

1

ITCS 4145/5145 Parallel Programming
 Final exam – 2 hours

With solutions
UNC-C students: 11 am - 1:00 pm, Tuesday December 10th 2013

 UNC-W students: 11 am - 1:00 pm, Tuesday December 10th 2013
 UNC A&T students: 1 pm - 3 pm, Thursday December 12, 2013
 ECU students: 11 am - 1:00 pm, Tuesday December 5th 2013

 UNC-G students: 12 noon- 2:00 pm, Tuesday December 10th 2013

 Name: ...

This is a closed book test. Do not refer to any materials except those supplied for the test.

Answer questions in space provided below questions. Use additional paper if necessary but make sure your
name is on every sheet.
 Total /60

Do not refer to any materials for this part

Qu. 1 Answer each of the following briefly: (40)

a) Suppose you have a quad-core computer that can execute four processes simultaneously (one process on

each core). Suppose there is a program in which 40% of total execution time must be executed
sequentially but the remainder can be divided into 6 equal parts that can be executed concurrently.

What is the maximum speedup you can get using all four cores over using one core. Clearly explain
your answer. No points for simply putting down a numerical answer without an explanation, even if
correct.

 2

Sequential = 0.4 + 0.6 = 1.0 (.4 + .1 + .1 + .1 + .1 + .1 + .1 = 1.0)
Parallel = 0.4 + 2 x 0.1 = 0.6 (takes 0.1 to do first 4 parts and another 0.1 to do the remaining 2 parts)
 (.4 + .1 (4 parts concurrently) + .1 (2 parts concurrently) = .6)
Speed up = 1.0/0.6 = 1.667

b) What is meant by pattern programming?
 2

 Programmer begins by constructing his program using established computational or algorithmic

“patterns” that provide a structure. Higher level tools can then be sued to create executable code
avoiding low level tools such as MPI or OpenP

2

c) In the Seeds framework, what does the bootstrap class do?
 2

 Starts the framework and runs the user (module) program.

d) In Assignment 1(Seeds framework), you are asked to provide the name of your computer. How are you

instructed to find out that name?

 2

 Run the hostname command on the (DOS) command line.

e) Why is there no concept of shared and private data when using the Paraguin compiler?
 2

 Because it creates a parallel program that runs on a distributed-memory system. No data is shared. All

data is private.

f) In assignment 2 (Paraguin assignment) why did the second matrix need to be broadcast instead of

sctattered?
 2

 Because every processor needed the entire matrix (all rows and columns).

3

g) Parallelize the following code using the scatter/gather pattern in the Paraguin compiler:

 double a[N], b[N];
 int i;

 // b is initialized with data from a file

 for (i = 0; i< N; i++) {
 a[i] = 3*b[i] – 5*i + 13;
 }
 2

 double a[N], b[N];
 int i;

 // b is initialized with data from a file

 #pragma paraguin begin_parallel
 #pragma paraguin bcast b
 #pragma paraguin forall
 for (i = 0; i< N; i++) {
 a[i] = 3*b[i] – 5*i + 13;
 }
 #pragma paraguin gather a
 #pragma paraguin end_parallel

h) When does the MPI routine MPI_SSend() return?
 2

 When the message has been received.

i) In Assignment 3 (MPI, Part 3 matrix multiplication) you are asked to read a file containing two 512x512

matrices of floating-point numbers as input. The assignment did not say how to specify the file name.
How did you specify the file name for your program?

 2

 In the job description file at the end of the mpirun line. (Could also be specified at the end of the qsub

command.)

4

j) As a programmer, if you use a routine known to be not thread-safe, what should you avoid?
 2

Call the routine from multiple threads that might occur at the same time.
(Thread safe routines can be called from multiple threads at the same time and always produce correct
results.)

k) Rewrite the following loop nest so that all iterations of BOTH loops will be run in parallel among

multiple processors in OpenMP
 2

 for (i = 0; i< N; i++) {
 for (j = 0; j < M; j++) {
 …
 }
 }

 #pragma omp parallel for private(p, i, j)
 for (p = 0; p < N * M; p++) {
 i = p / N;
 j = p % N;
 …
 }

l) Using Bernstein conditions for parallelism, determine whether

 2
 for (int i = 0; i<5; i++) A[i] = A[i*2];

 can be written as:

 forall (int i = 0; i<5; i++) A[i] = A[i*2];

 Unfold loop:
 A[0] = A[0];
 A[1] = A[2];
 A[2] = A[4];
 A[3] = A[6];
 A[4] = A[8];

 No. Read/write dependency A[4]

5

m) How are threads created in Java? (one way) Give code.
 2

 public class HelloThread extends Thread {
 public void run() {
 System.out.println("Hello from a thread!");
 }
 public static void main(String args[]) {
 HelloThread myThread = new HelloThread();
 myThread.start();
 }
 }
Or
 public class HelloRunnable implements Runnable {
 public void run() {
 System.out.println("Hello from a thread!");
 }
 public static void main(String args[]) {
 HelloRunnable myThread = new HelloRunnable(); // Runnable object
 Thread tr = new Thread(myThread); // Create Thread object
 tr.start(); // Start thread and execute run method
 }
 }

n) How would you compile a program that included both OpenMP and CUDA?
 2

 nvcc –fopenmp –o <exec_name><source_file> -I/usr/local/cuda/include –L/usr/local/cuda/lib –lcuda –

lcudart

o) How does the Barnes-Hut algorithm reduce the time complexity of the N-body problem?
 2

 Approximates a cluster of distant bodies as a single distant body with mass sited at the center of mass of

the cluster. Space divide into sub-cubes with one in each. Create an octtree. Leaves represent cells
each containing one body. Total mass and center of mass of subcube stored at each vertex (node).Force
on each body obtained by traversing tree starting at root, stopping at a node when the clustering
approximation can be used, e.g. when r is greater than some distance D.

6

p) Suppose a pipeline is constructed to compute more than one instance of a problem. What is the speed

up with 100 instances of the problem and 25 pipe stages compared to executed one instance.
 2

 m = 100
 p = 25

 speedup s(m) = ts/tp = (p * m) / (p+m-1) = 2500/124 = 20.16

q) What is the parallel time complexity of Odd-Even Transposition Sort with N numbers and N processors
 2

 O(N)

r) Suppose it is necessary to create barrier that causes all threads in a CUDA kernel to wait until they reach

that point before continuing. How can that be achieved in a CUDA program having N thread blocks
where N is greater than 1?

 2

 Cannot use __syncthreads() as this only synchronizes threads in a block.
 Need to return to the main host program and insert a cudaThreadSynchronize();

7

Qu. 2 Write a complete MPI program to find how many zeros there are in an integer array A[N] using a
scatter/gather pattern. Define N as a constant with a value 10,000. Define the number of slaves as P and set to
10 slaves. Each slave is sent one group of N/P numbers from the array.
 7

Provide very clear explanation of how the program works, and comments in your code. If I do not
understand the code, I will assume it is incorrect.

You may refer to the information on MPI routines at the end of the test.

MPI
#include <mpi.h>
#define N 10000
int main (int argc, char *argv[])
{
 int A[N], B[N]; // actually B need only have N/P locations. Could malloc
 int i, rank, answer, P = 10, totalZero = 0;
 int chunksize = (int) ceil(((double)N) / P);
 MPI_Status status;

 MPI_Init (&argc, &argv);
 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &P);

 MPI_Scatter(A, chunksize, MPI_INT, B, chunksize, 0, MPI_COMM_WORLD); // includes master here

 totalZero = 0;
 for (i = 0; i < chunksize && rank * chunksize + i < N; i++) {
 totalZero += (B[i] == 0);
 }

 MPI_Reduce(&totalZero, &answer, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

 // Now we have the answer
 printf (“Number of zeros is %d\n”, answer);
 MPI_Finalize()
}

8

2(b) Repeat 2(a) but using OpenMP sharing the work across 10 threads?
 7

OpenMP

#define N 10000
#define P 10

int main (int argc, char *argv[])
{
 int A[N], d;
 int i, tid, totalZero = 0;

 // A is initialized with values

 #pragma omp parallel num_threads(10)
 {

 #pragma omp for (dynamic, 1) reduction (+: totalZero)
 for (i = 0; i< N; i++) {
 totalZero += (A[i] == 0);
 }

 }

 // Now we have the answer
 printf (“Number of zeros is %d\n”, totalZero);
}

9

Qu 3 Write a complete CUDA program that will sort numbers in an integer array A[N] using the Rank sort
algorithm, such that each CUDA thread handles one number and places it in the correct location in a sorted list
B[N]. Define N as a constant and set to 1000.Use the following code to load A[N] with numbers:

 for (i = 0; i< N; i++)
 A[i] = (int) rand();

You can assume that all numbers are different. Also sort the number using ranksort on the host CPU and
measure the execution time in each case. Compute the speedup factor.

The thread ID can be computed from:

 int tid = threadIdx.x + blockDim.x * blockIdx.x;

Provide very clear explanation of how the program works, and comments in your code. If I do not
understand the code, I will assume it is incorrect.
 10

#include <stdio.h>
#include <cuda.h>
#include <stdlib.h>
#define N 1000 // set N to some value

__global__ void gpu_ranksort(int *a, int *b, int N) { // a is unsorted array, b is sorted array
 inti, x;
 inttid = threadIdx.x + blockDim.x * blockIdx.x;

 while(tid< N) {
 x = 0;
 for (i = 0; i< N; i++) // count number less than it
 if (a[tid] > a[i]) x++;
 b[x] = a[tid]; // copy number into correct place
 tid += blockDim.x * gridDim.x;
 }
}

voidcpu_ranksort(int *a, int *b, int N) { // a is the unsorted array, b is the sorted array
 int i, x, t;

 for (t = 0; t < N; t++) { // for each number
 x = 0;
 for (i = 0; i< N; i++) // count number less than it
 if (a[t] > a[i]) x++;
 b[x] = a[t]; // copy number into correct place
 }
}

int main(int argc, char *argv[]) {

 inti; // loop counter

 int Block_Dim_x; //Block structure values
 int Grid_Dim_x; // no of blocks in grid
 int noThreads_x; // number of threads available in device, one dimension

 int a[N],b[N],c[N]; // a the input array, b the sorted array on GPU, c the sorted array on
host
 int *dev_a, *dev_b;
 int size; // number of bytes in arrays

 cudaEvent_t start, stop; // using cuda events to measure time
 float cpu_elapsed_time_ms, gpu_elapsed_time_ms; // which is applicable for asynchronous code also

10

 for(i=0;i<N;i++) // load array with some numbers
 a[i] = (int)rand();

/* ------------- SORTING DONE ON GPU ----------------------------*/

 cudaMalloc((void**)&dev_a, size); // allocate memory on device
 cudaMalloc((void**)&dev_b, size);

 cudaMemcpy(dev_a, a , size ,cudaMemcpyHostToDevice);
 cudaMemcpy(dev_b, b , size ,cudaMemcpyHostToDevice);

 cudaEventCreate(&start); // instrument code to measure start time
 cudaEventCreate(&stop);

 cudaEventRecord(start, 0);
// cudaEventSynchronize(start); // Needed?

 gpu_ranksort<<<Grid_Dim_x, Block_Dim_x>>>(dev_a,dev_b,N);

 cudaMemcpy(b,dev_b, size ,cudaMemcpyDeviceToHost);

 cudaEventRecord(stop, 0); // instrument code to measure end time
 cudaEventSynchronize(stop);
 cudaEventElapsedTime(&gpu_elapsed_time_ms, start, stop);

 printf("Time for ranksort on GPU: %f ms.\n", gpu_elapsed_time_ms); // print out execution time

/* ------------- SORTING DONE ON HOST CPU USING RANKSORT----------------------------*/

 cudaEventRecord(start, 0); // use same timing
// cudaEventSynchronize(start); // Needed?

 cpu_ranksort(a,c,N); // sort the list using ranksort

 cudaEventRecord(stop, 0); // instrument code to measue end time
 cudaEventSynchronize(stop);
 cudaEventElapsedTime(&cpu_elapsed_time_ms, start, stop);

 printf("Time for ranksort on CPU: %f ms.\n", cpu_elapsed_time_ms); // print out execution time

/* ------------------- check device creates correct results -----------------*/

 for(i=0;i <N;i++) {
 if (c[i] != b[i]) printf("ERROR in results, CPU (ranksort) and GPU (ranksort) create different
answers\n");
 break;
 }

/* --------------------- SPEED-UP FACTOR --------------------------------*/

 printf("Speed up factor = %f\n",cpu_elapsed_time_ms/gpu_elapsed_time_ms);

/* -------------- clean up ---------------------------------------*/

 cudaFree(dev_a);
 cudaFree(dev_b);

 cudaEventDestroy(start);
 cudaEventDestroy(stop);

 return 0;
}

11

Some MPI routines

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

 Input/Output Parameter
 buffer -- starting address of buffer

 Input Parameters
 count -- number of entries in buffer
 datatype -- data type of buffer
 root -- rank of broadcast root
 comm -- communicator

int MPI_Comm_rank(MPI_Comm comm, int *rank)

 Input Argument
 comm -- communicator

 Output Argument
 rank -- rank of the calling process in the group of comm

int MPI_Comm_size(MPI_Comm comm, int *size)

 Input Parameter
 comm -- communicator

 Output Parameter
 size -- number of processes in the group of comm

int MPI_Finalize(void)

int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcnt,
 MPI_Datatype recvtype, int root, MPI_Comm comm)

 Input Parameters
 sendbuf -- starting address of send buffer
 sendcount -- number of elements in send buffer
 sendtype -- data type of send buffer elements
 recvcount -- number of elements for any single receive
 recvtype -- data type of recv buffer elements
 root -- rank of receiving process
 comm -- communicator

 Output Parameter
 recvbuf -- address of receive buffer

int MPI_Init(int *argc, char ***argv)

 Input Parameters
 argc -- Pointer to the number of arguments
 argv -- Pointer to the argument vector

12

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,
 MPI_Status *status)

 Output Parameters
 buf -- initial address of receive buffer
 status -- status object

 Input Parameters
 count -- maximum number of elements in receive buffer
 datatype -- datatype of each receive buffer element
 source -- rank of source
 tag -- message tag
 comm -- communicator

int MPI_Reduce(void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op,
 int root, MPI_Comm comm)

 Input Parameters
 sendbuf - address of send buffer
 count - number of elements in send buffer
 datatype - data type of elements of send buffer
 op - reduce operation
 root - rank of root process
 comm - communicator

 Output Parameter
 recvbuf - address of receive buffer

int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcnt,
 MPI_Datatype recvtype, int root, MPI_Comm comm)

 Input Parameters
 sendbuf - address of send buffer
 sendcount - number of elements sent to each process
 sendtype - data type of send buffer elements
 recvcount - number of elements in receive buffer
 recvtype - data type of receive buffer elements
 root - rank of sending process
 comm - communicator

 Output Parameter
 recvbuf - address of receive buffer

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

 Input Parameters
 buf -- initial address of send buffer
 count -- number of elements in send buffer
 datatype -- datatype of each send buffer element
 dest -- rank of destination
 tag -- message tag
 comm -- communicator

13

