
1

Using the UNC-W Cluster

C. Ferner and B. Wilkinson, August 17, 2014

Overview

The UNC-Wilmington cluster is shown below:

Note this cluster USES a job scheduler (the SGE job scheduler).

Login is through the submit host: babbage.cis.uncw.edu.

Editing and Compiling

Editing and compiling programs is done using normal resident Linux editors and
compilers.

Running

Programs are submitted to the SGE scheduler with qsub command and job description
file is necessary. For example, to submit a MPI executable called hello, you will need to
create a file call hello.sge with the contents shown in Figure 1.

2

The first line of this script indicates that this is a shell script. The line #$ -pe orte 4
indicates to SGE that you want 4 processing elements (processors). The line #$ -N
Hello indicates that the output files should be named “HelloXXX”, where XXX
contains other characters to indicate what it is and the job number. The line #$ -cwd
tells SGE to use the current directory and the working directory (so that you output files
will go in the current directory). The line #$ -j y will merge the stdout and stderr
files into one file called “Hello.oXXX”, where XXX is the job number. Normally, SGE
would create separate output files for the stdout and stderr, but this isn’t necessary.

The line #$ -l h_rt=00:01:00 tells SGE to kill the job after a minute. This helps
to keep the system clean of old jobs. If you find that a job is still in the queue after it has
finished, you can delete it using qdel #, where # is the job number. If you expect your
job to take longer than a minute to run, you will need to increase this time.

The last line of the submission file tells SGE to run the hello program using MPI run and
the same number of processors as indicated in the #$ -pe orte 4 line above.

To submit your job to the SGE, you enter the command:

qsub hello.sge

You job is given a job number, which you will use for other SGE command. The output
of your program will be send to a filed called Hello.oXX, where XX is the job number.
There will also be a file called Hello.poXX, which you don’t need. You will want to
delete the output files you don’t need. Otherwise, your directory will fill up.

#!/bin/sh

Usage: qsub hello.sge

#$ -S /bin/sh

#$ -pe orte 4 # Specify how many processors we want

-- our name ---
#$ -N Hello # Name for the job
#$ -l h_rt=00:01:00 # Request 1 minute to execute
#$ -cwd # Make sure .e and .o files arrive in working directory
#$ -j y # Merge standard out and standard error to one file

mpirun -np $NSLOTS ./hello

Figure 1: Job Submission File for Hello World

3

To see the list of jobs that have been submitted and have not yet been terminated, use the
command qstat. If you find that a job is still in the queue after it has finished, you can
delete it using qdel #, where # is the job number.

After your job has completed, you should get output in the file Hello.oXX, with contents
that should look something like that of Figure 2.

OpenMP

Compile an OpenMP program omp_hello.c with the regular gcc compiler using the
command:

 gcc -fopenmp omp_hello.c -o omp_hello

To execute the program, create a job submission file such as the one in Figure 3. Notice
that the “#$ -pe orte 4” line is missing as well as the mpirun command. This is
because the program does not use MPI.

Submit this job to the SGE scheduler using qsub.

#!/bin/sh

Usage: qsub omp_hello.sge

#$ -S /bin/sh

-- our name ---
#$ -N OMP_Hello # Name for the job
#$ -l h_rt=00:01:00 # Request 1 minute to execute
#$ -cwd # Make sure .e and .o files arrive in working directory
#$ -j y # Merge standard out and standard error to one file

./omp_hello

Figure 3: Job Description File for an OpenMP program

Figure 2: Hello world output

Master process 0 starting.
Hello world from process 0 on machine compute-0-0.local.
Hello world from process 1 on machine compute-0-0.local.
Hello world from process 2 on machine compute-0-0.local.
Hello world from process 3 on machine compute-0-0.local.
Goodbye world from process 0.

4

Combined (hybrid) OpenMP/MPI programs

Compile hybrid program omp-mpi_hello.c with:

 mpicc -fopenmp omp-mpi_hello.c -o omp-mpi_hello

Note this command invokes the regular gcc compiler.

