
1

Parallel Programming Pre-Assignment

Setting up the Software Environment

Author: B. Wilkinson Modification date: January 3, 2016

Software

The purpose of this “pre-assignment” is to set up the software environment on your computer
that will be used in subsequent assignments. You will not be able to do the subsequent
assignments as written without this environment. Hence it is essential that you complete it by the
posted deadline. It is very important to report issues that stop you from progressing
immediately so that they can be resolved quickly.

In the course assignments, various parallel programming tools and programs will be tried out on
your own computer (as well as on remote servers). Some of the software requires a C compiler
and an MPI message-passing environment. As a convenience, a virtual machine with everything
you need has been created as an .ova file that can be imported into VirtualBox (and probably
other virtualization products). Virtualbox is a virtualization software that enables “guest”
operating systems to be installed on the underlying “host” OS without disturbing the host. It will
install on all host platforms (Windws, Mac, and Linux). Our guest operating system will be the
Linux distribution Ubuntu. The provided virtual machine does separate the software for this
course from existing software and protects your existing installation but you can use a lab
computer if you do not want to use your own computer.

There are two important links regarding the course software on course home page or Moodle:

 Parallel Programming Software with links to the course software (excluding VirtualBox)

 Additional Information with more information on using the software.

There are many documents provided, some of which you will need for subsequent assignments.

The links require a username and password -- Username: pablo Password: rp19zb39

Installing everything from source. If you do not want to use the provided virtual machine
and want to install the software onto an existing Linux platform, see the “Installing Software”
section at “Additional Information” and then go to Part 2 Testing Environment.

2

Part 1 Installing VirtualBox

Go to:

https://www.virtualbox.org/wiki/Downloads

and download VirtualBox to suit your computer. Our testing used VirtualBox virtual machine
version 5.0.10 but other versions should be fine. Run the installation package (double-clicking
the downloaded executable file).

The package installs in C:\Program files\Oracle\VirtualBox by default on Windows.
Starting VirtualBox for the first time, you should see:

Now you have to import the virtual machine.

Blank, no OS’s
installed yet

Download to
suit your
platform and
execute

3

Importing Preconfigured Virtual Machine

The VM is provided at the “Parallel Programming Software” link on the course home page on
Moodle:

http://coit-grid01.uncc.edu/ParallelProgSoftware/

as ParallelProg-32.ova, which is a 32-bit appliance that does not require hardware virtualization
support on the processor. Download and save the .ova file. This is a big file (2.5 GB) and may
take some time to download (around 30 minutes at 10Mbs). On VirtualBox, go to File > Import
Appliance... and browse for the downloaded .ova file (probably in the Downloads directory).
Click Next and Import.

Once imported, you should see the Virtual Machine:

Double click to start.

Browse File > Import Appliance

Next

4

When Ubuntu starts:1

Enter the password.

Username: abw
Password: abc123

You should see the desktop:

More information on using Ubuntu within Virtualbox can be found at the link “Using Ubuntu
including within VirtualBox” from “Additional Information” on the course home page on
Moodle.

1 For issues, see “Course FAQ” at the “Additional Information” link.

Search

Files
(Nautilus file
manager)

Browser

Terminal

5

Software

Within the provided virtual machine is the following software stack:2

 32-bit Ubuntu Linux OS version 14.04, with VirtualBox guest additions
 OpenMPI version 1.8.1
 Java version 1.7
 Eclipse version 4.3.2 (Kepler) with plug-ins for both Java and C programming, and the

parallel tools platform (PTP) for MPI and OpenMP

Within the directory ~/ParallelProg, there is one directory for each programming environment
we may need in assignments:

 OpenMP
 MPI
 Seeds
 Suzaku

Within each of these directories are sample programs and test files for the corresponding
environment (e.g. hello.c, matrixmult.c, etc.) and a workspace directory used for compiling and
running the programs as Eclipse projects. The other directories provide sample code for C, X11,
and Pthreads. You will need the provided X11 macro in later assignments but we will not do any
Pthreads programming in assignments.

2 The versions of the various software packages may be updated over time, and generally you can use more recent
versions as they become available.

6

Part 2 Testing the VM environment

Your environment will be tested with the provided sample programs. The environment and its
use will be described in more detail in subsequent assignments.

Terminal window. Start a terminal by double clicking on the Terminal icon if present on the
leftside ribbon of icons (“Launcher”) otherwise with Control + Alt + t, or click the search icon
(top icon on left side ribbon) to search on “Term” to find the terminal and start it. For
convenience, lock the terminal to the launcher by clicking on the terminal on the left side ribbon
and selecting lock to launcher.

Many of the programming assignments ask you to compile and execute programs using a
command line. Command line is actually more convenient in many cases than using an IDE such
as Eclipse although we although do use Eclipse sometimes, and certainly for Java.

Basic Linux commands are given under “Additional Information” on the home page. The most
likely commands you will need are cd (change directory) and ls (list contents of a directory).
Use cd .. to moves up one directory. Note you do not need to type the full name of a file or
directory - start with the first few letters of the name and use the Tab key to get the system to fill
in the rest once the letters refer to a unique name. For example cd Pa will fill out to cd
ParallelProg/.

Name of
computer on VM
(not necessarily
the same as
name on host
computer)

Terminal

7

Task 1 Command line execution of a C program

Let’s try a really simple C program. The following C program called hello.c should be in
~ParallelProg/C:

#include <stdio.h>
#include <stdlib.h>
int main(void) {

 printf("Hello World\n");
 return 0;

}

cd to ~ParallelProg /C. If the program is not there, create it using an editor (typically gedit in
Ubuntu).

Compile the program with the command:3

cc hello.c -o hello

On a Linux system this usually invokes the gcc compiler.

Execute the program with the command:

./hello

Note ./ (the current directory) is usually necessary because the current directory is purposely not
in the path. Save a screenshot of the output for your submission document.

Task 2 Execution of a C program using Eclipse

Certain assignments also ask you to use the Eclipse IDE, so let try that.

General. Eclipse has environments called “Perspectives” for different programming languages.
It is installed in the virtual machine with both Java and C perspectives, including for parallel
programming tools. Here we will use the C perspective. The basic steps to compile and execute
a program are:

1. Create a project with the source file and any required libraries
2. Set how to build (compile) project in Properties > ... Build
3. Build project (compile to create executable)
4. Set how to execute the compiled program in Run Configurations
5. Run (execute) using the specified run configurations

3 Whether the output option -o hello is before or after the source file is personal preference. It usually works either
way. Strictly options are defined in gcc before the source file. In the course documentation you may see it either
way.

8

Using Eclipse. Start Eclipse on the command line by typing:

eclipse

Create a new workspace called ~/ParallelProg/C/workspace and go to the workbench. We will
test the environment using the sample C program (Hello World) given in Eclipse. Create a new C
project (File > New > C Project), and select the “Hello World ANSI C Project” type and the
gcc compiler:

When cursor over this area (or menu shows in perspective)

3. Build

4. Set Run
Configurations

2. After project
created, right‐
click project to
get to Properties
leads to how
project should
be built.

5. Run

9

Create the “Hello world” C project with a name, built it, and run:

Parallel programs (OpenMP, MPI, etc) will be tested in subsequent main assignments.

Simple Hello
World C
program

Linux GCC

Output

Build Run

10

Task 3 Input/output, pointers, and dynamic memory (10%)

In subsequent assignments, you will need to incorporate keyboard input and display output in
your programs. You will need to understand pointers and dynamic memory in C. So let us
refresh ourselves on these C features. High performance computing as in this course is mostly
done with C.

In C, display output is achieved with printf(). Keyboard input is achieved with scanf(). The &
symbol, when used with a variable name, is the address operator and returns the address of the
location. scanf needs the address of the location holding the keyboard input as the second
parameter. (The first parameter is the formatting string.)

An array declared as int A[100]; declares a 1-dimensional array A with 100 elements statically,
that is, with fixed size of 100 integers at compile time. The array name used alone is a pointer to
the first location in the array. C now allows int A[n]; where n is a variable set to a value during
runtime but the array is then held on the stack instead of the heap and is more limited in size. To
declare an array dynamically in memory whose size can be altered during runtime, use malloc,
which returns a pointer pointing to the first location of the array. Pointers are declared by
prefixing the variable name with a *, e.g. int *p; declares a pointer called p pointing to an
integer. One can still use the construction p[i] to reach the ith location of a 1-dimensional array
(or *(p + i)). Refer to C programming texts or online for more information.

Write a C program that reads an integer, n, at the keyboard and dynamically allocates memory
for n integers using malloc. Initialize the ith location to i. Create the output such as shown
below:

11

Task 4 Shared directory, if you are using a virtual machine (5%,
otherwise extra for native installation)

It is really important that your keep backups of the work. If you are using a virtual machine,
follow the instructions “Using Ubuntu including within VirtualBox” from “Additional
Information” on the course home page on Moodle to set up a shared folder (directory) on your
host machine to hold backups of your files and make sure you can transfer files between the host
and VM.

Part 4 Connecting to remote server

After programs have been tested on your own computer, in subsequent assignments you may
also be asked to connect to the parallel programmer cluster called cci-gridgw.uncc.edu and test
you programs there using multiple processors. So let us make sure you can do that. First
carefully review the notes on logging onto the cluster at “Additional Information” > “Using
UNC-C cci-gridgw.uncc.edu.” The information on OpenMP and MPI will be used in
subsequent assignments.

Command line. While it is possible to use clients such as Putty and WinSCP on Windows
systems,4 the most convenient approach for file transfers to and from the virtual machine and the
remote server is to make the connection directly from the virtual machine. A virtual machine
terminal can be used to access remote severs using the command:

ssh –l username cci-gridgw.uncc.edu

where username is your user name on the server and cci-gridgw.uncc.edu is the server name.
Notice the –l option is necessary as your username on the remote server will be different to that
on you virtual machine (or you could use username@cci-gridgw.uncc.edu). You will be
prompted for your password on the remote server. Then Linux commands can be issued. For file
transfers to and from the virtual machine one could use Linux commands such as scp but a more
convenient approach is to use the Ubuntu Nautilus file explorer. Go to File > Connect to
Server:

4 You may wish to install Putty and WinSCP anyway so that you can also access the servers without the VM, see
“Additional Information”

Part 4 can only be done once you receive your credentials (user
name and password) for the parallel programming cluster. Accounts

are set up by the first of classes but may not include those who
recently added the course. Contact the TA responsible for accounts

if you do not have an account as soon as possible.

12

Enter the servers address with the sftp protocol: sftp://cci-gridgw.uncc.edu.

Nautilus file
explorer

Server
address with
protocol

Connect

13

Once you have entered your credentials (username and password), you should see your home
directory on the remote server and be able to move files between the remote server and the local
machine.

If you have any problems at this stage, check the course FAQ for known issues. We have seen
isolated issues using the Nautilus file manager on some platforms and that case you may need to
use the command line for file transfers. It is sometimes easier to use PuTTy and WinSCP to
access remote servers and transfer files to/from a Windows system. Additional information link
“Accessing remote servers from a Windows platform (PuTTY, WinSCP, nano).”

Command Line. Create, compile, and execute the hello.c C program on the remote server
(using the same commands you used on your local virtual machine).

Using Eclipse. It is possible to use Eclipse to make a remote connection and compile and
execute programs on the remote server. It is even possible to synchronize local and remote
copies of files. (WinSCP also has this feature.) However we will not be using Eclipse for remote
access.

DO NOT set
“Remember
forever” as this
would not be
good if you lose
your computer
or others have
access to it.

14

Assignment Submission

In subsequent assignments, there will be list of things that must be included in the submission,
usually given after the task or part. This list is not comprehensive and you should always include
you own code as a listing (not as screenshots). In general, we do not ask you to demonstrate the
programs in front of us. IT IS CRITIALLY IMPORTANT THAT YOU DO NOT WORK
TOGETHER. ASSIGNMENTS ARE INDIVIDUAL ASSIGMENTS UNLESS SPEFICALLY
SPECIFIED OTHERWISE.

What to submit for this pre-assignment

Your submission document must include, but is not limited to, the following:

Your name and whether you are an undergraduate or graduate student.

Part 1 A screenshot showing you have installed the virtual machine, or have installed a native

installation.

Part 2

(a) Task 1: A screenshot of the sample C program executing on your computer using the

command line.

(b) Task 2: A screenshot of the sample C program executing on your computer using Eclipse

(c) Task 3: A listing of your C program for Task 3 (not a screenshot) and a sample screenshot of

the output.

(c) Task 4: If you are using a virtual machine, a screenshot showing that you have created

shared folder on the host machine and have transferred one file from the guest OS to the host.

Part 3:

(a) A screenshot demonstrating that you can connect to a remote server.

(b) A screenshot of the sample C program executing on the remote server using the command

line

Clearly identify each part in your submission document.

Submit ONE PDF file containing your submission on the UNC-C Moodle-2 by the due date as
described on the course home page. It is extremely important that you do not submit in any other
format as it is possible you will not get any credit. Also each part and sub-part is assigned points
so missing a part/sub-part automatically reduces your grade.

