

1

Parallel Programming Assignment 2
Compiling and running MPI programs

Author: B. Wilkinson and Clayton S. Ferner Modification date: Jan 30, 2014 (minor clarification Feb 17, 2014)

In this assignment, you will write and execute run MPI programs. For Spring 2014, we are going to try
a new approach so watch for announcements on the home page for any corrections/clarifications.
First you will test your programs on your own computer. This will require you to install an
implementation of MPI on your own computer. Later you will test the programs on the UNC-C cci-
grid0x.uncc.ed cluster. This approach reduces issues of faulty user programs running on the cluster
affecting response time. Users can also do local editing, possibly with an IDE such as Eclipse-PTP
(although for now, we do not explore Eclipse-PTP here, except as extra credit).

Part 1 is installing an implementation of MPI.

Part 2 has simple exercises to run an MPI hello world program on a single computer and on multiple
computers to learn how to compile and execute programs

Part 3 asks you to write an MPI program to perform matric multiplication. A skeleton program is given
to you (Appendix) that you have fill in details.

Part 4 asks you to test your MPI programs on the UNC-C cluster and compare execution times.

Part 5 asks you to create your own load balancing workpool program. This is similar to Assignment 1
(Seeds framework) but now you have use lower-level MPI routines.

When downloading files with a browser, be careful to make sure the file name extension and/or the
contents have not been altered with HTML tags. Also be careful when copying and pasting code that
unwanted characters are not copied (especially from Word documents).

Part 1 Installing MPI on your computer (20%)

You may do this any way you wish. There are two widely available implementations of MPI:

1. OpenMPI http://www.open-mpi.org/

2. MPICH http://www.mpich.org/

with Linux/Mac and Windows versions1. The Windows version in MPICH is a Microsoft product and a
C compiler will be needed (comes with Visual Studio). A gcc-like C compiler for Windows can also be
obtained from MinGW, http://www.mingw.org/

For Windows, an alternative approach is to provide a Linux environment of your computer and install a
Linux version of MPI, for example with:

1. Cygwin http://www.cygwin.com/

1 Binary support for Windows OpenMPI has been discontinued, see http://www.open‐mpi.org/

2

2. VirtualBox https://www.virtualbox.org/

The Cygwin site already provides OpenMPI and Cygwin can be installed with OpenMPI libraries at the
same time simply by selecting OpenMPI libraries during installation process. For VirtualBox, first
install VirtualBox, then a distribution of Linux such as Ubuntu with say OpenMPI libraries. In both
cases, installation can take a long time.

The following instructions are written for a Linux/Mac environment.

Check commands

Check the implementation and version with the commands:

which mpicc
which mpiexec

The full paths should be returned.

Set up a directory for the assignments

Make a directory called mpi_assign that will be used for the MPI programs in this course, and cd into
that directory The Linux commands are:

mkdir mpi_assign
cd mpi_assign

All MPI commands will be issued from this directory.

Include in your submission document for Part 1:

Describe exactly what you did to install MPI with sufficient details for others to be able to do the same.

Part 2 Executing a simple Hello World program (20%)

Task 1: Hello World program

Create a C program called hello.c in the mpi_assign directory. This program is given below:

#include <stdio.h>
#include <string.h>
#include <stddef.h>
#include <stdlib.h>
#include "mpi.h"

main(int argc, char **argv) {
 char message[256];
 int i,rank, size, tag=99;
 char machine_name[256];
 MPI_Status status;

 MPI_Init(&argc, &argv);

3

 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 gethostname(machine_name, 255);

 if(rank == 0) {
 printf ("Hello world from master process %d running on %s\n",rank,
 machine_name);
 for (i = 1; i < size; i++) {
 MPI_Recv(message, 256, MPI_CHAR, i, tag, MPI_COMM_WORLD, &status);
 printf("Message from process = %d : %s\n", i, message);
 }
 } else {
 sprintf(message, "Hello world from process %d running on %s",rank,
 machine_name);
 MPI_Send(message, 256, MPI_CHAR, 0, tag, MPI_COMM_WORLD);
 }

 MPI_Finalize();
 return(0);
}

The program sends the message "Hello, world from process # running on hostname XXXX" from each
slave process (workers, rank != 0) to the master process (rank = 0). The master process receives the
messages and then prints the messages to stdout.

Compile and execute the hello world program using four processes in total.

Compilation:

To compile the program use the command:

mpicc –o hello hello.c

which uses the gcc compiler to links in the libraries and create an executable hello, and hence all the
usual flags that can be used with gcc can be used with mpicc.

Execution:

To execute an MPI program, the usual command is mpiexec with the specific path to the executable,
i.e.:

mpiexec -n 4 ./hello

where ./ denotes the path to current directory (or give its full path) otherwise, you will get a "File not
found" error.

So far, four instances of the program will execute just on one computer. You should get the output:

Hello world from master process 0 running on …
Message from process = 1 : Hello world from process 1 running on …
Message from process = 2 : Hello world from process 2 running on …
Message from process = 3 : Hello world from process 3 running on …

4

The order of messages may be different; it will depend upon how the four processes are scheduled on
one computer. Comment on the how MPI processes map to processors/cores.

Task 2 Experiments with Code

Modify the hello world program by specifying the rank and tag of the receive operation to
MPI_ANY_SOURCE and MPI_ANY_TAG, respectively. Recompile the program and execute. Is the
output in order of process number? Why did the first version of hello world sort the output by process
number but not the second?

Include in your submission document for Part 2:

Task 1

1. A screenshot or screenshots showing:
a. Compilation of the hello world program
b. Executing the program with its output

Task 2
1. Results of changing the rank and tag
2. Answers to the questions.

Part 3 Matrix Multiplication (20%)

Task 1: Creating MPI program

Obtain the input test file and output file from:

http://coitweb.uncc.edu/~abw/ITCS4145S14/Assignments/MatrixTestFiles/index.html

Copy the files to your mpi_assign directory. The input file contains two matrices of floating-point
numbers that are 512x512 which you can use as input. The output file contains the answers of
multiplying the two matrices in the input file.

Create a program using the skeleton program show in the Appendix. This skeleton program already has
the code the read the input from the file and take time stamps using the system call gettimeofday(). You
need to fill in the sections labeled "TODO". These sections include:

1) Scatter the input data to all the processors
2) Implement Matrix Multiplication in parallel
3) Gather the partial results back to the master process

Note: all of the code currently in the appendix (in black) should be done sequentially (one processor
only). All of the code you add for the “TODO”’s should be done in parallel.

After you are able to compile successfully your matrix multiplication with mpicc, take a screenshot of
the compilation for your submission document.
Also create and compile a sequential version of the program (i.e. without MPI).

5

Task 2: Run the parallel version

The program reads the input file. You will need to add the name of that file (input2x512x512Doubles)
as the final command line argument after your program on the mpiexec command for example

mpiexec -n 4 ./hello input2x512x512Doubles

Run the command to execute the parallelized version of the matrix multiplication program using the
number of processors in the range: 1, 4, 8, 12, 16, …. Then compare the output of your parallel program
with the sequential version using the diff command 2:

diff output.seq output.par.<P>

Sample output is shown in Figure 1:

If your program is implemented correctly, it should output the same answers as the sequential version of
the program. If so, then the result of the diff command should be only 4 lines that look something like
Figure 1. This means that the output is the same for both program but the execution time is different. If
the diff command produces output that consists of many lines of numbers, then your parallelized matrix
multiplication is not producing the same answers as the sequential version. You need to figure out why
not and fix it. When your parallelized program can produce the same output as the sequential version,
include snapshots of the output of the diff commands comparing all of the parallel output files with the
sequential output file. Take a screenshot of the output of the diff commands comparing the parallel
output with the sequential output for your submission document.

Task 3: Record and analyze results

Record the elapsed times for the parallelized program running on the different number of processors as
well as the elapse time for the sequential version. Create a graph of these results using a graphing
program, such as a spreadsheet. You have to create a graph of the execution times compared with
sequential execution and the speedup curve with linear speedup. These graphs should look something
like Figure 2 and Figure 3, but the shape of the curves do not. Your curves may show something
entirely different. The figures below are just examples. Make sure that you provide axes labels, a legend
(of there is more than one line) and a title to the graphs. Include copies of the graphs in your submission
document.

2 On Windows, use the FC command.

1c1
<elapsed_time= 0.332111 (seconds)

>elapsed_time= 0.298292 (seconds)

Figure 1: Example output from diff command

6

Figure 2: Example Execution Time Graph

Figure 3: Example Speedup Graph

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40

Ex
e
cu
ti
o
n
 T
im

e
 (
se
co
n
d
s)

Number of Processors

Parallel Execution of Matrix Multiplication
Partitioned ??? Using OpenMPI

Parallel Execution

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

0 10 20 30 40

Sp
e
e
d
u
p

Number of Processors

Speedup of Matrix Multiplication
Partitioned ??? Using OpenMPI

Speedup

7

Include in your submission document for Part 3:

1. A copy of your matrix multiplication program
2. A copy of your execution time and speedup graphs
3. A screenshot or screenshots showing:

a. Compilation of the program using mpicc
b. Results of running the diff command comparing the parallel output with the sequential

outputs

Part 4 Using the UNC-C cci-grid0x cluster (20%)

Now we will use the UNC-Cluster. Carefully review the notes on this cluster on the course home page:

http://coitweb.uncc.edu/~abw/ITCS4145S14/Assignments/UNCC_Cluster.pdf

Task 1 Connect onto the cci-grid0x cluster

Connect to cci-gridgw.uncc.edu using Putty (or another ssh client).

Check the MPI installed with the commands:

which mpicc
which mpiexec

The full paths should be returned.

Task 2 Executing MPI programs on a single computer

Make a directory in your home directory called mpi_assign that will be used for the MPI programs, and
cd into that directory. Transfer all your MPI source programs hello.c and matrix.c from the previous
parts to that directory.

Compile and execute the MPI programs:

 Hello world program, hello.c (from Part 2)
 Matrix multiplication program, matrix.c (from Part 3)

on cci-gridgw.uncc.edu. Establish the results are correct.

Task 3 Using multiple computers

The usual way MPI identifies the computers (machines) that it can use for executing an MPI program is
by listing them in a file, and using the -machinefile flag with mpiexec (mpiexec.hydra on the cluster),
i.e, if the file containing the list of machines is called machines:

mpiexec.hydra -machinefile machines -n 4 ./a.out

8

would run a.out on the cluster with four processes and each process would execute on one of the
machines in the list. By default, MPI cycles through the list of machines giving processes to machines in
a round robin fashion. (One can also specify the number of processes on a particular machine by adding
that number after the machine name.)

Because of the way the cluster is set up, internal compute nodes communicate using local names. Create
a file called machines containing the list of machines, using the local names, e.g.

 cci-grid05
 cci-grid07
 cci-grid08
 cci-gridgw.uncc.edu

To execute the hello.c program on the computers specified in the machines file with 8 processes, the
command is:

mpiexec.hydra -machinefile machines -n 8 ./hello

Run the program with 8, 16, and 32 processors. Notice that the output from the processes is in order of
process number.

Include in your submission document for Part 3:

1. A screenshot showing the execution of the hello.c program on cci-gridgw.uncc.edu. from your
account

2. A screenshot showing the execution of the matrix.c program on cci-gridgw.uncc.edu from your
account

3. A screenshot showing the execution of the hello.c program using multiple nodes of the cluster
(cci-grid05, cci-grid07, cci-grid08, and cci-gridgw.uncc.edu).

4. A screenshot showing the execution of the matrix.c program using multiple nodes of the cluster
(cci-grid05, cci-grid07, cci-grid08, and cci-gridgw.uncc.edu).

5. For matrix multiplication, in both cases show the results of running the diff command comparing
the parallel output with the sequential outputs

Part 5 Implementing patterns - Workpool (20%)

The workpool pattern can provide powerful load balancing whereby when a processor returns one result,
it is given further work to do. Figure 4 shows such a workpool with a task queue. Individual tasks are
given to the slaves. When a slave finishes and returns the result, it is given another task from the task
queue, until the task queue is empty. At that point, the master waits until all outstanding results are
returned (the termination condition – task queue empty and all result collected).

9

Figure 4: Workpool with a task queue

First write a sequential program in C to perform the Monte Carlo calculation described in Assignment
1 (Seeds) using 10,000 samples. The program is to output both the value of , its error from the exact
value, and the execution time (done by instrumenting the code).

Then write an MPI program to implement a workpool version for the Monte Carlo calculation, with
10,000 samples and N processes where N can be input.

Execute both programs on your own computer and on the cluster. On the cluster, run the MPI program
with 4, 8, 12, and 16 processes. Compare the execution times with a sequential version and create graphs
of the execution time and speedup as you did before.

Include in your submission document for Part 5:

1. Sequential C program for the Monte Carlo calculation
a. Copy of your source program
b. Copy of the specified output both locally and on the cluster

2. MPI program for the Monte Carlo calculation

a. Copy of your source program
b. Copy of the specified output both locally and on the cluster
c. Speedup graphs with 4, 8, 12, and 16 processes

Extra Credit for everyone (up to 15%)

Demonstrate using Eclipse-PTP to compile and execute MPI programs on your computer or/and the
cluster. Give full details so that others might do the same.

Slaves

Master

Result

Task from
task queue

Compute

Aggregate
answersTask queue

Another Task if task
queue not empty

10

Assignment Submission

Produce a single pdf document that show that you successfully followed the instructions and performs
all tasks. Max 30 pages.

Grading: Every task and subtask specified will be allocated a score so make sure you clearly identify
each part/task you did (Part 1, Task 1 etc.). Make sure you include at least everything that is specified in
the “Include in your submission document” section at the end of each part. The items specified to
include is not exhaustive. You may add additional materials to demonstrate you did the tasks.
Include conclusions. Original code given in the assignment is not needed.

11

Appendix – Matrix Multiplication Skeleton Program

#define N 512

#include <stdio.h>
#include <math.h>
#include <sys/time.h>

print_results(char *prompt, float a[N][N]);

int main(int argc, char *argv[])
{
 int i, j, k, blksz, error = 0;
 double a[N][N], b[N][N], c[N][N];
 char *usage = "Usage: %s file\n";
 FILE *fd;
 double elapsed_time, start_time, end_time;
 struct timeval tv1, tv2;

 if (argc< 2) {
 fprintf (stderr, usage, argv[0]);
 error = -1;
 }

 if ((fd = fopen (argv[1], "r")) == NULL) {
 fprintf (stderr, "%s: Cannot open file %s for reading.\n",
 argv[0], argv[1]);
 fprintf (stderr, usage, argv[0]);
 error = -1;
 }

 TODO: Broadcast the error. Have all processes terminate if the error is non‐zero. (Be sure to use
MPI_Finalize).

 // Read input from file for matrices a and b.
 // The I/O is not timed because this I/O needs
 // to be done regardless of whether this program
 // is run sequentially on one processor or in
 // parallel on many processors. Therefore, it is
 // irrelevant when considering speedup.

 for (i = 0; i< N; i++)
 for (j = 0; j < N; j++)
 fscanf (fd, "%lf", &a[i][j]);

 for (i = 0; i< N; i++)
 for (j = 0; j < N; j++)
 fscanf (fd, "%lf", &b[i][j]);

 TODO: Add a barrier prior to the time stamp.

 // Take a time stamp
 gettimeofday(&tv1, NULL);

 TODO: Scatter the input matrix a.
 TODO: Broadcast the input matrix b.
 TODO: Add code to implement matrix multiplication (C=AxB) in parallel. Each processors should compute

a set of rows of the resulting matrix.

12

 TODO: Gather partial result back to the master process.

 // Take a time stamp. This won't happen until after the master
 // process has gathered all the input from the other processes.
 gettimeofday(&tv2, NULL);

 elapsed_time = (tv2.tv_sec - tv1.tv_sec) +
 ((tv2.tv_usec - tv1.tv_usec) / 1000000.0);
 printf ("elapsed_time=\t%lf (seconds)\n", elapsed_time);

 // print results
 print_results("C = ", c);
}

print_results(char *prompt, double a[N][N])
{
 int i, j;

 printf ("\n\n%s\n", prompt);

 for (i = 0; i< N; i++) {
 for (j = 0; j < N; j++) {
 printf(" %.2lf", a[i][j]);
 }
 printf ("\n");
 }
 printf ("\n\n");
}

