
1

Assignment 7

CUDA Programming Assignment

B. Wilkinson, Nov. 30, 2014 (Minor corrections from Nov 5, 2014)

The purpose of this assignment is to become familiar with writing, compiling and executing CUDA
programs. We will use cci-grid08, which has a 2496-core NVIDIA K20 GPU. In Part 1, you are asked
to compile an existing CUDA program that adds two vectors using a given make file. In Part 2, you
are asked to write a matrix multiplication program in CUDA and test on the GPU with various grid and
block sizes. In Part 3, you are asked to write a program to compute the prefix-sum calculation. Part 4
is for extra credit – a CUDA program that performs Counting Sort. In all your programs, a sequential
version is to be executed that runs on the CPU alone, for comparison purposes.

One other GPU server is currently available, cci-grid07, which has a 448-core NVIDIA C2050 GPU.
Use that server if cci-grid08 is not functioning. You may also use your own computer instead of coit-
grid08 if you have a NVIDIA GPU card and you install the NVIDIA CUDA Toolkit. However you
may not get as great a speed-up.

Whatever system you use, clearly state it in your report, and the type of host processor and GPU.

Preliminaries (2%)

Login to cci-gridgw.uncc.edu and ssh to cci-grid08. You will be able to see your home directory on
the cluster. Create a directory called Assign7 and cd into this directory.

GPU limitations. Display the details of the GPU(s) installed by issuing the command:

 deviceQuery

Keep the output as you may need it. In particular, note the maximum number of threads in a block and
maximum sizes of blocks and grid. Also invoke the bandwidth test by issuing the command:

 bandwidthTest

Note the maximum host to device, device to host, and device to device bandwidths.

Part 1 Compiling and executing vector addition CUDA program
(33%)

In this part, you will compile and execute a CUDA program to perform vector addition. This program
is given below:

// VectorAdd.cu
#include <stdio.h>
#include <cuda.h>

2

#include <stdlib.h>
#define N 10 // size of vectors
#define B 1 // blocks in the grid
#define T 10 // threads in a block

__global__ void add (int *a,int *b, int *c) {
 int tid = blockIdx.x * blockDim.x + threadIdx.x;
 if(tid < N) {
 c[tid] = a[tid]+b[tid];
 }
}

int main(void) {

int a[N],b[N],c[N];
int *dev_a, *dev_b, *dev_c;

cudaMalloc((void**)&dev_a,N * sizeof(int));
cudaMalloc((void**)&dev_b,N * sizeof(int));
cudaMalloc((void**)&dev_c,N * sizeof(int));

for (int i=0;i<N;i++) {

a[i] = i;
b[i] = i*1;

}

cudaMemcpy(dev_a, a , N*sizeof(int),cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b , N*sizeof(int),cudaMemcpyHostToDevice);
cudaMemcpy(dev_c, c , N*sizeof(int),cudaMemcpyHostToDevice);

add<<<B,T>>>(dev_a,dev_b,dev_c);

cudaMemcpy(c,dev_c,N*sizeof(int),cudaMemcpyDeviceToHost);

for (int i=0;i<N;i++) {

printf("%d+%d=%d\n",a[i],b[i],c[i]);
}

cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);

return 0;

}

Create a file called VectorAdd.cu containing the vector addition program above. Next, create a file
called Makefile and copy the following into it:

3

NVCC = /usr/local/cuda/bin/nvcc
CUDAPATH = /usr/local/cuda
NVCCFLAGS = -I$(CUDAPATH)/include
LFLAGS = -L$(CUDAPATH)/lib64 -lcuda -lcudart -lm

VectorAdd: VectorAdd.cu
 $(NVCC) $(NVCCFLAGS) -o VectorAdd VectorAdd.cu $(LFLAGS)

Be careful to have a tab here. (Very important)

To compile the program, type make VectorAdd (or make as there is only one build command).
Execute the program by typing the name of the executable (to include the current directory ./), i.e.
./VectorAdd. Confirm the results are correct.

Note make will only re-compile a source program that has been modified. This mechanism relies upon
the time stamp on the file. So if this is incorrect, you may find the file will not recompile. In that case,
delete the executable (not the source file!).

What to submit from this part

Your submission document should include the following:

1) A screenshot of compiling and executing VectorAdd

Part 2 Matrix multiplication (35%)

Modify the CUDA program in Part 1 to perform matrix multiplication with N x N matrices. Use a
square 2-D grid and square 2D block structure. Use randomly generated numbers to initialize the
matrices. Incorporate the following features to enable experimentation to be done on speed-up factor:

(a) Different sizes for the matrices – Use dynamically allocated memory and add keyboard input
statements to be to specify N.

(b) Add host code to compute the matrix multiplication on the host only.
(c) Add code to verify that both CPU and GPU versions of matrix multiplication produce the same

and correct results.
(d) Different CUDA grid/block structures – Add keyboard statements to input different values for:

 Numbers of threads in a block (T)
 Number of blocks in a grid (B)

 Include checks for invalid input. Ensure that GPUs limitations are met from the data given in
deviceQuery (Preliminaries).

(e) Timing -- Add statements to time the execution of the code using CUDA events, both for the
host-only (CPU) computation and with the device (GPU) computation, and display results.
Compute and display the speed-up factor.

Arrange that the code returns to keyboard input after each computation with entered keyboard input
rather than re-starting the code and having kernel code re-launch. Include print statements to show all
input values.

4

During code development, it is recommended that the code is recompiled and tested after adding each
of (a), (b), (c), (d) and (e).

Modify the make file according to compile the code. Execute your code and experiment with four
different combinations of T, B, and N and collect timing results including speed-up factor. What is the
effect of the first kernel launch with one combination of T, B, and N? That is, record the execution
time when the first time the kernel is executed and subsequent execution times the same kernel is
executed with the same parameters without exiting the main program. Discuss the results.

What to submit from this part

Your submission document should include the following:

1) A properly commented listing of your matrix multiplication program with the features (a) – (e)
specified incorporated.

2) Screenshots of executing your matrix multiplication program with four different combinations
of T, B, and N, displaying values and the speedup factor in each case.

3) An experiment showing the effect of the first kernel launch with one combination of T, B, and
N.

4) Discussion of the results

Part 3 Prefix Sum Computation (30%)

Write a CUDA program that implements the data parallel prefix sum calculation operating upon N
numbers. Generate those numbers on the host using the random number generator:

srand(1); //initialize random number generator
for (i=0; i < N; i++) // load array with some numbers

 a[i] = (int)rand() ;

Incorporate the following features to enable experimentation to be done on speed-up factor:

(a) Add keyboard input statements to be to specify the numbers of numbers.
(b) Add host code to compute the prefix sum on the host only.
(c) Add code to verify that both CPU and GPU versions of the prefix sum produce the same and

correct results.
(d) Different CUDA grid/block structures – Add keyboard statements to input different values for:

 Numbers of threads in a block (T)
 Number of blocks in a grid (B)

 Include checks for invalid input. Ensure that GPUs limitations are met from the data given in
deviceQuery (Preliminaries).

(e) Timing -- Add statements to time the execution of the code using CUDA events, both for the
host-only (CPU) computation and with the device (GPU) computation, and display results.
Compute and display the speed-up factor.

Execute your code and experiment with four different combinations of T, B, and N and collect timing
results including speed-up factor.

5

What to submit from this part

Your submission document should include the following:

1) A properly commented listing of your sorting program with the features (a) – (e) specified
incorporated.

2) Screenshots of executing your sorting program with four different combinations of T, B, and N,
displaying values and the speedup factor in each case.

3) Discussion of the results

Part 4 Extra credit (undergraduate and graduate students, +20%).

Write a CUDA program to sort N random numbers using Counting Sort. Employ the prefix sum
calculation in Part 3 (step 2 of Counting sort, see lecture slides).

Incorporate features listed in Part 3.

What to submit from this part

As in Part 3

Grading

Every task and subtask specified will be allocated a score so make sure you clearly identify each part
you did. The quality of conclusions and discussions will factor into the grading.
What to submit

Assignment Submission

Produce a document that show that you successfully followed the instructions and performs all tasks
by taking screen shots and include these screen shots in the document. Give sufficient screen shots to
demonstrate each task and sub-task has been fully completed. Provide insightful conclusions. Submit
by the due date as described on the course home page. Include all code, not as screen shots but
complete properly documented code listing.

