
1

Assignment 4
The Suzaku Framework

Authors: R. Payne and B. Wilkinson

Modification date: April 4, 2014 (minor clarifications in red)

Overview

The purpose of this project is to implement a task queue workpool programming pattern
using the Suzaku framework to solve block matrix multiplication. The Suzaku framework
implements the workpool pattern for matrix multiplication using macros and routines and
produces MPI code. Thus this is another way to produce pattern based programs
without actually writing the message-passing code yourself. The actual Suzaku code is
hidden in a provided object file. Later you will be asked to write this code yourself.

You should first try to use your own computer for this assignment. All that will be
needed is an MPI compiler, which you used in a previous assignment. Several versions
of the suzaku files are given on the course home page for different OS’s/compilers. If
none work for you, you may use the UNCC gridgw cluster to do this assignment.

Suzaku is a new project so watch for announcements on the home page for any
corrections/clarifications.

Part 1 Preliminary tasks

Task 1: Setup

Download the Suzaku object file suzaku.o from the class website (Assignment 4).

Task 2: Check MPI installation

First check your MPI implementation with the commands with:

which mpicc
which mpiexec

The full paths showing the location of mpicc and mpiexec should be returned.

Task 3: Set up a directory for the assignments

Make a directory called Suzaku that will be used for the Suzaku programs in this
course, and cd into that directory. The commands are:

mkdir Suzaku

2

cd Suzaku

All commands will be issued from this directory. You do not need to include anything
from this stage of the assignment in the submission document.

Part 2 Executing Hello World source code (25%)

Task 1: Executing a simple Hello World program

Create a C program called hello.c in the Suzaku directory. This program is given
here:

#include “suzaku.h”

void compute(double a[N][N], double b[N][N], double c[N][N], int index, int
blksize){

}

int main(int argc, char **argv){
 int p, rank;

 MPI_START(&p, &rank, &argc, &argv);

 for(int i = 0; i < 10; i++){
 printf(“Hello world from process: %i \n”, rank);
 }

 MPI_Finalize();
 return 0;
}

This program outputs “Hello world from process: “ and the process number from which
the line of code is executing.

Compilation:

Place the suzaku.o object file and suzaku.h header file from the home page with your
source code. To compile the program use the command:

 mpicc –std=c99 –c –o hello.o hello.c
 mpicc –std=c99 hello.o suzaku.o –o helloworld

which uses the gcc compiler to links in the libraries and create an executable hello, and
hence all the usual flags that can be used with gcc can be used with mpicc.

The first command with the –c option will create an object file (.o) rather than the final
executable. Make sure you include the –c. The second command will link the object file
with the suzaku object file to create the final executable.

3

Because int i is declared inside the for loop, an additional flag of "-std=c99" may be
needed to compile the hello world program if the underlying compiler is gcc, i.e. use:

mpicc -std=c99 ….

“-std= … ” determines the language standard, in this case ISO C99.

Execution:

To execute the program, use the following commands in terminal:

 mpiexec –n # ./helloworld

where the “#” is the number of processors that the program will execute using.
After your program is complete, you should have output similar to the following (if you
specified 2 processors):

Hello world from process: 0
Hello world from process: 0
Hello world from process: 0
Hello world from process: 0
Hello world from process: 0
Hello world from process: 0
Hello world from process: 0
Hello world from process: 0
Hello world from process: 0
Hello world from process: 0
Hello world from process: 1
Hello world from process: 1
Hello world from process: 1
Hello world from process: 1
Hello world from process: 1
Hello world from process: 1
Hello world from process: 1
Hello world from process: 1
Hello world from process: 1
Hello world from process: 1

Include in your submission document for Part 2:

Task 1

1. A screenshot of the output using 1, 2, and 4 processors The source with the
compute function and the sequential completed (not as a screenshot).

2. A screenshot of the directory containing the source files and the executable.

4

Part 3 Block Matrix Multiplication using Suzaku (25%)

Task 1: Creating the sequential matrix multiplication version

First you will need some input. Download the file input2x512x512Doubles to your
directory. This file contains two matrices of floating point numbers that are 512x512
which you can use as input. Also copy the file output512x512mult to your directory. This
file contains the answers of multiplying the two matrices in the input file.

Create a program using the skeleton program show in the Appendix. This skeleton
program already has the code the read the input from the file and take time stamps
using the system call gettimeofday(). The Suzaku framework solves block matrix
multiplication using a task queue to implement a workpool pattern. The master and
worker process functions accept an argument for the block size which is defined at the
top of the source code. You need to fill in the compute function and the case if there is
only one processor. The compute function is going to have to handle the computation
of rows/columns starting from the index and going block size number of iterations. Since
the processor equal to one case is sequential, it only requires the straight-forward
solution.

Before adding any code, compile the source with the following commands:

 mpicc –c matrixmulti.c –o matrixmulti.o
 mpicc matrixmulti.o suzaku.o –o matrixmulti

Then run the program with the following command:

 mpiexec –n 1 ./matrixmulti input2x512x512Doubles >output

The output file will contain the resultant matrix. Right now, a diff command comparing
the output file against the output512x512mult file would show that the output is not
correct. The command to check the difference between the files is:

 diff output512x512mult output

Note: You can output the difference to a text file by adding >diffOutput

Fill in the code for the processor equal to one case, then check your output against the
output512x512mult file to verify that you have the correct resultant matrix.

Task 2: Creating the parallel block matrix multiplication version

Fill in the code for the compute function. The compute function will contain a for loop that
iterates over the block size worth of columns and rows. The function also should record
each result to the “c” matrix with the assignment operator. Since the matrices are

5

passed by reference, the values will be appropriately stored, thus no need for a return
value.

Using the diff command, you will be able to check your computation against the
sequential output. You should have output that resembles:

< elapsed_time= 1.218369 (seconds)

> elapsed_time= 6.643332 (seconds)

Task 3: Record and analyze results

Record the elapsed times for the parallelized program running on the different number
of processors and block sizes as well as the elapse time for the sequential version. It is
not necessary to test different block sizes on the p=1 case. Create a graph of these
results using a graphing program, such as a spreadsheet. You have to create a graph of
the execution times compared with sequential execution and the speedup curve with
linear speedup. These graphs should look something like Figure 2 and Figure 3, but the
shape of the curves do not. Your curves may show something entirely different. The
figures below are just examples. Make sure that you provide axes labels, a legend (of
there is more than one line) and a title to the graphs. Include copies of the graphs in
your submission document.

6

Include in your submission document for Part 3:

Task 1

1. A screenshot of compiling your source, linking the object file with the suzaku
object, and executing to an output file.

Task 2

3. The source with the compute function and the sequential completed(not as a
screenshot).

Task 3

1 Screenshots of the execution times and speed up graphs for p = 1, 2, 4, 8 and
block sizes of 1, 2, 4, and 8.

4. The processor speed and number of cores of the machine that you are running
the program from.

5. An explanation of the results. Why is the block size affecting the speed? How
might your processor be impacting the results.

7

Part 4 Replacing the Master/Worker Functions with MPI (25%)

In Part 3, the Suzaku framework used a task queue workpool (Figure 4) to manage the
work being sent between processors. The task queue simply sends a row(s) of A and
the worker receives the row(s), computes the results, and sends the results to the
master process to store in the C matrix. The master process starts from the beginning of
the A matrix and sends a block size worth of rows at a time, until all rows have been
sent out. Then the master process sends a termination signal to the workers.

Task 1: Replacing the workerProcess Function

For this part, you will write functions using MPI send and receive calls with the code you
wrote from part 3. Start out by writing the worker process first, where the termination
signal is an integer N. You will not need to modify the main function, other than calling
your new worker process. Remember, the worker has to receive work before it does any
computation, so the worker will wait for the index of the work, then the associated
row(s)(Hint: 2 separate receives). The worker calls the compute function, then sends the
results back to the master process. After the worker process is complete, verify that it
works by compiling and running your program.

Task 2: Replacing the masterProcess Function

Suzaku’s master process uses a counter based on the amount of work that has yet to
be accomplished. First, it gives out work to each processor then waits for a processor to

8

return with a result. After it receives the result, it employs the returning worker by
sending it another piece of work to accomplish. The result is a task queue workpool
where none of the processors are sitting around waiting for other processors.

Task 3: Record and analyze results

Just as in part 3 task 3, record and graph the speed up and execution times using p = 1,
2, 4, 8 and block sizes 1, 2, 4, 8.

Include in your submission document for Part 4:

Task 1 & 2

1. A screenshot of compiling your source, linking the object file with the suzaku
object, and executing to an output file.

2. The source code containing your completed functions(not as screenshot).

Task 3

1. Screenshots of the execution times and speed up graphs for p = 1, 2, 4, 8 and
block sizes of 1, 2, 4, and 8.

2. The speed and number of cores the processor that you record your results from.
Must be the same machine as the one used in Part 3.

3. A comparison to the results you obtained in Part 3.

9

Part 5 Block Matrix Multiplication with BT (25%)

In the previous parts, the B matrix was broadcasted to each process. This was a
method to deal with the issue of needing to send out columns rather than rows. Another
method of dealing with this same problem is to transpose the B matrix. Recall that
matrix transposition swaps the elements in the i-th row and j-th column to the j-th row
and the i-th column. The result is a matrix such that the rows and columns have been
switched. Since memory is stored contigiously in an array, transposing the matrix
enables us to send rows instead of broadcasting the entire array. The compute function
needs to be adjusted such that the C matrix contains the solution for A x B, and not
A x BT(transposed).

Task 1: Transpose the B Matrix

Using your code from Part 3, remove the function call mpiBroadcastArrayOfDoubles(*b)
from the source. You are allowed to use MPI commands and are able to remove other
functions to accomplish this task, however, you must keep the following function calls in
place:

compute(...)
MPI_START(...)
startTimer(...)
masterProcess(...)
workerProcess(...)
stopTimer(...)
printResults(...)

There are multiple ways to accomplish the transposition and completing the block matrix
multiplication using the Suzaku framework. Link and compile your source just as before.
Use the difference command to verify that the output matrix is correct.

Task 2: Record and Analyze the results

Just as in part 3 task 3, record and graph the speed up and execution times using p = 1,
2, 4, 8 and block sizes 1, 2, 4, 8.

Include in your submission document for Part 5:

Task 1

1. A screenshot of compiling your source, linking the object file with the suzaku
object, executing to an output file, and comparing your output file using the diff
command.

2. The source code containing your solution for transposing the B matrix (not as
screenshot).

10

Task 2

1. Screenshots of the execution times and speed up graphs for p = 1, 2, 4, 8 and
block sizes of 1, 2, 4, and 8.

2. The speed and number of cores the processor that you record your results from.
Must be the same machine as the one used in Part 3 & 4.

3. A comparison to the results you obtained in Part 3 & 4.

Grading

Every task and subtask specified will be allocated a score so make sure you clearly
identify each part/task you did. Make sure you include everything that is specified in the
“Include in your submission document” section at the end of each part.

Assignment Submission

Produce a single pdf document that show that you successfully followed the instructions
and performs all tasks by taking screenshots and include these screenshots in the
document. Submit by the due date as described on the course home page. Include all
code, not as screen shots of the listings but complete properly documented code listing.

11

Appendix A – Block Matrix Multiplication Skeleton Program

#include "suzaku.h"
#define BLKSIZE 1

void compute(double a[N][N], double b[N][N], double c[N][N], int index, int
blksize){

//INSERT MATRIX MULTIPLICATION TO BE DONE BY WORKERS HERE
//FOR P > 1

}

int main(int argc, char *argv[]) {

int i, j, k, error = 0;
int p, rank = 0;
double a[N][N], b[N][N], c[N][N];
double sum;

MPI_START(&p, &rank, &argc, &argv);
readInputFile(argc, argv, &error, a, b);
startTimer(rank);

if(p == 1){

//INSERT CODE FOR MATRIX MULTIPLICATION ON 1 PROCESSOR
}

 else{
//Send out the b array to the workers
mpiBroadcastArrayOfDoubles(*b);
//Uses a task queue to issue work and rows from a as workers come
//back with completed work
masterProcess(a, c, p, rank, BLKSIZE);
//Fetches work and returns the results calculated by the compute
//function
workerProcess(a, b, c, rank, BLKSIZE);

 }

stopTimer(rank);
printResults("C =", c, rank);

return 0;

}

12

Appendix B – Suzaku Interface

