

1

Parallel Computing
Test 2

11:00 pm - 12:15 pm, Thursday November 15th, 2012
With some solutions.

 Name: ...

This is a closed book test. Do not refer to any materials except those supplied for the test.

Supplied: “Summary of OpenMP 3.0 C/C++ Syntax.”

Answer questions in space provided below questions. Use additional paper if necessary but make sure your
name is on additional sheets.
 Total /40

Qu. 1 Answer each of the following briefly:

(a) Explain the term thread-safe routine. 2

(b) Explain the term sequential consistency. 2

(c) Explain the term cost-optimal. 2

2

(d) How might a compiler, or the processor, reorder the following code prior to execution and why might
this be done. There may be multiple reasonable answers but no credit will be given unless you clear explain.

 2
 x = y – z;
 x++;
 a = b * c;
 x = a + z;

(e) Use Bernstein’s conditions to determine whether the two code sequences: 4

 forall (i = 0; i < 2; i++)
 a[i] += a[i+2];

 for (i = 0;i < 2; i++)
 a[i] += a[i+2];

always produce the same results. Clearly show how you got your answer. (No credit given for just
answering “yes” or “no”!)

3

(f) Explain the term false sharing in caches. Suppose three integer variables, x, y, and z, are declared in a
C program. Under what circumstances could false sharing occur? Explain clearly. 2

(g) In Assignment 4, you had to compute the force applied to a particular body (a) by another body (b). The

formula for the x dimension was)(
2 r

xx

r

mGm
F abba

x

 . What is r in this equation? How is it calculated

(what is the equation for r)? 4

(h) What do the OpenMP section pragma and sections pragma do? How is the code executed? What

happens if there is no “nowait” at the end of a for pragma in OpenMP? 2

4

(i) Suppose you have P processors to use on parallel block matrix multiplication where the arrays are N x N
and N = 4P. Describe how you would achieve parallel matrix multiplication, giving full details of what
each processor does.

 2

Using actual block multiplication with submatrices;

Need one processor for each submatrix in result array. So with n x n matrix and p = n/4, and s x s submatrices,
p = n2/s2 which leads to s = 2 x srqt(n) Only works for certain powers of 2. Example n = 64, s = 16, p = 16

If just divide into rows:

Divide up the matrix in rows of size N/4.

(j) Why is the Gauss-Seidel relaxation iteration unsuitable for parallelization without modification? 2

(k) What is meant by hybrid parallel programming? 2

5

(l) Demonstrate how to sort the sequence: 4

4 5 2 8

using Batchers’ Bitonic Mergesort algorithm. Clearly show the positions of each number after each step.

6

Supplied: “Summary of OpenMP 3.0 C/C++ Syntax.”

Qu. 2 Write an OpenMP program that transposes an N x N matrix using N2 threads. It is incorrect to nest
OpenMP for pragmas. The final result needs to be in the original array. If you use a temporary holding array,
then you will need to copy the results back to the original.

Provide comments in your code to help the grader! Briefly describe your method. If I do not understand the
code, I will assume it is incorrect. 10

Transposition of a matrix means switching the rows are columns, or swapping values across the diagonal. For
example:

If the original matrix is:

1 2 3
4 5 6
7 8 9

The transposed matrix is:

1 4 7
2 5 8
3 6 9

The answer:

 #pragma omp for
 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 B[j][i] = A[i][j];

doesn’t make use of N2 processors. Only N will participate. The others will be idle.

The following makes use of N2 threads:

 #pragma omp parallel num_threads(N*N) private (tid, i, j)
 {
 #pragma omp for
 for (k = 0; k < N*N; k++) {
 i = k / N;
 j = k % N;
 B[j][i] = A[i][j];
 }

 #pragma omp for
 for (k = 0; k < N*N; k++) {
 i = k / N;
 j = k % N;
 A[i][j] = B[i][j];
 }
 }

