
1

Assignment 6
Using the Seeds Pattern Programming Framework -

Workpool Pattern

B. Wilkinson and C. Ferner: Modification date: October 27, 2014
(corrected in red October 31, 2014, see course home page announcements)

Preliminaries

The purpose of this assignment is to become familiar with the Java-based Seeds pattern
programming framework. The Seeds framework will be used on your own computer (or a lab
computer). The provided Ubuntu virtual machine is already loaded with the Seeds libraries and
sample files, and Eclipse. Since Seeds only requires Java and will run on any platform, you can
also do this assignment on a native Windows or Linux installation and upload the files for the
course home page. The code will be executed using Eclipse with the Java perspective.

Seeds Framework. Various patterns are available in Seeds including workpool, pipeline and
synchronous stencil, and others can be created. We shall use the workpool pattern in this
assignment as it is very general and applicable to many problems. In the workpool pattern, a
master node sends out tasks to slave workers. The slaves perform computations and return results
to the master, which then produces the final results. To achieve dynamic load balancing, the
master keeps a queue of tasks. When slave returns a result of task, it is given another task from
the queue until all talks are completed.

To use the Seeds workpool, the programmer must implement a Java interface with three
principal methods:

• The diffuse method – used by the master to distribute pieces of the data to the slaves.
• The compute method – used by the slaves for the actual computation
• The gather method – used by the master to gather the results

An additional “data count” method is required to tell the framework how many pieces of data
will be computed. The programmer might implement a few other methods depending upon the
application, notably an initialization method and a method to compute the final result. No
message passing routines are needed by the programmer - the diffuse method creates a DataMap
object with data to be passed to the slaves (as a Data object), and similarly the compute method
creates a DataMap object with data to the passed back to the master (as a Data object). The
framework takes care of the message passing and self deploys on a local computer, a cluster, or a
geographically distributed Grid platform when the application is launched. Deployment is done
using a “bootstrapping” class with a main method. This class is mostly written for each pattern
and the programmer simply fills in site-specific details (computer names, paths, etc.) prior to
running.

2

Seeds Framework Versions. There are three versions of the Java-based Seeds framework
currently implemented:

 Full JXTA P2P networking version suitable for a fully distributed network of computers
and requiring an Internet connection even if just running on a single computer

 A simplified JXTA P2P version called the “NoNetwork” version for testing on a single
computer and not requiring an Internet connection, and finally

 Multicore version implemented with threads for more efficient execution on single
multicore computer or shared memory multiprocessor system. It does not require an
Internet connection.

The two JXTA versions can use the same module source code and bootstrap run the module
code, and executes in the same fashion with similar logging output. The multicore version also
uses the same module source code but the bootstrap run module code is slightly different (thread-
based). Here we will use the multicore version. The Appendix gives details on using the P2P
version.

Software

In this assignment, simple workpool applications (the Monte Carlo  calculation and matrix
addition and matrix multiplication) will be executed using the Eclipse IDE. The provided virtual
machine has the Seeds programs and libraries in ~/ParallelProg/Seeds/workspaceMulticore.1 If
you are using your own native Windows/Linux installation, you will need to download the Seeds
libraries and programs from the link “VM software” on the course home page and make sure you
have the specified directory structure. (You will also have to include the Seeds libraries in the
Eclipse project as will be described.)

The following projects and libraries are within the Seeds workspace:

 Monte Carlo pi ("PiApprox"")
 MatrixAddition ("MatrixAdd")
 Matrix Multiplication ("MatrixMult")
 Numerical Integration ("NumIntegration")
 SeedsTemplate ("SeedsTemplate" for code development)
 Seeds libraries ("seedsMulticore")

The directory structure and important files to know are given overleaf.

1 ~/ParallelProg/Seeds/workspaceNetwork hold the two JXTA P2P versions.

3

~/ParallelProg/Seeds/workspaceMulticore // used to hold Seeds projects
/seedsMulticore // Seeds framework
 /lib // Seeds libraries
 Availableservers.txt // holds computer names (not used here)
 …

/PiApprox // Monte Carlo pi project
 /bin/edu/uncc/grid/example/workpool // Class files, empty until code compiled
 /src/edu/uncc/grid/example/workpool/ // Java source files
 MonteCarloPiModule.java
 RunMonteCarloPiModule.java

/MatrixAdd // Matrix add project
 /bin/edu/uncc/grid/example/workpool/ // Class files, empty until code compiled
 / src/edu/uncc/grid/example/workpool/ // Java source files
 MatrixAddModule.java
 RunMatrixAddModule.java

/MatrixMult // Matrix multiply project
 /bin/edu/uncc/grid/example/workpool/ // Class files, empty until code compiled
 / src/edu/uncc/grid/example/workpool/ // Java source files
 MatrixMultModule.java
 RunMatrixMultModule.java

/NumericalIntegration // Numerical Integration project
 /bin/edu/uncc/grid/example/workpool/ // Class files, empty until code compiled
 / src/edu/uncc/grid/example/workpool/ // Java source files
 NumericalIntegrationModule.java
 RunNumericalIntegrationModule.java

/SeedsTemplate // For code development
 …

Software directory structure

4

Part 1 Monte Carlo  Code (25%)

The Monte Carlo algorithm for computing  is well known and given in many parallel
programming texts. It is a so-called embarrassingly parallel application particularly amenable to
parallel implementation but used more for demonstration purposes than as a good way to
compute . However, it can lead to more important Monte Carlo applications. A circle is formed
within a square. The circle has unit radius and the square has sides 2 x 2. The ratio of the area of
the circle to the area of the square is given by (12)/(2 x 2) = /4. Points within the square are
chosen randomly and a score is kept of how many points happen to lie within the circle. The
fraction of points within the circle will be /4, given a sufficient number of randomly selected
points. Usually only one quadrant is used as shown below:

so that the randomly selected points generated, xr, yr, are each between 0 and 1, and are counted

as in the circle, if ݕ௥ 	൑ 	ඥ1 െ	ݔ௥ଶ, i. e. ݕ௥ଶ ൅	ݔ௥ଶ 	൑ 1. Note the integral ׬ √1 െ	ݔଶ
ଵ
଴ ݔ݀ ൌ 4/ߨ	

is being evaluated.

Implementing the pattern in the Seeds framework requires two Java classes - a module class
called here MonteCarloPiModule.java implements a pattern interface and the bootstrapping
class called here RunMonteCarloPiModule.java. The bootstrapping class is used to run the
application. In the workpool here, the master process sends a different random number to each of
the slaves. Each slave uses that number as the starting seed for their random number generator.
The Java Random class nextDouble method returns a number uniformly distributed between 0
and 1.0.2 Each slave then gets the next two random numbers as the coordinates of a point (x,y)
using nextDouble. If the point is within the circle (i.e. x2 + y2 <= 1), it increments a counter that
is counting the number of points within the circle. This is repeated for 1000 points. Each slave
returns its accumulated count. The GatherData method performed by the master accumulates the
slave results. A separate method, getPi, executed within the bootstrap module, computes the final
approximation for  using the accumulated total.

MonteCarloPiModule.java. MonteCarloPiModule.java implements the interface for the
workpool

package edu.uncc.grid.example.workpool;
import java.util.Random;
import java.util.logging.Level;
import edu.uncc.grid.pgaf.datamodules.Data;
import edu.uncc.grid.pgaf.datamodules.DataMap;
import edu.uncc.grid.pgaf.interfaces.basic.Workpool;

2 Excluding 0 and 1 but we are ignoring that.

5

import edu.uncc.grid.pgaf.p2p.Node;

public class MonteCarloPiModule extends Workpool {
 private static final long serialVersionUID = 1L;
 private static final int DoubleDataSize = 1000;
 double total;
 int random_samples;
 Random R;
 public MonteCarloPiModule() {
 R = new Random();
 }
 public void initializeModule(String[] args) {
 total = 0;
 Node.getLog().setLevel(Level.WARNING); // reduce verbosity for logging
 random_samples = 3000; // set number of random samples
 }
 public Data Compute (Data data) {
 DataMap<String, Object> input = (DataMap<String,Object>)data; // data from DiffuseData()
 DataMap<String, Object> output = new DataMap<String, Object>(); // output from Compute
 Long seed = (Long) input.get("seed"); // get random seed
 Random r = new Random();
 r.setSeed(seed);
 Long inside = 0L;
 for (int i = 0; i < DoubleDataSize ; i++) {
 double x = r.nextDouble();
 double y = r.nextDouble();
 double dist = x * x + y * y;
 if (dist <= 1.0) {
 ++inside;
 }
 }
 output.put("inside", inside); // store partial answer to return to GatherData()
 return output;
 }
 public Data DiffuseData (int segment) {
 DataMap<String, Object> d =new DataMap<String, Object>();
 d.put("seed", R.nextLong());
 return d; // returns a random seed for each job unit
 }
 public void GatherData (int segment, Data dat) {
 DataMap<String,Object> out = (DataMap<String,Object>) dat;
 Long inside = (Long) out.get("inside");
 total += inside; // aggregate answer from all the worker nodes.
 }
 public double getPi() { // returns value of pi based on the job done by all the workers
 double pi = (total / (random_samples * DoubleDataSize)) * 4;
 return pi;
 }
 public int getDataCount() {
 return random_samples;
 }
}

MonteCarloPiModule.java

6

In MonteCarloPiModule.java, two important classes are imported called Data and DataMap.
Data is used to pass data between the master and slaves. DataMap is used within DiffuseData,
Compute, and GatherData methods for specifying the data being passed and uses two
parameters, a string and an object (generic typing). The first parameter can be any programmer
chosen string and used to identify the second stored item.3 DiffuseData method (executed by the
master) creates a DataMap object and returns it with random seed for each job. The Compute
method (executed by slaves) picks up the data from DiffuseData and creates a DataMap object
for holding its partial results.

RunMonteCarloPiModule.java. RunMonteCarloPiModule.java deploys the Seeds pattern and
runs the workpool. Below is the code for the multicore version of the framework

package edu.uncc.grid.example.workpool;
import java.io.IOException;
import net.jxta.pipe.PipeID;
import edu.uncc.grid.pgaf.Anchor;
import edu.uncc.grid.pgaf.Operand;
import edu.uncc.grid.pgaf.Seeds;
import edu.uncc.grid.pgaf.p2p.Types;

public class RunMonteCarloPiModule {

public static void main(String[] args) {
try {

long start = System.currentTimeMillis();

MonteCarloPiModule pi = new MonteCarloPiModule();
Thread id = Seeds.startPatternMulticore(new Operand((String[])null,

new Anchor(args[0],Types.DataFlowRole.SINK_SOURCE), pi), 4);
id.join();

System.out.println("The result is: " + pi.getPi()) ;

 long stop = System.currentTimeMillis();
 double time = (double) (stop - start) / 1000.0;
 System.out.println("Execution time = " + time);

} catch (SecurityException e) {

e.printStackTrace();
} catch (IOException e) {

e.printStackTrace();
} catch (Exception e) {

e.printStackTrace();
}

}
}

RunMonteCarloPiModule.java –Thread-based multicore version

Several classes are imported, PipeID, seeds-specific Anthor, Operand, Seeds, and Types. An
instance of MonteCarloPiModule is first created. The Thread object is the thread managing

3 DataMap extends Java HashMap.

7

the source and sink threads for the pattern. The programmer can monitor when the pattern is
done computing by checking id.isAlive() or can just wait for the pattern to complete using
id.join(). Args[0] should be the local host name.

The Seeds method startPattern starts the workpool pattern on the computers. It requires as a
single argument an Operand object. Creating an Object object requires three arguments. The first
is a String list of argument that will be submitted to the host. The second is an Anchor object
specifying the nodes that should have source and sink nodes (the master in this case) which in
this provided as the string argument of main (first command line argument, args[0]). The third
argument is an instance of MonteCarloPiModule previously created. As mentioned above, to run
this code, we will need to provide one command line argument, the name of the local host.

Task 1 Executing the Monte Carlo  program. The program can be executed on the command
line or through an IDE. We choose to use Eclipse here.

Step 1. Open Eclipse Start Eclipse on the command line (eclipse). Browse and select the
workspace ~/ParallelProg/Seeds/workspaceMulticore

Eclipse might open in the C/C++ perspective rather than the Java perspective as its last use. If
so, go to Window > Open perspective > Other > Java to open in the Java perspective

You should see the Monte Carlo , MatrixAdd and MatrixMult projects already loaded:

/home/abw/ParallelProg/Seeds/workspaceMulticore

8

If you do not see the projects, import the projects with File > Import > General > Existing
Projects into Workspace. You may also have to click on the Workspace” icon at the right.

You may want to look at the PiApprox project we will be executing:

Projects

Java

9

Step 2 Add Build path to Seeds Libraries. The build path to the Seeds library should already set
up in the VM with a named user library, “SeedsMulticore”: -- but the paths may be incorrect so
you may need to delete the paths and to re-create them.

In general, to add libraries with a group name (which makes it easier to use the libraries in other
projects), right click the project folder and select Properties. Select Java Build Path >
Libraries tab > Add library > User Library and Next. Provide a name for the libraries, in this
case say “SeedsMulticore” and click OK. Click on Add External Jars and navigate through
your file system to the Seeds library folder,
~/ParallelProg/Seeds/workspaceMulticore/seedsMulticore/lib. Select all the jars inside lib
(select one jar and then control-A to select all the jars). Click Open. Finally you should see
something like:

10

Click OK, and get back to the workbench (Finish > OK). At this point, all unresolved
references should vanish. (Note each of the three versions of Seeds have different Seeds libraries
and should be named differently.)

Step 3 Command Line Arguments Before you can run the program, you will need to add a
command line argument that provides the computer name, which is read by the bootstrap class
RunMonteCarloPiModule. This is done in the Run Configurations. Go to Run > Run
Configurations … and select the PiApprox:

Run
Configurations

11

If you are using the prepared VM, Run Configurations may already be set up with the correct
path to the main class (edu.uncc.grid.example.workpool.RunMonteCarloPiModule).

Click the tab named (x)=Arguments. For the multicore version of Seeds, the bootstrap class is
written to accept one argument, the name of your computer:

If you are using the provided virtual machine, a computer name (cciwd402jp-1wws) may exist
as an argument. Check whether this name is correct and if not, replace the computer name with

PiApprox
Run
Configuration

Path to run
module

Name of
your
computer

12

the name of your computer. The name of your computer can be found by typing hostname on the
command line. Do NOT use the computer name that you will see from Windows "View system
information" or similar, which can have additional characters added to the name. You MUST
use the name returned by the hostname command. Include double quotes to make a string if there
are one or more spaces in the name.

Step 4 Run program

Click “Run” to run the project. You should see the project run immediately with output in the
console window:

Question 1: How many random numbers were tried by the  approximation program? Explain.

Task 2 Correcting a Flaw in Monte Carlo  Code
There is a potential flaw in the Monte Carlo  code. Although it produces the correct answer, the
use of a random number to start each random number sequence in each slave using the same
random function possibly causes each sequence to be interrelated. Investigate whether in Java
this is a problem and report. In any event, modify the code to avoid the issue altogether and
execute the code. Provide the code, a full explanation, and results in your write up.

What to submit for Part 1

Your submission document should include the following:
Task 1

a) Screenshot from compiling and running the PiApprox program on your computer and
an explanation of output.

b) Answer Question 1
Task 2

a) A discussion on the potential random number flaw in the code
b) Code listing to avoid the potential random number issue
c) A screenshot showing the code functioning

Output

13

Part 2 Matrix Addition (25%)

Matrix addition, C = A + B, adds corresponding elements of each matrix to form elements of
result matrix. Given elements of A as ai,j and elements of B as bi,j, each element of C computed
as ci,j = ai,j + bi,j (0 <= i < n, 0 <= j < m for n x m matrices).

Workpool Implementation. Each slave adds one row of A with one row of B to create one row
of C (rather than each slave adding single elements):

Matrix addition workpool

14

There are two Java source programs:

 MatrixAddModule.java – the module class that implements the interface for the
workpool

 RunMatrixAddModule.java – the bootstrap class to deploy the framework and run the
code.

MatrixAddModule.java. This code uses 3 x 3 matrices and 3 slaves and is given below:

package edu.uncc.grid.example.workpool;
import java.util.Random;
import java.util.logging.Level;
import edu.uncc.grid.pgaf.datamodules.Data;
import edu.uncc.grid.pgaf.datamodules.DataMap;
import edu.uncc.grid.pgaf.interfaces.basic.Workpool;
import edu.uncc.grid.pgaf.p2p.Node;
public class MatrixAddModule extends Workpool {
private static final long serialVersionUID = 1L;
 int[][] matrixA;
 int[][] matrixB;
 int[][] matrixC;
 public MatrixAddModule() {
 matrixC = new int[3][3];
 }

 public void initMatrices(){
 matrixA = new int[][]{{2,5,8},{3,4,9},{1,5,2}};
 matrixB = new int[][]{{2,5,8},{3,4,9},{1,5,2}};
 }
 public int getDataCount() {
 return 3;
 }
 public void initializeModule(String[] args) {
 Node.getLog().setLevel(Level.WARNING);
 }

 public Data DiffuseData(int segment) {

 int[] rowA = new int[3];
 int[] rowB = new int[3];

 DataMap<String, int[]> d =new DataMap<String, int[]>();

 int k = segment;
 for (int i=0;i<3;i++) {
 rowA[i] = matrixA[k][i];
 rowB[i] = matrixA[k][i];
 }
 d.put("rowA",rowA);
 d.put("rowB",rowB);
 return d;
 }

15

 public Data Compute(Data data) {

 int[] rowC = new int[3];
 DataMap<String, int[]> input = (DataMap<String,int[]>)data;
 DataMap<String, int[]> output = new DataMap<String, int[]>();

 int[] rowA = (int[]) input.get("rowA");
 int[] rowB = (int[]) input.get("rowB");

 for (int i=0;i<3;i++) {
 rowC[i] = rowA[i] + rowB[i];
 }

 output.put("rowC",rowC);
 return output;
 }

 public void GatherData(int segment, Data dat) {

 DataMap<String,int[]> out = (DataMap<String,int[]>) dat;

 int[] rowC = (int[]) out.get("rowC");

 for (int i=0;i<3;i++) {
 matrixC[segment][i]= rowC[i];
 }

 }

 public void printResult() {

 for (int i=0;i<3;i++) {
 System.out.println();
 for (int j=0;j<3;j++) {
 System.out.print(matrixC[i][j] + " ");
 }
 }
 }
} // end of MatrixAddModule

MatrixAddModule.java

As in other workpool framework projects, two important classes are imported, called Data and
DataMap. Data is used to pass data between the master and slaves and DataMap is used within
DiffuseData, Compute, and GatherData methods.

RunMatrixAddModule.java. RunMatrixAddModule.java deploys the Seeds pattern and runs
the workpool has the same structure as previously:

package edu.uncc.grid.example.workpool;
import java.io.IOException;
import net.jxta.pipe.PipeID;
import edu.uncc.grid.pgaf.Anchor;
import edu.uncc.grid.pgaf.Operand;

16

import edu.uncc.grid.pgaf.Seeds;
import edu.uncc.grid.pgaf.p2p.Types;

public class RunMatrixAddModule {

public static void main(String[] args) {
try {

long start = System.currentTimeMillis();

 MatrixAddModule m = new MatrixAddModule();
 m.initMatrices();

Thread id = Seeds.startPatternMulticore(new Operand((String[])null, new Anchor(

args[0],
Types.DataFlowRole.SINK_SOURCE), m), 4);

id.join();

 m.printResult();

 long stop = System.currentTimeMillis();
 double time = (double) (stop - start) / 1000.0;
 System.out.println("Execution time = " + time);

} catch (SecurityException e) {

e.printStackTrace();
} catch (IOException e) {

e.printStackTrace();
} catch (Exception e) {

e.printStackTrace();
}

}
}

RunMatrixAddModule.java –Thread-based multicore version

Task 1 Executing the matrix addition program

Execute the matrix addition code through Eclipse as described for the Monte Carlo pi program.
Test the code with the following matrices:

 Matrix A
 1 2 3
 4 5 6
 7 8 9
 Matrix B
 9 8 7
 6 5 4
 3 2 1

Task 2 Correcting a coding mistake

There is a mistake in the code. Although it produces an answer, it is incorrect. Find this mistake
and correct it. Re-execute the code and provide a screenshot of the output.

17

What to submit for Part 2

Your submission document should include the following:

1) Screenshot from compiling and running the MatrixAdd program on your computer with
specified input data and an explanation of output.

2) Identify the mistake in the code.

Part 3 Matrix Multiplication, C = A * B (25%)

Multiplication of two matrices, A and B, to produce matrix C is shown below:

In the workpool implementation, one slave computes one ci,j element of the result as shown
below:

(Note rows of A and columns of B are send to slaves; B is not broadcast as in previous
programs.)

There are two Java source programs:

Matrix multiplication
workpool

18

 MatrixMultModule.java – the module class that implements the interface for the
workpool

 RunMatrixMultModule.java – the bootstrap class to deploy the framework and run the
code.

MatrixAddModule.java. This code uses 3 x 3 matrices and 9 slaves and is given below:

package edu.uncc.grid.example.workpool;
import java.util.logging.Level;
import edu.uncc.grid.pgaf.datamodules.Data;
import edu.uncc.grid.pgaf.datamodules.DataMap;
import edu.uncc.grid.pgaf.interfaces.basic.Workpool;
import edu.uncc.grid.pgaf.p2p.Node;

public class MatrixMultModule extends Workpool {

 private static final long serialVersionUID = 1L;

 int[][] matrixA;
 int[][] matrixB;
 int[][] matrixC;

 public MatrixMultModule() {
 matrixC = new int[3][3];
 }

 public void initMatrices(){
 matrixA = new int[][]{ {3,6,7},
 {7,4,9},
 {9,5,7}};
 matrixB = new int[][]{ {3,6,7},
 {7,4,9},
 {9,5,7}};
 }
 public int getDataCount() {
 return 9;
 }

 public void initializeModule(String[] args) {

 Node.getLog().setLevel(Level.WARNING);
 }

 public Data DiffuseData(int segment) {

 int[] rowA = new int[3];
 int[] colB = new int[3];

 DataMap<String, int[]> d =new DataMap<String, int[]>();

 int a=segment/3, b = segment%3;
 for (int i=0;i<3;i++){ //Copy one row of A and one column of B into d
 rowA[i] = matrixA[a][i];
 colB[i] = matrixA[i][b];

19

 }

 d.put("rowA",rowA);
 d.put("colB",colB);

 return d;
 }

 public Data Compute(Data data) {

 DataMap<String, int[]> input = (DataMap<String,int[]>)data;
 DataMap<String, Integer> output = new DataMap<String, Integer>();

 int[] rowA = (int[]) input.get("rowA");
 int[] colB = (int[]) input.get("colB");

 int out = 0; //computation
 for (int i=0;i<3;i++) {
 out += rowA[i] * colB[i];
 }

 output.put("out",out);

 return output;
 }

 public void GatherData(int segment, Data dat) {

 DataMap<String,Integer> out = (DataMap<String,Integer>) dat;

 int answer = out.get("out");
 int a=segment/3, b=segment%3;
 matrixC[a][b]= answer;

 }

 public void printResult(){

 for (int i=0;i<3;i++){
 System.out.println();
 for(int j=0;j<3;j++){
 System.out.print(matrixC[i][j] + " ");
 }
 }
 System.out.println();
 }
 } // end of MatrixMultiplyModule

MatrixMultModule.java

RunMatrixMultModule.java. RunMatrixMultModule.java deploys the Seeds pattern and runs
the workpool and is similar to the other Bootstrap class. Just the name of the module class in the
code is changed to suit.

20

Task 1 Executing the matrix multiplication program.

Execute the matrix multiplication code through Eclipse as described for the Monte Carlo pi
program. Test the code with the following matrices:

 Matrix A Matrix B
 1 2 3 9 8 7
 4 5 6 6 5 4
 7 8 9 3 2 1

Make sure you show the numeric results that you get in your write up as a screenshot.

Task 2 Correcting a coding mistake

There is a mistake in the code. Although it produces an answer, it is incorrect. Find this mistake
and correct it. Re-execute the code and provide a screenshot of the output.

What to submit for Part 3

Your submission document should include the following:

1) Screenshot from compiling and running the MatrixMult program on your computer
withe specified input data and an explanation of output.

2) Identify the mistake in the code.

Part 4 Writing Your Own Code – Block Matrix Multiplication (25%)

Modify the sample matrix multiplication program to multiple two N x N matrices using the block matrix
multiplication algorithm shown below:

Block matrix multiplication

Each slave is given s rows and s columns to produce an s x s sub matrix answer. Choose N = 8 and s = 2.
With s = 2, 16 slaves are needed. Test your program with the following 8 x 8 matrices:

21

 Matrix A Matrix B
 1 2 3 4 5 6 7 8 64 63 62 61 60 58 58 57
 9 10 11 12 13 14 15 16 56 55 54 53 52 51 50 49
 17 18 19 20 21 22 23 24 48 47 46 45 44 43 42 41
 25 26 27 28 29 30 31 32 40 39 38 37 36 35 34 33
 33 34 35 36 37 38 39 40 32 31 30 29 28 27 26 25
 41 42 43 44 45 46 47 48 24 23 22 21 20 19 18 17
 49 50 51 52 53 54 55 56 16 15 14 13 12 11 10 9
 57 58 59 60 61 62 63 64 8 7 6 5 4 3 2 1

Make sure you show the numeric results that you get in your write up as a screenshot.

Graduate student (5% Extra credit for undergraduate students): Test your program with the two
matrices given in the file input2x512x512Doubles (as used in Assignment 3). Use 16 slaves. Compare
your results with the posted results. You will need to write code to read the files.

What to submit for Part 4

Your submission document should include the following:

1) Screenshot from compiling and running your block matrix multiplication program on
your computer withe specified input data and an explanation of output.

Assignment Submission

Produce a single pdf document that show that you successfully followed the instructions. Submit
by the due date as described on the course home page. Specify whether you are a graduate or
undergraduate student. Your submission document should include insightful conclusions.

Every part and task specified will be allocated a score so make sure you clearly identify each
part and task you did.

22

Appendix
NETWORK VERSION OF SEEDS FRAMEWORK

The full network version requires an Internet connection. The “NoNetwork” version is a similar
JXTA P2P implementation but runs on a single computer without an Internet connection. In each
version of the framework, only one Seeds library is different - seeds.jar, seedsNoNetwork.jar,
and seedsMulticore.jar. The full network and no-network version of the Seeds libraries can be
found in the directory ~/ParallelProg/Seeds /workspaceNetwork, together with the sources
files for the Monte Carlo  calculation and matrix addition/multiplication but you will need to
create the Eclipse projects and set up the Seeds library build path.

Mostly, the setup corresponds to the multicore version except it is now necessary to specify the
servers, even you only use a single computer.

Specifying the computers to use

The AvailableServers.txt file found inside the seeds folder within the workspace folder needs to
hold the name of the computers being used and other information can be included. For this
session, we will only use a local computer and just need to provide its name of the computer.
Lines starting with a # are commented out lines. Modify the one uncommented line:

<computerName> local - - - 1 10 GridTwo

replacing <computerName> (or whatever name is there) with the name of your computer and
set the number of processors from 1 to however many processors you have (normally just one)
and set the number of cores from 10 to the number of cores in each processor on your computer.

The name of your computer can be found by typing hostname on the command line.

Do NOT use the computer name that you will see from "View system information" or similar,
which can have additional characters added to the name. You MUST use the name returned by
the hostname command.

RunMonteCarloPiModule.java. RunMonteCarloPiModule.java deploys the Seeds pattern and
runs the workpool. Below is the code for the network version of the framework:

package edu.uncc.grid.example.workpool;
import java.io.IOException;
import net.jxta.pipe.PipeID;
import edu.uncc.grid.pgaf.Anchor;
import edu.uncc.grid.pgaf.Operand;
import edu.uncc.grid.pgaf.Seeds;
import edu.uncc.grid.pgaf.p2p.Types;

public class RunMonteCarloPiModule {

 public static void main(String[] args) {
 try {
 MonteCarloPiModule pi = new MonteCarloPiModule();

The following is provided for information but not used in this assignment.

23

 Seeds.start(args[0] , false);

 PipeID id = Seeds.startPattern(
 new Operand((String[])null, new Anchor(args[1] ,
Types.DataFlowRoll.SINK_SOURCE), pi));
 System.out.println(id.toString());
 Seeds.waitOnPattern(id);
 System.out.println("The result is: " + pi.getPi()) ;

 Seeds.stop();

 } catch (SecurityException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

RunMonteCarloPiModule.java – Network version

Seeds is started and deployed on the list servers using the Seeds method start, which takes as its
first argument the path to the seeds folder on the local computer. In the code given, the path is
provided as the string argument of main (first command line argument, args[0]). The Seeds
method startPattern starts the workpool pattern on those computers. It requires as a single
argument an Operand object. Creating an Object object requires three arguments. The first is a
String list of argument that will be submitted to the remote hosts. The second is an Anchor object
specifying the nodes that should have source and sink nodes (the master in this case) which in
this provided as the string argument of main (second command line argument, args[1]). The third
argument is an instance of MonteCarloPiModule previously created.

To run this code, we will need to provide two command line arguments, the local path to the
Seeds folder and the name of the local host. Both could have been hardcoded.

Executing the Monte Carlo  program.

Step 1. Open Eclipse and select the workspace:

24

Step 2 Build paths. Make sure the build paths are correct.

Step 3 Command Line Arguments

For the full network version and “NoNetwork version of Seeds, the bootstrap class is written to
accept two arguments:

 1st argument: Path to where AvailableServers.txt is located
 2nd argument: Name of your computer

Enter the two arguments. Includes double quotes to make a string if there are one or more spaces
in the path. The name of your computer should be the same as you put in AvailableServers.txt.

25

Step 4 Run program

Click “Run” to run the project. The console output will begin with logging messages such as:

with the final result in black at the end:

26

Issues running program: If you do not get the expected output, see posted FAQs for known
issues.

