.21f", a[il[j]);

}
printf ("\n");

printf ("\n\n");
}

int main(int argc, char *argv[]) {
inti,j, k, error =0;
double a[N][N], b[N][N], c[N][N];

char *usage = "Usage: %s file\n";
FILE *fd;

double elapsed_time;
struct timeval tvl, tv2;

MPI_Status status; // MPI variables
int rank, P, blksz;

MPI_Init(&argc, &argv); // Start MPI
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &P);

if (rank ==0) && (N % P !'=10)) { // Program only works if P divides evenly into N
error = -1;
printf("Error -- N/P must be an integer\n");

} else blksz = N/P;

if(rank == 0) { // open file
if (argc< 2) {
fprintf (stderr, usage, argv[0]);
error = -1,

}
if ((fd =fopen (argv[1], "r")) == NULL) {

fprintf (stderr, "%s: Cannot open file %s for reading.\n",argv[0], argv[1]);
fprintf (stderr, usage, argv[0]);
error =-1;

}

if(rank == 0) { // broadcast any error and close down if error
for(i=1;i<P; x++){
MPI_Send(&error, 1, MPI_INT, i, 0, MPI_COMM_WORLD);
}

}else {
MPI_Recv(&error, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
}

if (error I=0){ /fterminate the process
printf("This is process %d... An error occurred...| am shutting down....\n" rank);
MPI_Finalize();

return O;

}

if (rank ==0) { // read file
for (i = 0; i< N; i++)
for j =0; j <N;j j++)
fscanf (fd, "%lIf", &ali][j]);
for (i = 0; i< N; i++)
for (j =0;) <N; j++)
fscanf (fd, "%lIf", &b[i][j]);
}

MPI_Barrier(MPI_COMM_WORLD); // Add a barrier prior to the time stamp.
if (rank == 0) gettimeofday(&tvl, NULL);

MPI_Scatter(a, blksz*N, MPI_DOUBLE, a, blksz*N, MPI_DOUBLE, 0, MPI_COMM_WORLD);// Scatter a
MPI_Bcast(b, N*N, MPI_DOUBLE, 0, MPI_COMM_WORLD); // Broadcast the input matrix b

for(i=0;i<blksz; i++) {
forG=0;j<N;j++){
c[il[j] = 0;
for(k =0; kK <N; k++) {
c[il[i] += a[il[k] * b[KI[l;

}

MPI_Gather(c, blksz*N, MPI_DOUBLE, &c, blksz*N, MPI_DOUBLE, 0, MPI_COMM_WORLD);

if(rank == 0) {
gettimeofday(&tv2, NULL);
elapsed_time = (tv2.tv_sec - tvl.tv_sec) + ((tv2.tv_usec - tvl.tv_usec) / 1000000.0);
printf ("elapsed_time=\t%lIf (seconds)\n", elapsed_time);

1 print_results("C =", c); // used to check output
MPI_Finalize();
return O;

}

The program reads a data file than contains the two floating point N x N matrices to multiply
together and prints out the resultant matrix. N is defined as 512 (i.e. 512 x 512 matrices). The

name of the input file is given as a command line argument. An input test file
input2x512x512Doubles is provided and also the answer, output512x512mult, which is used
for checking results.
Task 2Compiling and Executing Matrix Multiplication Program
Compile and execute the matrix multiplication program. To compile, issue the command:

mpicc matrixmult.c -o matrixmult
from the MPI directory.
The program reads the input file. To execute the program, you will need to add the name of that
file (input2x512x512Doubles) as the final command line argument after your program on the
mpiexec command, for example:

mpiexec -n 4 ./matrixmult input2x512x512Doubles
One can experiment with a different number of processes. Unfortunately generally one will not
see a particular increase in speed on a personal computer because of the message passing
overhead. (VirtualBox limits the number of cores available. Go to Machines > Settings >

System > Processors to alter and reboot the OS.)

To check answers are correct, remove the // comments in front of theprint_results routine,
recompile, execute with re-directing the printout to a file, and use the diff command:

mpiexec -n 4 ./matrixmult input2x512x512Doubles > output.txt
diff output512x512Mult output.txt

Typical output is:

Include in your submission document for Task 2:

A screenshot or screenshots showing:
a. Compilation of the multiplication program
b. Executing the program with its output, with different numbers of processes
c. Use of the diff command

Part 2 Eclipse-PTP (Graduates 30%, Undergraduates 35%)

Eclipse-PTP (Eclipse with the tools for Parallel Applications Developers) can be used to compile
and execute MPI programs. In Eclipse, there are different project types for different
environments. MPI programs are done as C/C++ projects with build/compilation for MPI pre-
configured in Eclipse-PTP. Programs here will be C projects.

Start Eclipse on the command line by typing:
eclipse
Create/select ~a workbench location within the MPI directory (i.e.

~/ParallelProg/MPIl/workspace) and go to the workbench. This workspace will be empty until
we create projects for the programs we want to execute:

Visible when cursor over this area

% Ubuntu-64 [Running] - Cracle VM VirtualBox
| Machine View Devices Help

e Edit Source Refactor Navigate Search Project Run window Help

5
dv

=) c/C++ - Eclipse

B &oava |Bic/cr+

[¢5 Project Explorer 88 fEour = s o |
-

Anoutline is not available

119 O m) ¢

Projects

B console 2

Mo consoles to display at this time.

TILEREEEEL

BopP @0 ®6lrgtad

Task 1 Creating and executing Hello world program through Eclipse

(a) Creating project and adding source files

Create new C project (File > New > C project) called Hello of type “MPI Empty C project’
with default settings:

Executable:
MPI Empty C

Project name Project Linux GCC

" Utnmtu-64 unming] - Oracie ¥M ViaBor 8 8
Machine View Dewces Heip

{

TLEEECECLEEL RS

"5 U4 fuerien - Orace YW Vitiatioe. 0 80

Machne View Devices velp
Eclipse

o o
Default E B. E;
settings —7f3 e
Notice E E
default 4 kS ‘
command |a] a]
is mpicc kg 2.
©) e
= =
= =
0 ol ‘
I L L

osFEad Diimon Hi BOF/¥Sw0 Bimmon |

|
Empty project
created

? Eclipse comes with sample programs pre-installed for C, OpenMP, and MPI (“Hello World” and MPI Pi), which are
useful for testing the environment.

Adding program source file

Select Hello project and create a source folder called src (File > New >Source Folder or right
click project > New >Source Folder):

4 Libunis 64 Punnng] - Drace YM Vitusios . - -] 4 Funrungl - Orace VM Venssthon ® . - — -
—— pow Devees 1en

Source
Folder

T T EEEEL L L EEL
EEELLLLEEL L

1 FErI BT EDTTE || FErETIFETE

%7 Ubuntu-64 [Running) - Oracle VM VirtualBox e (2]
Machine View Devices Help
T
G
| 5 v] 00 « P R) -
Sl - Q B &ava | Eigics
Project Explorer H =9 ol - Eoul Lt - |
Source - A% v T B
= ¥ 5 Hello An outline is not available.
=R
Folder = » o includes
| osec |
created | E
i
a
[& console 2 e =]
No consoles to display at this time.
® ————
& fHellofsre
I FEF B N |
2 == o=)

Expand the Hello project and select the newly generated src folder. Select File > Import >
General > File System:

= - | - -
Ubuntu-64 [Running] - Gricse VM Viesalioe B [157 s 64 Poneing] - Oonke VM Vimalion []
M View Devices relg

I EEECELLEEL CE
L EEELL L EELLCE

FEFIECTIRETN | FEFEEC T

From “Import from directory”, browse for the directory that holds your hello.c files
(~/Par§IIeIProg/MPI/). Click OK. Select the hello.c file to copy into the MPI/src project
folder.

Directory to find hello.c Select hello.c

N\ /

% o6 [Runreng] - Ovacie YM Vo D=L T | % Lt ¢ (Runeng] - Oracie VGmuation

Saturday

L EEEELL L EELE

=
?) "
-
B
B
B
2
Q)
=
of
=

| FEFE RO | WOF¥iw @enpan |

%In a later example, we will demonstrate using a link to the source file at their original location rather than copying it, which is
usually better.

10

(b) Build and Compile

Basic steps:

1. Set how to build (compile) project in Properties > ... Build

2. Build project (compile to create executable)

3. Set how to execute compiled program in Run Configurations

4. Run (execute) using the specified run configurations

1. Right-click
project to get
to Properties.
Leads to how
project should
be built.

In this project,
we will take the
standard build
configuration so
this will not be
altered.

5 Ubuntu-64 [Running] - Oracle VM VirtuatBox

e

&5 Hello 2. Build

View Devices Help

Project Explorer B

* i Includes

consoles

& friellofsrc

& v Bigices
Zoun = o

n outline is not available

4. Run as

3. Set Run
Configurations

B console B

to display at this time,

BOsP =0 @Ereean |

'm [«]

a
[
¥
H

'@@ﬁﬂ@meme

v

&u-64 [Running] - Oracle VM VirtualBox

Devices Help

Openin Hew window

Copy
Delete
source

Rename
Import
Export
! puild Project
Clean Project
Refresh
Close Project

Build Configurations

Make Targets

index

Validate

Showin Remote Systems view
Profiling Tools

Convert to Fortran Project
Comvert To.

profile As

Debug As

Run As

Compare With

Restore from Local History
Run C/C++ Code Analysis
Team

source

Properties

e ()

Anoutline is not available.

Eonsole R

, dis time,

BosFimn ®Erman |

Build project

Click Build icon (Hammer) to build the project (default “Debug” option):

%2 Ubuntu-64 [Running] - Oracle VM VirtualBax T) e
Machine View Devices Help
€/Cos-tFile EdIt S Refactc

Build =———

ﬂ°®ﬂéQmWW@WJMM

Notice

build © Console B
commands. coTBuild Cansale Hello]

Done in Finiahed b \8ing Toret. Meis
two steps - sttt e
stroll to

see.

FEEZECTIECIEN

Although building will happen automatically when a project is executed next, sometimes it is
handy to know if there are any build errors first.

Execution

To execute the program, first the Run Configurations need to be set up that specify local
execution, the software environment, etc. Select Run Configurations

%4 Ubuntu-64 [Running] - Oracie VM VirtualBox e (=) e S
Machine View Devices Help

Run

— Configurations

Yes

COT Build Comale [Hella]
mplcc -0 Hello™ . /sre/hello.o
Finished building target: Hello

12:28:24 Build Finished (tock 25.828ms)

é T
F
P’ pr
=)
B R
é .
EY
]
*
1©)
&)
=
ofl
;

@O/ @ o@D @ Ergean r‘

12

Select “Parallel Application” and click the new configuration button:

Machine View Devices Help
cfCe+ - Eclipse

———————
Ubuntu-64 anl - Oracle VM VirtualBox a

®

i Create a configuration to launch a parallel application

Configure launch settings from this dialog:
Press the ‘Mew’ button to create a configuration of the selected type.
Press the 'Duplicate’ button to copy the selected configuration.
3 - Press the 'Delete’ button to remove the selected configuration
 «Press the 'Filter' button to configure filtering options.

- Edit or view an existing configuration by selecting it.

Configure launch perspective settings from the ‘Perspectives’ preference page.

é Run Configurations
NeW ® create, manage, and run configurations
. h = |
configuration f‘)
é [E cfce+ Application
[¥] Fortran Local Application
= =i Java Applet
" [T Java Application
Parallel @ W
R R ——— Launch Group
Application = B

+¥ SystemTap

Filter matched 8 of 9 items

%)

TR EET:-1

BosFL @0 SErguan

Create a new run configuration called Hello. In the Resource tab, select the Target Type

as

“Open-MPI-Generic-Interactive”, the connection type as “Local”.* Set the number of

processes to say 4.Apply.

|' Ubuntii-64 [Running) - Oracle VM VirtualBox

| Machine View Devices Help
CfC+s - Eclipse

Configuration
name

Run Configurations

x

Local

[E] ¢/C++ Application
cation

B4 Java Applet

[Java Application

Ju Junit

Number of
processes

[Hello
+¥ SystemTap

Filter matched 9 of 10 items

2)

=
=
E
E
| B
&
B
5
(@)
&
—
)
=

| | i Resources

[Create, manage, and run configurations
gnl: Application program not specified

e | Hello
T application| ¢ Arguments | B Environment| Synchronize
Target System Configuration: | Open MPI-Generic-interactive

Connection Type

@ Local () Remote

Basic Options | Advanced Options

> Lau
~ [Parallel Application Number s]2

Options

By node By slot No oversubscribe No local

Prefix:

Hosts

Host file:

Host list:

=]
-

ilable.

Apply

Apply K

Close

orFlad GERrRgmar

* Selecting “Local” will generate a message confirming you want this and create local resources to do this. Select

“Don’t ask to run command again for this configuration” in the Run Command message when it appears to stop the
message. The message is most relevant when doing both local and remote executions.

13

In the Application tab, set the Project name to “Hello” and browse for the path to the executable

(... /workspace/MPI1/Debug/Hello).

A Ubuntu-64 [Runningl - Oracle VM VirtualBox a

Machine View Devices Help
C/Cs+ - Eclipse ty B o ua7Pm i

Create, manage, and run configurations

Create a configuration to launch a parallel application

SILELIEL L

Mame: |Hello

i Resources) Application . #~ Arguments B8 Environment | Synchronize [Common

€ ¢/C++ Application prolecty
[¥] Fortran Local Application Hello
Path to —_— ®i Java Applet Application program:
executable . /home/abwjworkshop/MPi/workspace/Hello/Debug/Hello

Ju Junit
& Launch Group Copy executable from local filesystem
i Parallel Application Pathto local executable:
i Hello
«¥ SystemTap
& Display output from all processes ina console view

[A@ S

/

Revert

®Q

Filter matched 9 of 10items

€/C++ - Eclipse

c/c++ - Eclipse

&' Java | Bhgjce+

L Project Explorer 8 = -]

An outline is not available.
» 4 Binaries
* = Debug
* & includes
¥ §@sre
* [& hello.c

)
=
|B

B

E;\I-«

B console B
xh GBE&E 8-

<terminated> Hello [Parallel Application] Runtime process bda6dat6-bbbb-4cb3-931e-f65d83458295
#PTP job id=3167
Hello world from master process @ running on cciwd462jp-lwws
Message from process = 1 : Hello world from process 1 running on cciwdd2jp- lwws
Message from process = 2 : Hello world from process 2 running om cciwd402jp-lwws
Message from process = 3 : Hello world from process 3 running on cciwd482jp-lwws

BOF/P @0 G Ergnan |

14

Output

Include in your submission document for Task 1:

A screenshot or screenshots showing executing the hello world program with its output through
Eclipse

Task 2 Creating and executing Matrix Multiplication program through
Eclipse

The process for the matrix multiplication code is similar. We will go through the steps, this time
not copying the source file but referring to it in the original location, which generally is a better
approach. One additional step for the matrix multiplication program is to add an argument
specifying the input file input2x512x512Doubles in the Run Configuration.

Create an MPI project called MatrixMult and a source directory called src:

% Ubuntu-64 [Running] - Oracie VM VirtuaiBese T)

Machine View Devices Heip

a

MatrixMult
project

—

src folder

& -
=
- B
‘ ."
@
)
w
8
¥
Q)
%.
oF

@O F/P a0 D Ergean

Now we will link source file matrixmult.c rather than copy it. Select the source folder src, right
click, and select NEW > FILE:

15

&' sava | Fic/ces

Fom = n

An outline s not available.

Project.. -
e € File

Open in New Window File from Template
Folder

New

Copy
Class
Delete Delete Fortran Source File
Fortran Source Folder
Source *! Header File

=
)
=
B
=

3
»

Move. Source File
Rename. r Source Folder
Import... CProject
Export.. Cé+ Project

Refresh Fortran Project

} Remote C/C++ Project
Synchronized C/C++ Project
Synchronized Fortran Project
Synchronized Project

index
Make Targets

validate

Profiling Tools
Compare With
Restore from Local History Qther.

Example.

Selective Instrumentation
Run €/Co+ Code Analysis
Team

St

T LEEEL

Properties

BOFF @l @ rgran

Click on Advanced>> and enter the file name (matrixmult.c), check “Link to file in the file
system” box and enter the full path to the source file (browse for file) and Finish:

File name
to be used
in project

Advanced

Browse

File
(full path)

@BEFFOE0 @ Enmal R

Check

You should now see the source file:

16

Machine View Devices Help

Project Explorer H
include
* 5 Matrinmdt rinclude
. Finclude

&8 sre void prin
» (g matrixmult.c int L

= .
— :
5]
=]
1=
B
A

int mainiint argc, char *argvll) {
int 1 ;

, 1, k, error = 9;
double a[N][N], bINJIN], cIN]IN];

B comole B
s to display at this time.

l"..o. ;

@Oos@d el @Ergeor

Run Configuration. Now create a run configurations (MatrixMult). As before, in the Resource
tab, select the Target Type as “Open-MPI-Generic-Interactive”, the connection type as
“Local”. Set the number of processes.

In the Arguments tab, add the full path to the input file input2x512x512Doubles as an argument:

Create, manage, run configurations

-4
Create a configuration to launch a parallel application

Full path to | 2 = 3 - A

. . ® | | Resources 2 Application s Arguments ., M8 Envi
input file = Erogramisegaments
L home/abw/Workshop/MP1/input2x512x512Doubles

[Fortran Local Applicatio

B Java Applet

7 sava Application Working directory

T JUnit B Use default working directory

¥ Launch Group

1M Application
i MatrixMult

& SystemTap

L
»
»
>

.

Directory

— | Filter matched 9 of 10items

| |
kR @ Close Run

BOF7P @l & Ergnon

Make be sure to comment out the print_result() function call so that the output of the resulting
matrix is not printed to the console. Then run the project:

17

Output

BerRriw OO~ @ravrdrGr W Brv0vGe
2T Q E

& Java | Bhcjess

(& Project Explorer 3 =0 & matrixmult.c & =0 =on = n
= ¢ - #define N 512 o v e
. #include <stdio.h> oW
¥ 15 MatrixMult #include <sys/time.h> -

» ¢ Binaries #include "mpi.h" .
#
> &= Debug void print_results{char *prompt, double a[N][N]) { o stdioh
¥ gl Includes i i : -
 @sre printf ("\m\n%s\n=, prompt); U sysftimeh
N tri it for (i =8; i< N; i++) { u mpih
* (g matrixmult.c for (j =0; j <N j++) { hare «
printf(* %.211", a[i][j]): ® P”f_‘t,.fﬂultsk ar®,
° mainfint, char*[]) : in

printf ("\n"};

printf (“wn\n");
}

int main(int arge, char *argv[]) {
int i, j, k, error = 8;
double a[N][N], bINIINI, cINDIN];

[£: Problems & Tasks Console & & Properties B Remote Environments = 0

X%k B@E@E #0rri-
<terminated> MatrixMult [Parallel Application] Runtime process 2bd020a%9-<d93-47e5-84d0-13dF43cFbec
¥PTP job id=3173
elapsed_time= 1.118467 (secends)

HO !;\ E @1 o BB

FOF/POED G EHrgnan

Re-directing Output

To check that the code produces the correct answer, the print statement is uncommented and the
output re-directed to a file, which can then be compared with the provided output file,
output512x512Mult. Re-directing output in Eclipse is done, not as an argument, but in the
Common tab. Check File and File System. Browse for the file and select:

Output
File

Machine Vi Devices Help

| C/Co+ - MatrixMult/: ixmult.c - Eclipse CETTT
Run Configurations

Create, manage, and run configurations

Create a configuration to launcha parallel application

X B3 Name: | Matrixmult

1 Resources [Application o= Arguments B Environment |Synchronize [l Gommon

[€ ¢/c++ Application SR %
[¥] Fortran Local Application @ Localfile
B2 Java Applet Shared file:
[T Java Application
v Juunit Display in Favorites menu Encoding
»| ® LaunchGroup @ Profile @ Defaylt -inherited (UTF-8)
»| * Ei parallel Applieation % Debug Other
v Matriovult O FRun

¥ systemTap

Full path to
output File

standard Input and Output

[Allocate console (necessary for input)

&

Workspace... J‘_

B File: | fhome/abw/Workshop/MPI/output.txt

Variables...
Append

———— File System

¥ Launch inbackground

Apply Reyert

Filter matched 9 of 10items

@ Close Run

BOFP @D @ =rghar

18

Uncomment the print_result() function call to output the result matrix and run the project.
Using the diff command will have to be done on the comment line as before.

Include in your submission document for Task 2:

1. A screenshot or screenshots showing executing matrix multiplication program with its output
through Eclipse
2. Screenshot or screenshots using the diff command showing output is correct.

Part 3 Using a remote cluster (Graduates 30%, Undergraduates 30%)

Now we will use the UNC-C cluster, as specified on the course home page. Details on using the
cluster can be found on the course home page. Carefully review these notes.

Task 1 Executing MPI programs

Connect to the remote cluster and make a directory in your home directory called MPI that will
be used for the MPI programs, and cd into that directory. Transfer all your MPI source programs
hello.c and matrixmult.c from the previous parts to that directory.

Compile and execute the MPI programs:

e Hello world program, hello.c
e Matrix multiplication program, matrixmult.c

on the remote cluster with 1, 8, 16, and 32 processors, using four servers, cci-gridgw.uncc.edu,
cci-grid05, cci-grid7, and cci-grid08. Establish the results are correct.

Include in your submission document for Task 1:

1. A screenshot showing the execution of the hello.c program on the remote cluster from
your account

2. A screenshot showing the execution of the matrixmult.c program on the remote cluster
from your account

3. For matrix multiplication, show the results of running the diff command comparing the
parallel output with the sequential outputs

Task 2: Record and analyze results

Record the elapsed times for the parallelized program running on the different number of
processors as well as the elapse time for the sequential version. Create a graph of these results
using a graphing program, such as a spreadsheet. You have to create a graph of the execution
times compared with sequential execution and the speedup curve with linear speedup. These
graphs should look something like the figures but the shape of the curves do not. Your curves

19

may show something entirely different. The figures below are just examples. Make sure that you
provide axes labels, a legend (of there is more than one line) and a title to the graphs. Include
copies of the graphs in your submission document.

Execution time of Matrix Multiplication
2.5
38
§ 2
3 \ ——Parallel Execution
2 15
£ \ ——Sequential Execution
T 1
2
S0\
g 0.5
2 .
O T T IA 1
0 10 20 30 40
Number of Processors

Example Execution Time Graph

Speedup of Matrix Multiplication

40 Soeed
—Speedu
35 p p P

30 ——|deal Speedup /
25 /
20 /
15
10 /
/
P —

O T T T 1
0 10 20 30 40

Number of Processors

Speedup

Example Speedup Graph

20

Include in your submission document for Task 2:

1. A copy of your matrix multiplication program
2. A copy of your execution time and speedup graphs
3. A screenshot or screenshots showing:
a. Compilation of the program using mpicc
b. Results of running the diff command comparing the parallel output with the
sequential outputs
4. Copies of your graphs

Part 4 Changing the matrix multiplication program to handle any value
of N. For graduates students (10%) Extra credit for undergraduates (+10%)

The matrix multiplication code, as written, only works if P divides evenly into N. Modify the
program to handle any value of N. The stored matrices and messages should not be any larger
than necessary, i.e. simply padding out arrays with zeros is not acceptable.

Include in your submission document for Part 4:

1. Matrix multiplication program code that handles any value of N and screenshot showing it
executing correctly.

Grading

Every task and subtask specified will be allocated a score so make sure you clearly identify each
part/task you did. Make sure you include everything that is specified in the “Include in your
submission document” section at the end of each part. Include all code, not as screen shots of
the listings but complete properly documented code listing in the report.

Assignment Submission

Produce a single pdf document that show that you successfully followed the instructions and
performs all tasks by taking screenshots and include these screenshots in the document. Submit
by the due date as described on the course home page.

21

