
1

Assignment 1

OpenMP Tutorial Assignment

B. Wilkinson: Modification date January 16a, 2016 (minor clarification in green Jan 28, 2016)

Overview

The purpose of this tutorial assignment is to become familiar with executing some simple
OpenMP programs. For the most part, you will test OpenMP programs on your own computer.
This will require you to have completed the “pre-assignment” installing the provided virtual
machine (or a native Linux installation with the course software stack). Finally you will test a
program on the UNC-Charlotte’s 4-processor (16-core) cci-grid05.uncc.edu system. Using your
own computer is much more convenient and reduces the likelihood of faulty user programs
running on the UNC-C cluster affecting the whole system. Users can also easily do local editing
and testing before running on the cluster.

Part 1 provides basic practice in coding, compiling, and running OpenMP programs, covering a
hello world program, timing, using work sharing for, sections directives, and private variables.
All the OpenMP code is given. Part 2 asks you to parallelize matrix multiplication using the
work sharing for directive and draw conclusions. Code for sequential matrix multiplication is
given. Part 3 asks you run the matrix multiplication program on cci-grid05.uncc.edu.

Compiling OpenMP programs can be done using the native gcc compiler that comes with
distributions of Linux including Ubuntu.

Preliminaries

The OpenMP programs for this assignment are to be held in the directory
~/ParallelProg/OpenMP, which is already created in the provided virtual machine with the
sample programs. Cd to this directory.

Part 1 – OpenMP Tutorial (35%)

The purpose of this part is to become familiar with OpenMP constructs and programs, using your
own computer.

Task 1 – “hello world” program

An OpenMP hello world program called hello.c is given overleaf:

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]) {
 int nthreads, tid;

2

// Fork a team of threads giving them their own copies of variables

 #pragma omp parallel private(nthreads, tid)
 {
 tid = omp_get_thread_num(); // Obtain thread number
 printf("Hello World from thread = %d\n", tid);

 if (tid == 0) { // Only master thread does this
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d\n", nthreads);
 }
 } // All threads join master thread and disband
 return(0);
}

This program has the basic parallel construct for defining a single parallel region for multiple
threads. It also has a private clause for defining a variable local to each thread. Remember that
OpenMP constructs such as parallel have their opening braces on the next line and not on the
same line.

Compile the program on your own computer using the command:1

cc –fopenmp hello.c –o hello

Execute the program with the command:

./hello

You should get a listing showing a number of threads such as:

Hello World from thread = 0
Number of threads = 4
Hello World from thread = 3
Hello World from thread = 2
Hello World from thread = 1

The number of threads will depend upon the particular computer system, usually the number of
cores available. Intel hyperthreading doubles this number. Note if you only have one thread on
one core available to use, the above will show that and will prevent any speedup.

Alter the available cores to the maximum possible. In VirtualBox, this is done by first closing the
VM and then going to Machine > Settings > System > Processor and altering the number of
processors available to its maximum (typically half the number of physical cores). Then restart
the VM.

1 The –o option could be before the source file, i.e. cc –fopenmp –o hello hello.c.

3

Once you have the maximum number of cores you can use, execute the program at least four
times. Explain your output. Why does the thread order change?

Alter the number of threads to 32. There are actually three ways to do this, see the class notes.
Here just try adding the following function:

omp_set_num_threads(32);

 before the parallel region pragma. Re-execute the program.

What to submit for Task 1

Your submission document should include the following:

1) Screenshot from compiling and running the hello world program on your computer and
explanation of output and thread order.

2) Program listing of the hello world program with the number of threads altered
3) Screenshots of the output from running the program with 32 threads.

Task 2 – Work sharing with the for construct

This task explores the use of the for work-sharing construct. The following program
worksharing.c adds two vectors together using a work-sharing approach to assign work to
threads:

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#define CHUNKSIZE 10
#define N 100

int main (int argc, char *argv[]) {
 int nthreads, tid, i, chunk;
 float a[N], b[N], c[N];
 double start, end; // used for timing

 for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0; // initialize arrays

 chunk = CHUNKSIZE;

 start = omp_get_wtime(); //start time measurement

 #pragma omp parallel shared(a,b,c,nthreads,chunk) private(i,tid)
 {
 tid = omp_get_thread_num();
 if (tid == 0){
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d\n", nthreads);
 }
 printf("Thread %d starting...\n",tid);

4

 #pragma omp for schedule(dynamic,chunk)
 for (i=0; i<N; i++){
 c[i] = a[i] + b[i];
 printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
 }
 } /* end of parallel section */

 end = omp_get_wtime(); //end time measurement
 printf("Time of computation: %f seconds\n", end-start);
 return(0);
}

This program has an overall parallel region within which there is a work-sharing for construct.
Also the time of execution is recorded by instrumenting the code with omp_get_wtime() in two
places.

Compile and execute the program. Depending upon the scheduling of work different threads
might add elements of the vector. It may be that one thread does all the work. Execute the
program several times to see any different thread scheduling. In the case that multiple threads
are being used, observe how they may interleave.

Experimenting with Scheduling

Alter the code from dynamic scheduling to static scheduling and repeat. What are your
conclusions? Alter the code from static scheduling to guided scheduling (chunk size is
irrelevant) and repeat. What are your conclusions?

What to submit for Task 2

Your submission document should include the following:

1) A copy of the source program with timing added; Not needed
2) Screenshot from compiling and running the program with the original dynamic

scheduling;
3) Screenshots from running the program with static and with guided scheduling;
4) Your conclusions about the different scheduling approaches.

Task 3 – Work-sharing with the sections construct

This task explores the use of the sections construction. The program sections.c below adds
elements of two vectors to form a third and also multiplies the elements of the arrays to produce
a fourth vector.

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#define N 50

5

int main (int argc, char *argv[]) {
 int i, nthreads, tid;
 float a[N], b[N], c[N], d[N];

 for (i=0; i<N; i++) { // Some initializations, arbitrary values
 a[i] = i * 1.5;
 b[i] = i + 22.35;
 c[i] = d[i] = 0.0;
 }

 #pragma omp parallel shared(a,b,c,d,nthreads) private(i,tid)
 {
 tid = omp_get_thread_num();
 if (tid == 0) {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d\n", nthreads);
 }
 printf("Thread %d starting...\n",tid);

 #pragma omp sections nowait
 {
 #pragma omp section
 {
 printf("Thread %d doing section 1\n",tid);
 for (i=0; i<N; i++) {
 c[i] = a[i] + b[i];
 printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
 }
 }

 #pragma omp section
 {
 printf("Thread %d doing section 2\n",tid);
 for (i=0; i<N; i++) {
 d[i] = a[i] * b[i];
 printf("Thread %d: d[%d]= %f\n",tid,i,d[i]);
 }
 }
 } // end of sections

 printf("Thread %d done.\n",tid);

 } // end of parallel section
 return(0);
}

This program has a parallel region but now with variables declared as shared among the threads
as well as private variables. Also there is a sections work sharing construct. Within the sections
construct, there are individual section blocks that are to be executed once by one member of the
team of threads. Remember that OpenMP constructs such as sections and section have their
opening braces on the next line and not on the same line.

Compile and execute the program and make conclusions on its execution.

6

What to submit for Task 3

Your submission document should include the following:

1) Screenshot from compiling and running the program
2) Your conclusions.

Task 4 – For construct with private variables

In this section we will explore private variables. Compile and execute the following code, called
privatetest.c.

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#define N 100000

int main(int argc, char *argv) {
 omp_set_num_threads(2); //set number of threads here
 int i, j, x, tid;
 double start, end; // used for timing

 start = omp_get_wtime(); //start time measurement
 #pragma omp parallel for private(x,tid)
 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++) {
 tid = omp_get_thread_num();
 x=tid;
 }
 end = omp_get_wtime(); //end time measurement
 printf("Time of parallel computation: %f seconds\n", end-start);

 return(0);
}

(i) Repeat with the number of threads being 1, 2, 4, and 8. Plot the execution time against
number of threads. Monitor the CPU usage in the Task Manager (for a Windows system) or
Activity Monitor in Applications > Utilities for a Mac. Discuss the results

(ii) Remove x from the private clause i.e. private(tid). Compile and execute for two threads.
Explain the difference in the execution time.

What to submit for Task 4
Your submission document should include the following:

1) For (i) above, a graph of the execution time against number of threads, a screenshot of the
CPU usage, and a discussion of the results.

2) For (ii) above, the execution time with and without x as private variable and an
explanation.

7

8

 for (j = 0; j < N; j++) {
 A[i][j] = j*1;
 B[i][j] = i*j+2;
 }
 }

 // sequential matrix multiplication
 start = omp_get_wtime(); //start time measurement
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 sum = 0;
 for (k=0; k < N; k++) {
 sum += A[i][k]*B[k][j];
 }
 C[i][j] = sum;
 }
 }
 end = omp_get_wtime(); //end time measurement
 printf("Time of sequential computation: %f seconds\n", end-start);

// Add OpenMP matrix multiplication here, result in array D[N][N]
// ...

 // check sequential and parallel versions give same answers
 int error = 0;
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 if ((C[i][j] - D[i][j] > 0.001) || (D[i][j] - C[i][j] > 0.001))

 error = -1;
 }
 }
 if (error == -1) printf("ERROR, sequential and parallel versions give
different answers\n");

 return(0);
}

This program includes the sequential matrix multiplication code with the result in C[N][N].

The final part of the program checks that the parallel results match the sequential results to make
sure the results of your parallel version are correct within rounding errors.

Task 1 Parallel Matrix Multiplication - Parallelizing the outer loop

Add an OpenMP parallel for section to perform parallel matrix multiplication, producing the
result in D[N][N] in the place shown. Parallelize the outer for loop (static scheduling).

NOTE: Take extreme care to make sure that any variables that need to be private are declared as
private in a private clause. Variables are private if individual threads need their own copy to
modify. Note the iteration variable in the for loop being parallelized does not need to be private

9

as that for loop is used by the OpenMP compiler, but other variables will need to be private. You
will lose marks if you do not address this issue. Even if the program appears to work, it may
execute slower due to memory contention.

Add statements to measure the execution time of the parallel matrix multiplication. This is done
using time stamps with omp_get_wtime() as shown for the sequential code.

You will find that when you run the same program several times, the timing values can vary
significantly. Therefore add a loop in the code to execute the program 10 times and display the
average execution times.

The speedup will also depend upon the number of threads in the OpenMP program, set initially
to two threads in the program. Collect execution times for 1 thread, 4 threads, 8 threads, and 16
threads.

Task 2 Parallelizing the middle loop

Remove the pragma for the outer for loop and add the necessary pragma to parallelize only the
middle for loop in the matrix multiplication. Collect timing data with just 4 threads.2

Task 3 Increasing the size of the problem

The size of the N x N matrices in the program is set to 256 x 256. What happens if you increase
the size to 512 x 512 and to 1024 x 1024. Why?

Add the keyword static in front the array declarations and try again. What happens. Why?

What to submit from for Part 2
Your submission document should include the following:

Task 1 For the outer matrix multiplication loop parallelized

a. Source program listing
b. One screenshot from compiling and running the program
c. Graphical results of the average timings with 1, 4, 8, and 16 threads.
d. Your conclusions and explanations of the results.

Task 2 For the middle for loop parallelized

a. Source program listing
b. One screenshot from compiling and running the program
c. Your conclusions and explanations of the results.

2 Nested for loops were introduced in OpenMP version 2.5 that can parallelize both the outer and middle for loops
when you place the for directive before the first for loop and use the collapse clause. gcc version 4.2 or later includes
support for OpenMP 2.5. We will not try that here.

10

Task 3 Increasing the problem size

a. Your conclusions and explanations of the results
b. Explain the static keyword. (You are allowed to do a Google search to help!)

Part 3 Executing on cluster (15%)

For this assignment, we will briefly test the matrix multiplication program on the UNCC cci-
gridgw.uncc.edu cluster. Specifically, we will use cci-grid05 – four quad-core processor (16
core) shared memory system. First carefully read the separate instructions on using this cluster.

You cannot ssh directly into cci-grid05. You must log in through the gateway node cci-
gridgw.uncc.edu first.

Log onto the UNCC cluster gateway cci-gridgw.uncc.edu. In your home directory, create a
directory called OpenMP to hold all the files for this part and cd into this directory. Transfer the
OpenMP matrix multiplication program to this directory.

We now want to execute the matrix multiplication program on cci-grid05. From cci-
gridgw.uncc.edu, ssh into cci-grid05 with the command:

ssh cci-grid05

Compile and execute the program from the OpenMP directory.

Record the time of executing the matrix multiplication program with the outer loop parallelized
and 16 threads, and compare with that on your own computer.

What to submit for Part 3

Your submission document should include the following:

 Screenshot of sample output for the matrix multiplication program on cci-grid05
 Graph showing the executing times of cci-grid05 and your computer
 Conclusions

Assignment Report Preparation and Grading

Produce a report that shows that you successfully followed the instructions and performs all tasks
by taking screenshots and include these screenshots in the document. Note it is easy to obtain
screenshots in Word as now it has that option in the Insert > Screenshot menu.

Every task and subtask specified will be allocated a score so make sure you clearly identify each
part/task you did. Make sure you include everything that is specified in the “What to include ...”
section at the end of each task/part. Include all code, not as screen shots of the listings but

11

complete properly documented code listing. The programs are often too long to see in a single
screenshot and also not easy to read if small. Using multiple screenshots is not option for code.
Copy/paste the code into the Word document or whatever you are using to create the report.

Assignment Submission

Convert your report into a single pdf document and submit the pdf file on Moodle by the due
date as described on the course home page. It is extremely important you submit only a pdf file.
It is possible to lose points if you submit in any other format (i.e. Word, OpenOffice, zip, ...).

