

1

Assignment 5

Suzaku Programming Assignment

B. Wilkinson: Modification date March 11, 2016. Correction March 26, 2016 p. 11/12

Overview

This assignment explores using Suzaku routines to create MPI programs. Suzaku is a pattern parallel
programming framework developed at UNC-Charlotte that enables programmers to create pattern-based
MPI programs without writing MPI message passing code implicit in the patterns. The purpose of this
framework is to simplify message passing programming and create better structured and scalable
programs based upon established parallel design patterns. Suzaku is implemented in C and provides both
low-level message passing patterns such as point-to-point message passing and higher-level patterns
such as the workpool pattern. Several unique patterns and features have been developed including a
generalized graph pattern that enables any pattern that can be described by a directed graph to be
implemented and a dynamic workpool for solving application such as the shortest path problem.

Suzaku draws from the Seeds framework and from OpenMP. The structure is OpenMP-like but creates
distributed-memory MPI code rather than shared-memory thread-based code. In Suzaku, sections of
code can be executed by a single process (the master process), which corresponds to the default situation
in OpenMP for the main thread before any directives. Parallel sections of code can be created that are
executed by all the processes. This corresponding directive in OpenMP is the parallel directive. Within a
Suzaku parallel section, various patterns can be used, including broadcast, scatter, gather, master-slave,
and higher level patterns such as a workpool.

There are many ways one could define Suzaku routines. The simple Suzaku macros described here are
not defined in the same way as the version 0 Suzaku macros/routines described in the Fall 2014 class.
The idea now is hide MPI completely and have patterns pre-implemented. You will be asked your
opinions and ways one could improve Suzaku. As a new tool, please watch for announcements.

Part 1 provides basic practice in coding, compiling, and running Suzaku programs. All the programs are
given and the applications are familiar. One simply sends messages and data for one process to another
process. The second is a matrix multiplication program using a master-slave pattern. The third uses the
workpool pattern to implement the Monte-Carlo calculation.

Part 2 asks you to write a sequential program for the astronomical N-body problem, beginning with a
sequential program. A template for the sequential program is given. You are then asked to add X11
graphical output.

Part 3 asks convert the sequential N-body program into an MPI program using Suzaku routines using a
master-slave pattern. This involves mostly deleting one for loop in the sequential program that is not
needed when the program is parallelized and adding Suzaku routines at various places to broadcast data
and collect results.

Part 4 asks you to reformulate the N-body program as a Suzaku workpool. In a workpool, the number of
slaves does not need to be the same as the number of bodies.

2

Preliminaries

This assignment will be done on your computer only. We are not too concerned with execution speed.
We are more concerned about simplifying parallel programming with higher-level tools. The programs
you will need are:

 suzaku.h
 suzaku.c
 SZ_pt-to-pt-c
 SZ_matrixmult.c
 MontePi_workpool.c
 Matrixmult_workpool,c
 makefile (optional but useful)

which can be found on the course VM in the directory ParallelProg/Suzaku. If you are using your own
Linux installation, the files can be found on the course home at: “Parallel Programming Software” under
“Suzaku.” Download all the files and place them in the directory ParallelProg/Suzaku.

Significant changes have been made to the Spring 2015 version of Suzaku, so make
sure you are using the most recent files as posted, not any files from previous
semesters.

You will also need to refer to posted document “Suzaku Pattern Programming Framework
Specification” on the course home at “Additional Information” under “Suzaku” for full details on the
signatures of the Suzaku routines, their usage, and limitations.

3

Part 1 – Suzaku Tutorial (25%)

The purpose of this part is to become familiar with Suzaku so that you will be able to use them in your
own programs in subsequent parts. All the programs are given and you are simply asked to compile and
execute them. This part should not take long (10 minutes!). However carefully review the provided
programs so that you fully understand them.

Program Structure

The computational model is similar to OpenMP but using processes instead of threads. With the process-
based model, there is no implicit shared memory. The structure of a Suzaku program is shown below.
The computation begins with a single master process (after declaring variables that are duplicated in all
processes and the initialization of the environment). One or more parallel sections can be created that
will use all the processes including the master process. Outside parallel sections the computation is only
executed by the master process.

int main (int argc, char **argv) {
 int P, ... // variables declaration and initialization

 SZ_Init(P); // initialize message-passing environment
 // sets P to number of processes

 ...

 SZ_Parallel_begin // start of parallel section

 …

 SZ_Parallel_end // end of parallel section

 ...

 SZ_Finalize();

 return(0);
}

 Suzaku program structure

All the variables declared here are duplicated in each process.

All initializations here will apply to all copies of the variables.

After call to SZ_Init() only master process executes code, until a parallel section.

Only master process executed code here.

After SZ_Parallel_begin, all processes execute

code, until a SZ_Parallel_end

No Suzaku routines here.

4

Task 1 Point-to-Point Pattern

A sample program called SZ_pt-to-pt.c is given below that demonstrates the point-point pattern:

#include <stdio.h>
#include <string.h>
#include "suzaku.h" // Suzaku macros

int main(int argc, char *argv[]) {
 int i,j, p, PID; //All variables declared here are in every process
 int x = 88,y=99;
 double a[10] = {0,1,2,3,4,5,6,7,8,9};
 double b[10] = {0,0,0,0,0,0,0,0,0,0};
 char a_message[20], b_message[20];
 strcpy(a_message, "Hello world");
 strcpy(b_message, "------------");
 double p=123, q=0;
 double xx[2][3] = {{0,1,2},{3,4,5}},yy[2][3] = {{0,1,2},{3,4,5}};// multidimensional can only be doubles

 SZ_Init(p); // initialize MPI message-passing environment, sets P to number of processes, not used

 SZ_Parallel_begin // parallel section, all processes do this
 PID = SZ_Get_process_num(); // get process ID

 SZ_Point_to_point(0, 1, a_message, b_message); // send a message from one process to another
 if (PID == 1) printf("Received by process %d = %s\n",PID,b_message); // print it out at destination

 SZ_Point_to_point(0, 1, &x, &y); // send an int from one process to another
 if (PID == 1) printf("Received by process %d = %d\n",PID,y); // print it out at destination

 SZ_Point_to_point(0, 1, a, b); // send an array of doubles from one process to another
 if (PID == 1) { // print it out at destination
 printf("Received by process %d = ",PID);
 for (i = 0; i < 10; i++)
 printf("%2.2f ",b[i]);
 printf("\n");
 }

 SZ_Point_to_point(0, 1, &p, &q); // send a double from one process to another
 if (PID == 1) printf("Received by process %d = %f\n",PID,q); // print it out at destination

 SZ_Point_to_point(0, 1, xx, yy); // send an 2-D array of doubles from one process to another
 if (PID == 1) { // print it out at destination
 printf("Received by process %d\n",PID);
 for (i = 0; i < 2; i++) {
 for (j = 0; j < 3; j++)
 printf("%2.2f ",yy[i][j]);
 printf("\n");
 }
 }
 SZ_Parallel_end; // end of parallel

 SZ_Finalize();

 return 0;
}

Suzaku SZ_pt-to-pt.c program

Note: As in MPI, all the variables declared here are

duplicated in each process. All initializations here will

apply to all copies of the variables.

After call to SZ_Init() only master process executes code, until a parallel section.

Only master process executed code here if any.

Do not place any code here (executed by all processes).

5

SZ_Init(p) is required and sets p to be the number of processes, which is determined when you execute
the program as in MPI. In this program, p is not used. After SZ_Init(p), all code is executed just by the
master process, just as in OpenMP a single thread executes the code by default.

SZ_Parallel_begin corresponds to the parallel directive in OpenMP and after it all is code is executed
by all the processes. SZ_Parallel_end is required to mark the end of the parallel, and includes a global
barrier too. After that, the code is again just executed by the master process.

SZ_Get_process_num() returns the process ID and mirrors the omp_get_thread_num() routine in
OpenMP that gives the thread ID.

SZ_Point_to_point() implements the point-to-point message passing pattern. It has four parameters, the
source process ID, the destination process ID, the source array, and the destination array. The source and
destination can be individual character variables, integer variables, double variables, or 1-dimensional
arrays of characters, integers, or doubles, or multi-dimensional arrays of doubles. The type does not
have to be specified. Multi-dimensional arrays of other types are not currently supported. The address
of an individual variable specified by prefixing the argument the & address operator. This is similar to
how one specifies variables in MPI message passing routines. Sending a single number would be
inefficient. Sometimes though, it cannot be avoided (for example terminating a loop). Note missing the
& is a common programming error.

SZ_Finalize() is required at the end of the program.

You will need the suzaku. h file to compile all the Suzaku programs. Make sure suzahu.h is placed in
same directory as SZ_pt-to-pt.c. Compile the SZ_pt-to-pt.c program as an MPI program, i.e.:

mpicc -o SZ_pt-to-pt SZ_pt-to-pt.c

(There is a make file you can use also, i.e. make SZ_pt-to-pt.)

Execute as an MPI program with two processes:

mpiexec -n 2 ./SZ_pt-to-pt

Save a screenshot of the output. Make sure you understand the program and its output.

What to submit for Task 1

Your submission document should include the following:

1. Screenshot of the SZ_pt-to-pt.c executing with two processes.

6

Slaves (Workers)

Master

C

A

Send blksz
rows of A

Return blksz
rows of C

Broadcast
B

Matrix multiplication - master-slave approach

Task 2 – Matrix Multiplication using Master-Slave Pattern

Previous we did matrix multiplication with MPI
using the master-slave pattern. Blocks of rows of
matrix A is scattered across slaves and matrix B
is broadcast to all slaves. Slaves return a block of
rows of C.

A similar program but using Suzaku routines is
given as SZ_matrixmult.c below. This program
demonstrates many of the Suzaku macros (in
red).

#define N 256
#include <stdio.h>
#include <time.h>
#include <string.h>

#include "suzaku.h" // Suzaku routines

void print_results(char *prompt, double a[N][N]) { // available to print out arrays for checking
 int i, j;
 printf ("\n\n%s\n", prompt);
 for (i = 0; i< N; i++) {
 for (j = 0; j < N; j++) {
 printf(" %.2lf", a[i][j]);
 }
 printf ("\n");
 }
 printf ("\n\n");
}

int main(int argc, char *argv[]) {

 int i, j, k, error = 0; // All variables declared here are in every process
 double A[N][N], B[N][N], C[N][N], D[N][N], sum;

 double time1, time2; // for timing
 int P; // P, number of processes
 int blksz; // used to define blocksize in matrix multiplication

 SZ_Init(P); // this initializes MPI environment
 // just master process after this
 if (N % P != 0) {
 printf("Error -- N/P must be an integer\n");
 }

 for (i = 0; i < N; i++) { // set some initial values for A and B
 for (j = 0; j < N; j++) {
 A[i][j] = j*1;
 B[i][j] = i*j+2;
 }
 }

 for (i = 0; i < N; i++) { // sequential matrix multiplication
 for (j = 0; j < N; j++) {
 sum = 0;

After call

to SZ_Init()

only

master

process

executed

code, until

a parallel

All the variables declared

here are duplicated in

each process. All

initializations here will

apply to all copies of the

7

 for (k=0; k < N; k++) {
 sum += A[i][k]*B[k][j];
 }
 D[i][j] = sum;
 }
 }

 time1 = SZ_Wtime(); // record time stamp

 SZ_Parallel_begin

 blksz = N/P;

 double A1[blksz][N]; // used in slaves to hold scattered a
 double C1[blksz][N]; // used in slaves to hold their result

 SZ_Scatter(A,A1); // Scatter A array into A1

 SZ_Broadcast(B); // broadcast B array

 for(i = 0 ; i < blksz; i++) {
 for(j = 0 ; j < N ; j++) {
 sum = 0;
 for(k = 0 ; k < N ; k++) {
 sum += A1[i][k] * B[k][j];
 }
 C1[i][j] = sum;
 }
 }

 SZ_Gather(C1,C); // gather results

 SZ_Parallel_end; // end of parallel, note a barrier here

 time2 = SZ_Wtime(); // record time stamp

 int error = 0; // check sequential and parallel versions same answers, within rounding
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 if ((C[i][j] - D[i][j] > 0.001) || (D[i][j] - C[i][j] > 0.001)) error = -1;
 }
 }
 if (error == -1) printf("ERROR, sequential and parallel code give different answers.\n");
 else printf("Sequential and parallel code give same answers.\n");

 printf("elapsed_time = %f (seconds)\n", time2 - time1); // print out execution time

 SZ_Finalize();
 return 0;
}

Suzaku matrixmult.c program (master-slave pattern)

The matrices are initialized with values within the program. The sequential and parallel results are
checked against each other in the code. The matrix multiplication algorithm implemented is the same as
in a previous MPI assignment. Matrix A is scattered across processes and matrix B is broadcast to all
processes. SZ_Broadcast(), SZ_Scatter(),and SZ_Gather() must only be called within a parallel region
and correspond to the MPI routines for broadcast, scatter and gather:

Parallel section. All

processes executing

After

SZ_parallel

_end, only

master

process

executed

code.

All the variables declared here are

duplicated in each process but

scope will be only parallel section.

Done here because need to know

P first to get size.

8

SZ_Broadcast(a) broadcasts an array from the master to all processes. a is the pointer to the source
array in the master and the destination array in all processes (source and destination). Only double arrays
ordoubles are allowed. A double variable can also be specified by prefixing the argument with the &
address operator.

SZ_Scatter(a,b) scatters an array from the master to all processes. a is the source pointer to an array to
scatter in the master and b is the destination pointer to where data is placed in each process. The size of
the block sent to each process is determined by the size of the destination array, b. In this case the size
of the block sent is blksz rows of N elements where blksz = N/P.

SZ_Gather(a,b) gathers an array from all processes to the master process. a is the source pointer to an
array being gathered from all processes to the master and b is the destination pointer in master where
elements are gathered. The size of the block sent from each process is determined by the size of the
source array, a. In this case the size of the block sent is blksz rows of N elements where blksz = N/P.

SZ_Wtime() simply inserts MPI_Wtime(). Normally this routine would be called only by the master
outside a parallel section.

In the current Suzaku implementation, the source and destination arrays must be declared statically or as
variable length arrays (i.e. not dynamically). All message passing routines are synchronous for ease of
usage (i.e. none the sources or the destinations return until all have completed). There is a barrier at the
end of the parallel section so that an explicit barrier is not necessary before the time stamp.
(SZ_Barrier() is available if one wants a barrier within a parallel section.)

Compile SZ_matrixmult.c and execute with four processes. Save a screenshot of the output.

What to submit for Task 2

Your submission document should include the following:

1) Screenshot of the SZ_matrixmult.c executing with four processes.

Task 3 Suzaku Monte Carlo Workpool Program

The workpool pattern is like a master-slave pattern but has a task queue that provides load balancing.
Individual tasks are given to the slaves. When a slave finishes a task and returns the result, it is given
another task from the task queue, until the task queue is empty. At that point, the master waits until all
outstanding results are returned. The termination condition is the task queue empty and all result
collected. In Assignment 4, you had to implement the workpool in MPI for the Monte Carlo
calculation. Here the workpool pattern pre-implemented in a very general form.

Workpool Algorithm. In the implementation of the workpool described here (version 1), the data items
being sent between the master process and slave processes are limited to 1-D arrays of doubles.1 The
programmer deposes the problem into T tasks. Each task consists of a 1-D array of D doubles with an
associated task ID. Each slave result for a task consists of a 1-D array of R doubles with the associated
task ID. The master sends out tasks to slaves. Slaves return results and are given new tasks, or a
terminator message if there are no more tasks, i.e. if the number of tasks sent reaches T. The number of

1 There is an implementation of the workpool called version 2 that closely matches the Seeds interface, using get and put
routines, which enables individual data items and arrays to be packed into one task and parts retrieved in any order.

9

tasks can be less than number of slaves, equal to the number of slaves, or greater than the number of
slaves. If the number of tasks is the same as the number of slaves, the workpool becomes essentially a
master-slave pattern.

Programmer-written routines. The Suzaku workpool interface is modeled on the Java-based Seeds
framework, which we will use in Assignment 6. The programmer must implement four routines:

 init() Sets values for the number of tasks

(T), the number of data items in each
task (D), and the number of data
items in each result (R). Called once
by all processes at the beginning of
the computation.

 diffuse() Generates the next task when called
by the master.

 compute() Executed by a slave, takes a task
generated by diffuse and generates
the corresponding result.

 gather() Accepts a slave result and develops the final answer. Called by the master.

The workpool is implemented by the routine SZ_Workpool(). init(), diffuse(), compute(), and gather()
are called by SZ_Workpool() and given as input function parameters. The application program structure
is shown below and consists of the four programmer-written routines and the Suzaku routines.

#include <stdio.h>
#include <string.h>
#include "suzaku.h"

void init(int *T, int *D, int *R) {

 ...

 return;
}
void diffuse(int *taskID,double output[D]) {

 ...

 return;
}

void compute(int taskID, double input[D], double output[R]) {

 ...

 return;
}

void gather(int taskID, double input[R]) {

diffuse()

compute()

gather()

Slaves

Message passing done by framework

Master

10

 ...

 return;
}

int main(int argc, char *argv[]) {

 int P; // number of processes
 SZ_Init(P); // initialize MPI message-passing environment

 SZ_Parallel_begin

 SZ_Workpool(init, diffuse, compute, gather);

 SZ_Parallel_end;

...
 printf("Workpool results\n ... ",); // print out workpool results

 SZ_Finalize();

 return 0;
}

Suzaku workpool program structure

Suzaku Monte Carlo workpool program, MontePi_workpool.c, is given below.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "suzaku.h"
 // required Suzaku constants
#define T 100 // number of tasks, max = INT_MAX - 1
#define D 1 // number of data items in each task, doubles only
#define R 1 // number of data items in result of each task, doubles only

#define S 1000000 // constant used in computation, sample pts done in a slave
double total = 0; // global variable, final result

void init(int *tasks, int *data_items, int *result_items) {
 *tasks = T;
 *data_items = D;
 *result_items = R;
}
void diffuse(int taskID,double output[D]) { // taskID not used in computation
 static int temp = 0; // only initialized first time function called
 output[0] = ++temp; // set seed to consecutive data value
}
void compute(int taskID, double input[D], double output[R]) {
 int i;
 double x, y;
 double inside = 0;

 srand(input[0]); // initialize random number generator
 for (i = 0; i < S; i++) {
 x = rand() / (double) RAND_MAX;
 y = rand() / (double) RAND_MAX;
 if ((x * x + y * y) <= 1.0) inside++;
 }
 output[0] = inside;
}
void gather(int taskID, double input[R]) {
 total += input[0]; // aggregate answer

11

}

// additional routines used in this application
double get_pi() {
 double pi;
 pi = 4 * total / (S*T);
 printf("\nWorkpool results, Pi = %f\n",pi); // print out workpool results
}

int main(int argc, char *argv[]) {
 int i; // All variables declared here are in every process
 int P; // number of processes, set by SZ_Init(P)
 double time1, time2; // for timing

 SZ_Init(P); // initialize MPI environment, sets P to number of processes

 printf("number of tasks = %d\n",T);
 printf("number of samples done in slave per task = %d\n",S);

 time1 = SZ_Wtime(); // record time stamp
 SZ_Parallel_begin // start of parallel section
 SZ_Workpool(init,diffuse,compute,gather);
 SZ_Parallel_end; // end of parallel
 time2 = SZ_Wtime(); // record time stamp

 get_pi(); // calculate final result
 printf("elapsed_time = %f (seconds)\n", time2 - time1);

 SZ_Finalize();
 return 0;
}

Suzaku Monte Carlo workpool program

Workpool code: The workpool routine SZ_Workpool() is implemented in suzaku.c. It can be compiled
with:

 mpicc -c -o suzaku.o suzaku.c -lm

to create an object file suzaku.o (note the -c option). This avoids having to recompile suzaku.c every
time you compile application code. The –lm option is necessary to include the math libraries (also below).

Application code: SZ_Workpool() does not use suzaku.h itself but since a workpool needs to be within
a parallel section, the application code must include suzaku.h. For the commands below, the two files:

 suzaku.h

 suzaku.o

must be placed in the same directory as the source file. To compile MontePi_workpool.c, issue the
command:

 mpicc -o MontePi_workpool MontePi_workpool.c suzaku.o -lm

or use the provided make file:

 make MontePi_workpool

which will compile suzaku.c if necessary. (Add -lm in the make file if missing.)

12

Instead of pre-compiling suzaku.c into suzaku.o, one could also compile both suzaku.c and
MontePi_workpool.c together with:

mpicc -o MontePi_workpool MontePi_workpool.c suzaku.c -lm

To execute MontePi_workpool, issue the command:

 mpiexec –n <no_of processes> MontePi_workpool

where <no_of processes> is the number of processes you wish to use. The workpool needs at least two
processes, master and one slave. Note the master does not act as one slave as in the master-slave pattern
because collective routines are not used.

Compile and execute MontePi_workpool with four processes.

Sample output with
three processes

What to submit for Task 3

Your submission document should include the following:

1) Screenshot of MontePi_workpool executing on your computer

13

Task 4 Execute with Debugging Messages

 A version of the SZ_Workpool() routine is provided that
includes print statements to see how the tasks are allocated to
slaves and results returned. This version is called
SZ_Workpool_debug() and can be found in suzaku.c.

Rename SZ_Workpool() in MontePi_workpool.c to
SZ_Workpool_debug().

Re-compile and execute with four processes.

What to submit for Task 4

Your submission document should include the following:

1) Screenshot of MontePi_workpool executing on your computer using the debug version of the
workpool, SZ_Workpool_debug().

Task 5 Evaluation of Suzaku (Important, worth 5 points)

Write 1-2 paragraphs on using Suzaku instead on MPI. Describe advantages and disadvantages.

Sample output with three processes

14

Part 2 Astronomical N-Body Problem (30%)

The Problem

Now we will turn to writing our own program. The objective is to find the positions and movements of
bodies in space that are subject to gravitational forces from other bodies (e.g., planets) using Newtonian
laws of physics. The gravitational force between two bodies of masses ma and mb is given by:

ܨ ൌ
݉݉ܩ

ଶݎ

where G is the gravitational constant and r is the distance between the bodies. When there are multiple
bodies, each body will feel the influence of each of the other bodies and the forces will sum together
(taking into account the direction of each force). Subject to a force, a body will accelerate according to
Newton’s second law:

F	ൌ	ma	

where m is the mass of the body, F is the force it experiences, and a is the resultant acceleration. All
the bodies will move to new positions due to these forces and have new velocities. Written as
differential equations, we have:

ܨ ൌ ݉
ݒ݀
ݐ݀

and

ݒ ൌ
ݔ݀
ݐ݀

where v is the velocity. For a computer simulation, we use values at particular times, t0, t1, t2, and so
on, the time intervals being as short as possible to achieve the most accurate solution. Let the time
interval be ∆t. Then, for a particular body of mass m, the force is given by:

ܨ ൌ
݉ሺݒ௧ାଵ െ ௧ሻݒ

ݐ∆

and a new velocity

௧ାଵݒ ൌ ௧ݒ
ݐ∆ܨ
݉

where ࢚࢜ାis the velocity of the body at time t + 1, and ࢚࢜is the velocity of the body at time t. If a body
is moving at a velocity v over the time interval ∆࢚, its position changes by

௧ାଵݔ െ	ݔ௧ ൌ ݐ∆ݒ

where ࢚࢞ାis its position at time t+1 and ࢚࢞is its position at time t. Once bodies move to new positions,
the forces change and the computation has to be repeated. The velocity is not actually constant over the
time interval, ∆࢚, so only an approximate answer is obtained.

If the bodies are in a three-dimensional space, all values (forces, velocities and distances) are vectors
and have to be resolved into three directions, x, y, and z. The forces due to all the bodies on each body
are added together in each dimension to obtain the final force on each body. Finally, the new position

15

and velocity of each body are computed due to the forces. This then gives the velocity and positions in
three directions. For a simple computer solution, we usually assume a three-dimensional space with
fixed boundaries. Actually, the universe is continually expanding and does not have fixed boundaries!

For this assignment, you will use two-dimensional space so the forces, velocities and distances need
only be resolved into two directions, x and y.

Two-Dimensional Space. In a two-dimensional space having a coordinate system (x, y), the distance
between two bodies at (xa,ya) and (xb,yb) is given by:

࢘ ൌ ඥሺ࢈࢞ െ ሻࢇ࢞ ሺ࢈࢟ െ ሻࢇ࢟

The forces are resolved in the two directions, using:

௫ܨ ൌ
݉݉ܩ

ଶݎ
ቀ
ݔ െ ݔ

ݎ
ቁ

௬ܨ ൌ
݉݉ܩ

ଶݎ
ቀ
ݕ െ ݕ

ݎ
ቁ

It is convenient to store the position and velocities of the bodies in an array as shown in Table 1. In our
case we will only have siz bodies.

Table 1: Input data

Body
(Array index)

Mass
Position in x

direction
Position in y

direction
Velocity in x

direction
Velocity in y

direction

0

1

2

3

4

5

Sequential Code. The overall gravitational N-body computation can be described by the following steps:

for (t = 0; t < T; t++) { // for each time interval

 for (a = 0; a < N; a++) { // for body a, calculate force on body due to other bodies
 for (i = 0; i < N; i++) {
 if (a != i) { // for different bodies
 x_diff = ... ; // compute distance between body a and body i in x direction
 y_diff = ... ; // compute distance between body a and body i in y direction
 r = ... ; //compute distance r

16

 F = ... ; // compute force on bodies
 Fx[a] += ... ; // resolve and accumulate force in x direction
 Fy[a] += … ; // resolve and accumulate force in y direction
 }
 }
 }

 for (a = 0; a < N; a++) { // for each body, compute and update positions and velocity
 A[a][x_velocity]= ... ; // new velocity in x direction, column 4 in Table 1
 A[a][y_velocity]= ... ; // new velocity in y direction, column 5 in Table 1
 A[a][x_position] = ... ; // new position in x direction, column 2 in Table 1
 A[a][y_position] = ... ; // new position in y direction, column 3 in Table 1
 }

} // end of simulation

Task 1

Write a sequential C program that computes the movement on N bodies in two dimensions, where N is a
constant. Set N = 6. The initial data is to be hardcoded into the program for simplicity and consists of
an array of doubles, A[6][5] holding the mass, initial positions and velocities of six bodies as follows:

 Mass x pos y pos x vel y vel
 25.0 400.0 400.0 0.0 0.0
 20.0 200.0 400.0 3.0 4.0
 30.0 50.0 600.0 1.0 0.0
 50.0 400.0 200.0 1.0 0.0
 40.0 700.0 700.0 -1.0 0.0
 70.0 200.0 100.0 -1.0 0.0

The values are not actual values in a real simulation. Set the gravitational constant to be 100. Set the
number of time intervals, T, and the time interval ∆ݐ through keyboard input. Use an x-y resolution of
1000 x 1000 points. Update the data array after each iteration and display the final values computed at
the end of the computation.

If two bodies get very close, the forces will tend to infinity. Hence under that situation, delete both
bodes from the table so as to represent the bodies being destroyed. In the program, do this when the
distance is less than the sum of the masses divided by 2. (Strictly the diameter of a body is proportional
to the cube root of the mass.)

Demonstrate your program with a time interval of 0.05 (∆ݐ) with 1000 iterations (T) and 10000
iterations (T). Also give one sample result with your own values. It is suggested that you use a make file
to compile the program. A sample is provided. This becomes more convenient later.

Overleaf is sample output with 0.05 (∆ݐ) and 1000 iterations (T)2:

2 This particular program actually read the input data from a file.

17

Notice in this particular input, bodies 0 and 3 are destroyed.

What to submit for this task

Your submission document should include, but is not limited to, the following:
1. Code listing of your sequential N-body program
2. Screenshot of the sequential N-body program executing with the specified data using a time interval

of 0.05 with 1000 and 10000 iterations.
3. Another sample output.

18

Task 2 Display movement of the bodies over time

Add code to display the movement of the bodies while program is executing using X11 graphics. Refer
to the separate notes on creating X11 graphical output. Take advantage of the provided header file
X11Macros.h. Sample output is given below:

What to submit from this task

Your submission document should include, but is not limited to, the following:

1. Code listing of your sequential N-body program with the X-11 graphics
2. Three screenshots of the program executing producing graphical output with the specified data using

a time interval of 0.05 and 1000 iterations. (Video better)
3. Another sample output.

19

Part 3 Converting the N-Body program into a Master-Slave Suzaku MPI
program (30%)

Modify your N-body program to be a master-slave Suzaku program that uses six processes, one for each
body. Incorporate code to measure the time of execution. You do not need incorporate the X11 code
although you can if you wish (no extra credit). The numerical output has to correct and match that of the
sequential program. . There may be small rounding differences to the sequential version. It highly
recommended that you write and test this program in stages, as it easy to make mistakes! Note the code
will not function correctly if you use more than 6 processes and with less processes, less bodies are
considered. Sample output is shown below:

In the parallel version, we also see two processes each deleting the bodies, one assigned to body 3 and
one assigned to body 5, without altering the code from the sequential version. In actuality, a process can
only delete its body from the table as it only returns to the master one row of the table, that body
associated with its body.

Some notes and suggestions:

1. Only the master process should read the keyboard. All processes will need this data. Hence you will
need to broadcast the keyboard input data to all processes. Note the Suzaku broadcast now can handle
multiple data types without casting. You will also need to broadcast the initial data array.

2. Suzaku does not allow a master process to nest a parallel section. When the parallel section begins,
the master section automatically ends. Hence one cannot have loop in the master process which includes
a parallel section.

20

3. Each process in the parallel region will be responsible for one body. You will need
SZ_Get_process_num() to get the process ID. Hence the loop with the a variable in the sequential
code template given earlier will not exist.

4. A SZ_AllBroadcast() will be needed to broadcast the new data values at the end of each iteration.
This routine broadcasts the ith row of an array of doubles from the ith process to every other process, for
all i. (This is not the same as an MPI_Allgather().) Assumes there are P rows in the array.

5. A SZ_Barrier() should not be needed as all the low-level Suzaku macros are now synchronous.

You must not use any explicit MPI routines, only Suzaku routines to create MPI code.

What to submit for Part 3

Your submission document should include the following:

1) A listing of your Suzaku program for the N-body problem
2) Screenshot of the program executing with the specified data using a time interval of 0.05 with

1000 iterations and 10000 iterations.
3) Screenshot of the output of sequential version with same inputs to prove that the parallel version

does in fact create the same results.
4) A brief evaluation of using the Suzaku macros comparing and contrasting using Suzaku with

using MPI. Describe your experience and opinions, and any suggestions for improvement. (5
points)

21

Part 4 N-Body Problem Using a Workpool (15%)

In this part you are asked to reformulate the
astronomical N-Body program of Part 2 as a
Suzaku workpool. Each task consists of the
information of one body
(mass/position/velocity). A slave receives
one body to work on and returns updated
information for that body. The workpool
itself is inside a for loop and repeated for
each time step. Hence we now have a
“synchronous iterative pattern.” Because
synchronous iterative patterns are common,
such combined patterns can be provided
pre-implemented more efficiently than
using a for loop inserted by the
programmer. The pre-implemented
synchronous iterative Stencil pattern
appears in Seeds and in Paraguin.

Re-write your the astronomical N-Body
program of Part 2 to be a Suzaku
workpool.

The N-Body program has keyboard input
for number of time steps and time interval
as in the original program. These values
have to be broadcast to all processes before
the workpool. The end of the workpool is a
synchronization point with an implicit barrier because of the way the workpool works. The master does
not stop until all the slave processes finish first. It is not necessary to have the same number of slaves as
bodies as in the programs in master slave version. Slaves are not assigned to particular bodies and it is
possible for one slave to process all the bodies. As the order that the positions and velocities of bodies
are updated is indeterminate, one cannot update the data array with new positions and velocities as they
are calculated as that information could be used with other bodies in the same iteration. One could use
two arrays but to avoid copying from one array to the other array at the end of each time interval, we use
a technique you saw when solving the Heat equation - merging the two arrays into a three dimensional
array A[N]N][2] and alternating the third index between 0 to 1 at each iteration. Here this is done in the
init() routine, called at the beginning of the workpool.

Compile and execute your program with different numbers of three processes, including three processes

Try executing with debug messages and multiple times to see how slaves are allocated. Try different
numbers of processes.

Repeat

Stop

Check
termination
condition

Master

Task from task
queue

Another task if task
queue not empty

Aggregate
answers

Slaves/Workers

Result

Task
queue

Synchronous iterative workpool

22

Sample output (Note number of processes does not have to be the same as number of bodies.)

What to submit for Part 4

Your submission document should include the following:

1) Program listing of your workpool N-body program.

2) Screenshot of your workpool N-body program executing on your computer using three processes
and the regular version of SZ_Workpool()).

3) Screenshot of your workpool N-body program executing on your computer using three

processes and the debug version of SZ_Workpool()).

4) Discussion of the results.

23

Assignment Report Preparation and Grading

Produce a report that shows that you successfully followed the instructions and performs all tasks by
taking screenshots and include these screenshots in the document.

Every task and subtask specified will be allocated a score so make sure you clearly identify each
part/task you did. Make sure you include everything that is specified in the “Include ...” section at the
end of each task/part as a minimum. Include all code, not as screen shots of the listings but complete
properly documented code listing. The programs are often too long to see in a single screenshot and
also not easy to read if small. Using multiple screenshots is not option for code. Copy/paste the code into
the Word document or whatever you are using to create the report.

You will lose 10 points if you submit code as screenshots.

Assignment Submission

Convert your report into a single pdf document and submit the pdf file on Moodle by the due date as
described on the course home page. It is extremely important you submit only a pdf file.

You will lose 10 points if you submit in any other format (e.g. Word, OpenOffice, ...). Submitting a zip
with multiple files is especially irritating.

