
1

Assignment 3 MPI Tutorial
Compiling and Executing MPI programs

B. Wilkinson: Modification date: February 11, 2016.

This assignment is a tutorial to learn how to execute MPI programs and explore their
characteristics. Mostly you will test the programs on your own computer using the provided
virtual machine or with a native Linux installation. The programs are provided. Both command
line (Part 1) and using Eclipse (Part 2) are explored. The purpose of using both the command line
and Eclipse is so that you can see what is involved in each way. You will be asked to compare
and contrast the two ways. In Part 3, you will test the programs on a remote cluster and measure
the speedup. You will have to modify the matrix multiplication program to make it work on the
cluster. The matrix multiplication code, as written, only works if P (the number of processes)
divides evenly into N (the number or rows and columns in the matrices). Part 4 asks you to
modify the program to handle any value of N.

Preliminaries – Software Environment

MPI is process-based where individual processes can execute at the same time on local or
distributed computers and explicit message-passing routines are used to pass data between the
processes. You will need MPI software to compile and execute MPI programs. The provided VM
has OpenMPI and Eclipse-PTP already installed. The sample MPI programs and data files are in
~/ParallelProg/MPI. Eclipse-PTP is needed for Part 2.

If you are using your own Linux installation, you will need to install MPI software, such as
OpenMPI or MPICH. Unfortunately there are differences in these implementations that make
some MPI programs not transferrable as we shall see. For consistency install OpenMPI. How to
install OpenMPI is described at the link “Additional Information” on Moodle (see “Installing
Software”). Instructions on installing Eclipse-PTP, and the sample MPI programs and data files
can be found there.

Cd to the directory where the sample MPI programs reside (~/ParallelProg/MPI).

Part 1 Using Command Line (30%)

Hello World Program

A simple hello world program, called hello.c, is given below demonstrating MPI sends and
receives. The program is provided within the MPI directory.

#include <stdio.h>
#include "mpi.h"

main(int argc, char **argv) {
 char message[256];
 int i,rank, size, tag=99;
 char machine_name[256];

2

 MPI_Status status;
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 gethostname(machine_name, 255);

 if(rank == 0) {
 printf ("Hello world from master process %d running on %s\n",rank,machine_name);
 for (i = 1; i < size; i++) {
 MPI_Recv(message, 256, MPI_CHAR, i, tag, MPI_COMM_WORLD, &status);
 printf("Message from process = %d : %s\n", i, message);
 }
 } else {
 sprintf(message, "Hello world from process %d running on %s",rank,machine_name);
 MPI_Send(message, 256, MPI_CHAR, 0, tag, MPI_COMM_WORLD);
 }

 MPI_Finalize();
 return(0);
}

MPI routines are shown in red.

Task 1 Compiling and Executing Hello World Program

Compile and execute the hello world program. To compile, issue the command:

mpicc hello.c -o hello

from the MPI directory. Execute with the command:

mpiexec -n 4 hello

which will use four processes. In general, we do not have specify the current directory (e.g.
./hello). So far, the four instances of the program will execute just on one computer. You should
get the output:

Hello world from master process 0 running on …
Message from process = 1 : Hello world from process 1 running on …
Message from process = 2 : Hello world from process 2 running on …
Message from process = 3 : Hello world from process 3 running on …

Comment on the how MPI processes map to processors/cores. Try 16 processes and see the CPU
usage (in Windows, the Task Manager).

Experiments with Code

Modify the hello world program by specifying the rank and tag of the receive operation to
MPI_ANY_SOURCE and MPI_ANY_TAG, respectively. Recompile the program and execute.

3

Is the output in order of process number? Why did the first version of hello world sort the output
by process number but not the second?

Include in your submission document for Task 1:

1. A screenshot or screenshots showing:

a. Compilation of the hello world program
b. Executing the program with its output

2. The effects of changing the number of processes
3. The effects of using wild cards (MPI_ANY_SOURCE and MPI_ANY_TAG)
4. Answer to the question about process order.

Task 2 Compiling and Executing Matrix Multiplication Program

Multiplication of two matrices, A and B, produces matrix C whose elements, ci,j(0 <= i <n, 0 <=
j <m), computed as follows:ܥ௜,௝ ൌ ∑ ܽ௜.௝

௟ିଵ
௞ୀ଴ ܾ௞,௝ where A is an n x l matrix and B is a i x m

matrix:

The sequential code to compute A x B (assumed square N x N) could simply be:

 for (i = 0; i < N; i++) // for each row of A
 for (j = 0; j < N; j++) { // for each column of B
 c[i][j] = 0;
 for (k = 0; k < N; k++)
 c[i][j] = c[i][j] + a[i][k] * b[k][j];
 }

It requires N3 multiplications and N3 additions with a sequential time complexity of O(N3). It is
very easy to parallelize as each result is independent. Usually we map one process onto each
processor so process and processor are the same, but not necessarily. (It is important not to
confuse process with processor.) Often the size of matrices (N) is much larger than number of
processes (P), so rather than having one process for each result, we can have each process
compute a group of result elements. In MPI, a convenient arrangement is to take a group of rows
of A and multiply that with B to create a groups of rows of C, which can then be gathered using
MPI_Gather():

4

This does require B to be broadcast to all processes. A simple MPI matrix multiplication
program, called matrixmult.c, is given below and provided within the MPI directory:

#define N 256
#include <stdio.h>
#include <time.h>
#include "mpi.h"

int main(int argc, char *argv[]) {
 int i, j, k, error = 0;
 double A[N][N], B[N][N], C[N][N], D[N][N], sum;

 double time1, time2; // use clock for timing

 MPI_Status status; // MPI variables
 int rank, P, blksz;

 MPI_Init(&argc, &argv); // Start MPI
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &P);

 if ((rank == 0) && (N % P != 0)) {
 printf("Error -- N/P must be an integer\n"); // should really stop now

MPI_Abort(MPI_COMM_WORLD,1);
 }

 blksz = N/P;

 if (rank == 0) {
 printf ("N = %d P = %d\n",N, P);
 for (i = 0; i < N; i++) { // set some initial values for A and B
 for (j = 0; j < N; j++) {
 A[i][j] = j*1;
 B[i][j] = i*j+2;
 }
 }
 for (i = 0; i < N; i++) { // sequential matrix multiplication
 for (j = 0; j < N; j++) {
 sum = 0;
 for (k=0; k < N; k++) {
 sum += A[i][k]*B[k][j];
 }
 D[i][j] = sum;
 }
 }
 time1 = MPI_Wtime(); // record time stamp
 }

rank

i blksz

A B C

5

 MPI_Scatter(A, blksz*N, MPI_DOUBLE, A, blksz*N, MPI_DOUBLE, 0, MPI_COMM_WORLD);// Scatter input
matrix A
 MPI_Bcast(B, N*N, MPI_DOUBLE, 0, MPI_COMM_WORLD); // Broadcast the input matrix B

 for(i = 0 ; i < blksz; i++) {
 for(j = 0 ; j < N ; j++) {
 sum = 0;
 for(k = 0 ; k < N ; k++) {
 sum += A[i][k] * B[k][j];
 }
 C[i][j] = sum;
 }
 }

 MPI_Gather(C, blksz*N, MPI_DOUBLE, C, blksz*N, MPI_DOUBLE, 0, MPI_COMM_WORLD);

 if(rank == 0) {
 time2 = MPI_Wtime(); // record time stamp

 int error = 0; // check sequential and parallel versions same answers, within rounding
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 if ((C[i][j] - D[i][j] > 0.001) || (D[i][j] - C[i][j] > 0.001)) error = -1;
 }
 }
 if (error == -1) printf("ERROR, sequential and parallel code give different answers.\n");
 else printf("Sequential and parallel code give same answers.\n");

 printf("elapsed_time =\t%lf (seconds)\n", time2 - time1); // print out execution time
 }
 MPI_Finalize();
 return 0;
}

The file matrixmult.c provided within the MPI directory of the VM (and on the course
home) page has a mistake. It uses clock() for timing, which may not give accurate results as
clock() does not record the time if the process is de-scheduled as might be the case in the
message passing or otherwise, So correct the provided file to use MPI_Wtime() instead of
clock(). Also add MPI_Abort(MPI_COMM_WORLD,1); where shown above to make sure
program terminates immediately if N/P is not an integer.

Compile and execute the matrix multiplication program. To compile, issue the command:

mpicc matrixmult.c -o matrixmult

from the MPI directory.

Execute the program:

mpiexec -n 4 matrixmult

One can experiment with a different number of processes. Unfortunately generally one will not
see a particular increase in speed on a personal computer because of the message passing
overhead. (VirtualBox limits the number of cores available. Go to Machines > Settings >
System > Processors without any VM running to alter and reboot the OS.)

Actually the file was corrected.

6

Include in your submission document for Task 2:

A screenshot or screenshots showing:

a. Compilation of the multiplication program
b. Executing the program with its output, with different numbers of processes

Part 2 Eclipse-PTP (30%)

Eclipse-PTP (Eclipse with the tools for Parallel Applications Developers) can be used to compile
and execute MPI programs. In Eclipse, there are different project types for different
environments. MPI programs are done as C/C++ projects with build/compilation for MPI pre-
configured in Eclipse-PTP. Programs here will be C projects.

Start Eclipse on the command line by typing:

eclipse

Create/select a workbench location within the MPI directory (i.e.
~/ParallelProg/MPI/workspace) and go to the workbench. This workspace will be empty until
we create projects for the programs we want to execute:

Visible when cursor over this area

Projects

7

Task 1 Creating and executing Hello world program through Eclipse

(a) Creating project and adding source files

Create new C project (File > New > C project) called Hello of type “MPI Empty C project”1
with default settings:

1 Eclipse comes with sample programs pre-installed for C, OpenMP, and MPI (“Hello World” and MPI Pi), which
are useful for testing the environment.

Executable:
MPI Empty C

Project Linux GCCProject name

Default
settings

Notice
default
command
is mpicc

Next

Empty project
created

8

Adding program source file

Select Hello project and create a source folder called src (File > New >Source Folder or right
click project > New >Source Folder):

Source
Folder

Source
Folder
created

9

Expand the Hello project and select the newly generated src folder. Select File > Import >
General > File System:

From “Import from directory”, browse for the directory that holds your hello.c files
(~/ParallelProg/MPI/). Click OK. Select the hello.c file to copy into the MPI/src project
folder.2

Note: The paths to files shown in the screenshots may not be the same as shown. You will need
to find their locations on your system.

2In a later example, we will demonstrate using a link to the source file at their original location rather than copying it, which is
usually better.

Directory to find hello.c Select hello.c

10

(b) Build and Execute Program

Basic steps:

1. Set how to build (compile) project in Properties > ... Build

2. Build project (compile to create executable)

3. Set how to execute compiled program in Run Configurations

4. Run (execute) using the specified run configurations

2. Build

3. Set Run
Configurations

1. Right‐click
project to get
to Properties.
Leads to how
project should

be built.

4. Run as

In this project,
we will take the
standard build
configuration so
this will not be

altered.

11

Build project

Click Build icon (Hammer) to build the project (default “Debug” option):

Although building will happen automatically when a project is executed next, sometimes it is
handy to know if there are any build errors first.

Execution

To execute the program, first the Run Configurations need to be set up that specify local
execution, the software environment, etc. Select Run Configurations

Build

Notice
build
commands.
Done in
two steps –
stroll to
see.

Yes

Run
Configurations

12

Select “Parallel Application” and click the new configuration button:

Create a new run configuration called Hello. In the Resource tab, select the Target Type as
“Open-MPI-Generic-Interactive”, the connection type as “Local”.3 Set the number of
processes to say 4.Apply.

3 Selecting “Local” will generate a message confirming you want this and create local resources to do this. Select
“Don’t ask to run command again for this configuration” in the Run Command message when it appears to stop the
message. The message is most relevant when doing both local and remote executions.

New
configuration

Parallel
Application

Local

Configuration
name

Number of
processes

Apply

13

In the Application tab, set the Project name to “Hello” and browse for the path to the executable
(... /workspace/MPI/Debug/Hello).

Click RUN. (If RUN is grayed out, there are build or compile errors that prevent execution.)

Path to
executable
(May not be the
same as shown)

Run

Apply

Output

14

Include in your submission document for Task 1:

A screenshot or screenshots showing executing the hello world program with its output through
Eclipse

Task 2 Creating and executing Matrix Multiplication program through
Eclipse

The process for the matrix multiplication code is similar. We will go through the steps, this time
not copying the source file but referring to it in the original location, which generally is a better
approach.

Create an MPI project called MatrixMult and a source directory called src:

Now we will link source file matrixmult.c rather than copy it. Select the source folder src, right
click, and select NEW > FILE:

src folder

MatrixMult
project

15

Click on Advanced>> and enter the file name (matrixmult.c), check “Link to file in the file
system” box and enter the full path to the source file (browse for file) and Finish:

You should now see the source file:

Check

New File

Advanced

File name
to be used
in project

Full path
to file
(May not be
the same as
shown)

Browse

16

Run Configuration. Now create a run configurations (MatrixMult). As before, in the Resource
tab, select the Target Type as “Open-MPI-Generic-Interactive”, the connection type as
“Local”. Set the number of processes. Then run the project:

Include in your submission document for Task 2:

1. A screenshot or screenshots showing executing matrix multiplication program with its output

through Eclipse.
2. Conclusions on using Eclipse compare to using the command line. Compare and contrast the

two ways. (3-10 sentences). (Important 5 points)

Output

17

Part 3 Execution matrix multiplication program on a remote
cluster (30%)

First very carefully review the notes “Using UNC-C ccigridgw.uncc.edu cluster’ in
Additional Information. Watch for announcements on Moodle about the availability of the

cluster.

Task 1 Changing the source and destination locations

Before we can execute the matrix multiplication program on the cluster, we have to correct the
coding. Although the matrix multiplication code as given will work with OpenMPI installed on
the VM, it will not work with MPICH as installed on the UNC-Charlotte cluster because the
same buffer is used the source and destination in the scatter and gather routines, i.e.:

MPI_Scatter(a, blksz*N, MPI_DOUBLE, a, blksz*N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(c, blksz*N, MPI_DOUBLE, c, blksz*N, MPI_DOUBLE, 0, MPI_COMM_WORLD);

The MPI standard seems to be quiet about this matter. Change the coding so as to use different
buffers, and re-test the code on your local machine. Verify correct results are produced on your
computer.

Task 2 Executing on cci-gridgw.uncc.edu

Connect to the remote cluster cci-gridgw.uncc.edu and make a directory in your home directory
called MPI that will be used for the MPI programs, and cd into that directory. Transfer the MPI
source program matrixmult.c to that directory. Compile matrixmult.c on the remote cluster
front node cci-gridgw.uncc.edu with mpicc:

 mpicc -o matrixmult matrixmult.c

Execute matrixmult with the Hydra process manager (IMPORTANT: NOT mpiexec):

mpiexec.hydra -n numprocesses ./matrixmult

with 32 processes. With this command, the program will run just on cci-gridgw.uncc.edu.

Task 3 Executing on four nodes, cci-gridgw.uncc.edu, cci-grid05, cci-grid07, and
cci-grid08.

To execute the MPI program using multiple computers, a file needs to be created that specifies
the computers. Create a file called machines containing the list of machines, using the local
names of four nodes:4

 cci-grid05

4 In the event some nodes are not accessible, use just those nodes available.

18

 cci-grid07
 cci-grid08
 cci-gridgw.uncc.edu

To execute the matrixmult program on the computers specified in the machines file with 4
processes, the command is:

mpiexec.hydra -machinefile machines -n 4 ./matrixmult

Record the elapsed times for the program running on the different number of processes. Create a
graph of these results using a graphing program, such as a spreadsheet. Give a graph of
execution times and a graph of speed-up. Compare with linear speedup. The graphs should look
something like the figures below and overleaf but the shape of the curves will not. Your curves
may show something entirely different. The figures are just examples. Make sure that you
provide axes labels, a legend and a title to the graphs. Include copies of the graphs in your
submission document.

Example Execution Time Graph

0

0.5

1

1.5

2

2.5

0 10 20 30 40

Ex
e
cu
ti
o
n
 T
im

e
 (
se
co
n
d
s)

Number of Processors

Parallel Execution

Sequential Execution

Execution time of Matrix Multiplication

19

Example Speedup Graph

Include in your submission document:

1. Matrix multiplication program code modified to execute on the cluster
2. Screenshot(s) showing it execute on the cluster. Show the output is correct.
3. A copy of your execution time and speedup graphs.
4. Conclusions

0

5

10

15

20

25

30

35

40

0 10 20 30 40

Sp
e
e
d
u
p

Number of Processors

Speedup of Matrix Multiplication

Speedup Ideal Speedup

20

Part 4 Changing the matrix multiplication program to handle any value
of N. (10%)

The matrix multiplication code, as written, only works if P divides evenly into N. Modify the
program to handle any value of N. The final block will be less that than other blocks as
illustrated below:

The stored matrices and messages should not be any larger than necessary, i.e. simply padding
out arrays with zeros is not acceptable. The easiest solution is to treat the last block separately by
the master process after all the processes including the master have handled the other blocks.
This solution is acceptable although more parallelism is achieved if the process that handles the
last block is not also used for one of the other blocks.

The code is to have the same features as the previous matrix multiplication code including
comparing the parallel result with sequential result and displaying N and P. Also display the size
of blksz and the size of the last block.

Include in your submission document for Part 4:

1. Matrix multiplication program code that handles any value of N

2. A full explanation of your code modifications

3. Two screenshots showing the program executing on your computer with the output correct,

one with N = 250 and P = 4, and one with N = 257 and P = 9.

Assignment Report Preparation and Grading

Produce a report that shows that you successfully followed the instructions and performs all tasks
by taking screenshots and include these screenshots in the document.

Every task and subtask specified will be allocated a score so make sure you clearly identify each
part/task you did. Make sure you include everything that is specified in the “What to include ...”
section at the end of each task/part. Include all code, not as screen shots of the listings but
complete properly documented code listing. The programs are often too long to see in a single

rank

blksz

A B C

Last
block

21

screenshot and also not easy to read if small. Using multiple screenshots is not acceptable for
code. Copy/paste the code into the Word document or whatever you are using to create the
report.

Assignment Submission

Convert your report into a single pdf document and submit the pdf file on Moodle by the due
date as described on the course home page. It is extremely important you submit only a single
pdf file. You will lose 10 points if you submit in any other format (e.g. Word, OpenOffice, ...).
zip with multiple files is especially irritating.

