
ITCS 4145/5145 Parallel Computing
Assignment 4

Combining MPI message passing and OpenMP threads
B. Wilkinson March 13, 2012

In this assignment, you are to write a C program that has both MPI message-passing routines and
OpenMP threads. This is a form of “hybrid programming” and extremely relevant for clusters of multi-
processor and multicore computer systems. The message-passing routines are used to pass messages
between computer systems and the threads are run using the multiple cores on each system. The overall
structure of the program is illustrated below:

Write and test a hybrid MPI/OpenMP program that executes on the coit-grid cluster demontrating the
structure above. The actual computation to be performed is for you to decide but it must achieve a pur-
pose. Possible computations of sufficient complexity are:

• Sorting numbers
• Finding prime numbers
• Searching a sequence for a pattern

Sample MPI/OpenMP program and compiling

A sample MPI/OpenMP program is given below:

#include <stdio.h>
#include <string.h>
#include <stddef.h>
#include <stdlib.h>
#include "mpi.h"

#define CHUNKSIZE 10
#define N 100

void openmp_code(){
int nthreads, tid, i, chunk;
float a[N], b[N], c[N];

Send data using
MPI

Receive data using MPI

Some message
exchanges

OpenMP
Threads

Slaves
processes

Master process

Master process

OpenMP
Threads

for (i=0; i < N; i++)
a[i] = b[i] = i * 1.0; // initialize arrays

chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,nthreads,chunk) private(i,tid) {
tid = omp_get_thread_num();
if (tid == 0){

nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}

// printf("Thread %d starting...\n",tid);

#pragma omp for schedule(dynamic,chunk)

for (i=0; i<N; i++){
c[i] = a[i] + b[i];

// printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
}
} /* end of parallel section */

}

main(int argc, char **argv) {
 char message[20];
 int i,rank, size, type=99;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD,&size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 if(rank == 0) {
 strcpy(message, "Hello, world");
 for (i=1; i<size; i++)
 MPI_Send(message, 13, MPI_CHAR, i, type, MPI_COMM_WORLD);
 }
 else
 MPI_Recv(message, 20, MPI_CHAR, 0, type, MPI_COMM_WORLD, &status);

 if(1){ //* if this machine has multiple cores
openmp_code(); //run the mpi code

}
 printf("Message from process =%d : %.13s\n", rank,message);
 MPI_Finalize();
}

It can also be found on the course home page in the assignment section. Compile with:

mpicc -o mpi_out mpi_test.c -fopenmp

Note this command invokes the regular cc compiler not the Intel icc compiler.

Submission

Produce a document that describes the purpose of your computation and your code. Show that the pro-
gram executed successfully on the coit-grid servers. Include screen shots in the document. Provide
insightful conclusions. Submit a single pdf file to Moodle by the due date (see home page). Include your
code. Grading will depend upon report and work. Greater expectations from graduate students.
It is very important that you work independently. Copied work will not be accepted.

