
1

Assignment 2
Second OpenMP Programming Assignment

B. Wilkinson: Modification date February 2, 2016

Overview

In this assignment, you will write and execute your own OpenMP program to model the static
heat distribution of a room with a fireplace (two dimensions only) using the stencil pattern. You
are also asked to generate X11 graphical output and sample X11 code is provided. First you will
develop and test OpenMP programs on your own computer (VirtualBox or a native Linux
installation). Later you will test the programs on the UNC-Charlotte’s 4-processor (16-core) cci-
grid05.uncc.edu system. This approach reduces issues of faulty user programs running on the
UNC-C cluster that can affect the system in a deleterious manner. Users can also do local editing
and testing before running on the cluster.

Heat Distribution (Static Heat Equation)

The objective is to write an OpenMP program that will model the static heat distribution of a
room with a fireplace (where the heat source temperatures do not vary with time) using a stencil
pattern. Although a room is 3-dimensional, we will be modeling the room in two dimensions.
The room is 10 feet wide and 10 feet long with a fireplace along one wall as depicted in Figure 1.

The fireplace is 2 feet wide and is centered along one wall (it takes up 20% of the wall, with 40%
of the walls on either side). The fireplace emits 100º C of heat (although in reality a fire is much

Figure 1: 10 x 10 Room with a Fireplace

100°C
2 ft

2

hotter). The walls are considered to be at 20º C. The boundary values (the fireplace and the
walls) are considered to be fixed temperatures.

We can find the temperature distribution by dividing the area into a fine mesh of points, hi,j. The
temperature at an inside point can be taken to be the average of the temperatures of the four
neighboring points, as illustrated in Figure 2:

For this calculation, it is convenient to include the edges by points in the array so that with an N
x N array (i.e. h[N][N]), the interior points of hi,j are where 0 < i < N-1, 0 < j < N-1. The edge
points are when i = 0, i = N-1, j = 0, or j = N-1, and have fixed values corresponding to the fixed
temperatures of the edges. We can compute the temperature of each point by iterating the
equation:

݄, ൌ 	
݄ିଵ, 	݄ାଵ, ݄,ିଵ ݄,ାଵ

4

(0 < i < N-1, 0 < j < N-1) for a fixed number of iterations or until the difference between
iterations of each point is less than some very small prescribed amount. This iteration equation
occurs in several other similar problems; for example, with pressure and voltage. More complex
versions appear for solving important problems in science and engineering. In fact, we are
solving a system of linear equations. The method is known as the finite difference method. It can
be extended into three dimensions by taking the average of six neighboring points, two in each
dimension. We are also solving Laplace’s equation.

Figure 2: Determining Heat Distribution by a Finite Difference Method

3

Sequential Code. Suppose the temperature of each point is held in an array h[i][j] and the
boundary points have been initialized to the edge temperatures. The calculation as sequential
code could be

double h[N][N],g[N][N];

for (iteration = 0; iteration < MAX_ITERATONS; iteration++) {
 for (i = 1; i < N-1; i++)
 for (j = 1; j < N-1; j++)
 g[i][j] = 0.25 * (h[i-1][j] + h[i+1][j] + h[i][j-1] + h[i][j+1]);

 for (i = 1; i < N-1; i++) // update points
 for (j = 1; j < N-1; j++)
 h[i][j] = g[i][j];
 }

using a fixed number of iterations. Notice that a second array g[][] is used to hold the newly
computed values of the points from the old values. The array h[][] is updated with the new values
held in g[][]. This is known as a Jacobi iteration. Multiplying by 0.25 is done for computing the
new value of the point rather than dividing by 4 because multiplication is usually more efficient
than division. Normal methods to improve efficiency in sequential code carry over to parallel
code and should be done where possible in all instances.

One way to improve the code further while still keeping the Jacobi iteration method is to extend
the array into three dimensions to hold the present and next iteration values and then switch
between them to avoid copying arrays, i.e:

double h[2][N][N];

current = 0;
next = 1;
for (iteration = 0; iteration < MAX_ITERATONS; iteration++) {
 for (i = 1; i < N-1; i++)
 for (j = 1; j < N-1; j++)
 h[next][i][j] = 0.25 * (h[current][i-1][j] + h[current][i+1][j]
 + h[current][i][j-1] + h[current][i][j+1]);

 current = next; // swap values of current and next
 next = 1 - current;
}

The final result is in h[current][][]. If MAX_ITERATONS is even this would be h[0][][]. It is
probably accurate enough to take it as that location even if MAX_ITERATONS was odd (one
iteration more).

Preliminaries

The OpenMP programs for this assignment are to be held in the directory
~/ParallelProg/OpenMP, which is already created in the provided virtual machine, with sample
programs. Cd to this directory.

4

Task 1 Sequential program (20%)

Write a sequential program for the heat distribution calculation based upon the code given using
the three-dimensional array h[2][N][N] (where the variable current toggles between zero
and one). Have N x N points and T iterations where N and T are set by keyboard input during
program execution.

Feb 2, 2016: It is not required to use dynamically allocated arrays. You may use variable length
arrays, i.e. arrays declared with variables as their indices. (However, variable length arrays will
limit the size of N you can use. See FAQ, C programming.)

Output on the console the values of every N/10th point. For example, if N = 100, print out every
10th point. Hence, there will be 10 rows of numbers, each row having 10 numbers, irrespective of
the value of N.

Test your C program on your own computer with N = 100 and T = 5000, and two other larger
values of N and T. Determine the largest value of N that will work on your platform (does not
need to be the exactly the maximum value). Explain. Below is a sample from my program (using
a faster sequential algorithm than given here so your output will be different for the same number
of iterations).

5

What to submit for Task 1

Your submission document should include (but is not limited to) the following:

 Your sequential C program listing to solve the heat distribution problem
 On your own computer

o Screenshot of compiling the program
o Screenshot of command to execute the program and program output
o Results of using different values of N and T.

Task 2 - OpenMP Program (25%)

Modify the sequential program in Task 1 to be an OpenMP program. Include in your program:

 Sequential C code to compute the heat distribution (from Task 1)
 OpenMP code to compute the heat distribution
 Code to check that the sequential and parallel versions of heat distribution calculation

produce the same correct results within rounding errors (as in Assignment 1).
 Statements to time the execution of both sequential and parallel versions. In both cases

use omp_get_time() routines to record time stamps as in Assignment 1.
 Compute the speed-up factor (sequential time/parallel time) and display.

Test the program on your computer.

What to submit for Task 2

Your submission document should include (but is not limited to) the following:

 Your OpenMP program listing with all the features specified to solve the heat distribution
problem

 On your own computer
o Screenshot of compiling the program
o Screenshot of command to execute the program and program output with N = 100

and T = 5000.
o A graph show in the speedup you obtain with different values of N and T. On

your computer you may not get any speedup.

6

Task 3 Graphical output (30%)

Now you are to add code to create graphics. Some files are provided at “Parallel Programming
Software:

 X11Macros.h
 sample.c
 makefile

They are provided on the VM at ~/parallelProg/X11. If you are using a native installation, you
will need to download these files. Read “Creating graphical output using X-11 graphics”
posted on the home page under Additional Information on how to write and compile X11
code, and how to use a provided header file, X11Macros.h.

(a) Compile sample.c and report on its output.

(b) Using X11Macros.h, make your sequential heat distribution program in Task 1 produce
X11 graphics displaying the temperature contours at 10C intervals in color. The
contours will occur naturally if you print each point with a color for example blue for 20
to 29.999.., purple for 30 to 39.999.., etc. Execute your program on your computer.

(c) Repeat for the OpenMP program from Task 2, adding X11 graphics displaying the
temperature contours at 10C intervals in color to the OpenMP program. Compile and
execute on your computer.

Sample graphical output from my program is shown below although yours might look different
with different shape – it highly depends upon the number of points and number of iterations Also
the colors do not have to be same.

7

What to submit for Task 3:

Your submission document should include (but is not limited to) the following:

 Screenshot of sample.c executing on your computer (Task 3a).
 Screenshot of executing your sequential heat distribution program with graphical output

on your computer (Task 3b)
 Listing of your OpenMP heat distribution program with X11 code to solve the heat

distribution problem (Task 3c)
 Screenshot of executing your OpenMP program with graphical output on your computer

(Task 3c)
 Conclusions

Task 4 Using remote server (10%)

“Creating graphical output using X-11 graphics” describes how to execute your program on a
remote server and forward the graphics to your computer. Execute your OpenMP heat
distribution program with graphical output from Task 3c on cci-gridgw.uncc.edu and forward
the X11 output to your computer.

What to submit for Task 4:

Your submission document should include (but is not limited to) the following:

 Screenshot of compiling the program on cci-gridgw.uncc.edu
 Screenshot of command to execute the program on cci-gridgw.uncc.edu
 Screenshot of the graphical output of the program forwarded to on your computer
 Conclusions

Task 5 Changing the termination condition (15%)

So far we have used a Jacobi iteration that terminates when a given number of iterations have
been done. Re-write the OpenMP program so that iterations terminate when all computed values
do not change from one iteration to the next iteration by more a value e, where e is entered at the
keyboard.

What to submit for Task 5:

Your submission document should include (but is not limited to) the following:

 A full description of the method
 Your OpenMP program listing with full comments
 Screenshot of compiling the program on your computer

8

 Screenshot of command to execute the program on your computer and results
 Conclusions

Assignment Report Preparation and Grading

Produce a report that shows that you successfully followed the instructions and performs all tasks
by taking screenshots and include these screenshots in the document. Note it is easy to obtain
screenshots in Word as now it has that option in the Insert > Screenshot menu.

Every task and subtask specified will be allocated a score so make sure you clearly identify each
part/task you did. Make sure you include everything that is specified in the “What to include ...”
section at the end of each task/part. Include all code, not as screen shots of the listings but
complete properly documented code listing. The programs are often too long to see in a single
screenshot and also not easy to read if small. Using multiple screenshots is not option for code.
Copy/paste the code into the Word document or whatever you are using to create the report.

Assignment Submission

Convert your report into a single pdf document and submit the pdf file on Moodle by the due
date as described on the course home page. It is extremely important you submit only a pdf file.
Do not submit in any other format (i.e. Word, OpenOffice, zip, ...).

If you do not submit the report as a pdf file, you will automatically lose 10 point (10%).

