

1

Assignment 6

Suzaku Workpool Version 2 Programming Assignment

B. Wilkinson Modification date March 27, 2016

Overview

This assignment is new for Spring 2016 and replaces the previous short assignment on the Seeds
framework. A version of the Suzaku workpool has been implemented that mirrors the interface in Seeds
by using “put” routines to pack data into tasks and results and “get” routines to retrieve the data. Now
the data can be constructed to be of multiple items of different types and sizes. To differentiate between
the versions, the initial version of the workpool is called version 1 and the workpool with put and get
routines is called version 2. Version 2 may incur a greater overhead that version 1 but is more powerful
and more elegant to use. For this assignment, you will use your own computer only. Again we are
interested in the ease of use rather than raw execution speed.

Workpool version 2 routines

Put Routine

The put routine is used by the programmer to insert data into a task and is called in the compute routine,
once for each data item inserted into the task. The signature is:

SZ_Put(char[8] key, void *x)

Purpose: Places data into the send buffer and associates a user-defined name to it.

Parameters:

key String or string constant
x Pointer to data being stored in the message buffer and mapped to key

Limitations: x can be an individual character variable, integer variable, double variable or 1-dimensional
array of characters, integers, or doubles, or a multi-dimensional array of doubles. The type does not have
to be specified. Multi-dimensional arrays of other types are not currently supported. The address of an
individual variable specified by prefixing the argument the & address operator. key is a programmer
selected string to identify the data, up to eight characters and there is a maximum of 10 keys (i.e. 10 puts
to the same message buffer).

Get Routine

The get routine is used by the programmer to extract data from a task and is called in the diffuse routine,
once for each data item extracted from the task. The signature is:

SZ_Get(char[8] key, void *x)

Purpose: Extract data from the received message that is associated with a user-defined name.

2

Parameters:

key String or string constant
x Pointer to data being retrieved from the message buffer mapped to key

Limitations: x can be an individual character variable, integer variable, doublevariable, or 1-dimensional
array of characters, integers, or doubles, or a multi-dimensional array of doubles. The type does not have
to be specified. Multi-dimensional arrays of other types are not currently supported. The address of an
individual variable specified by prefixing the argument the & address operator. key is a string up to
eight characters and there is a maximum of 10 keys (i.e. 10 puts to the same message buffer).

Workpool routines

The workpool routines init(), diffuse(), compute(), and gather() now have different and simplified
signatures:

init()

The init() routine now only has to set the number of tasks, T. D, the number of data items in each task
and R, the number of data items in result of each task are not now used as they are determined with the
put routines, i.e., the signature of init() is:

 void init(int *T)

Parameter:

int *T Input parameter for the number of tasks (pointers to an integer)

diffuse()

The diffuse() only needs the input parameter from the framework to provide the taskID. The output
parameter output[] is not needed, i.e., the signature of diffuse() is:

void diffuse(int tasksID)

Parameter:

int taskID Input parameter for the task ID for the associated task

compute()

The compute() only needs the input parameter from the framework to provide the taskID. The input
parameter input[] and output parameter output[] are not needed, i.e., the signature of diffuse() is:

void diffuse(int tasksID)

Parameter:

int taskID Input parameter for the task ID for the associated task

3

gather()

The gather() only needs the input parameter from the framework to provide the taskID. The input
parameter input[] is not needed, i.e., the signature of gather() is:

void gather(int tasksID)

Parameter:

int taskID Input parameter for the task ID for the associated task

Signature of Suzaku Workpool Routine

The workpool routine is now called SZ_workpool2 and has the signature:

void SZ_Workpool2 (void (*init)(int *T),
 void (*diffuse)(int *taskID),
 void (*compute)(int taskID),
 void (*gather)(int taskID))

Parameters:

 *init Function pointer to init function
 *diffuse Function pointer to diffuse function
 *compute Function pointer to compute function
 *compute Function pointer to gather function

Compilation and Execution

SZ_Workpool2() and associated routines are held in suzaku.c. Compilation and execution is the same
as for workpool version 1 except for naming the workpool as SZ_Workpool2() in the application code.

Preliminaries

The files needed for this assignment are:

 suzaku.h
 suzaku.c
 test_workpool2.c
 matrixmult_workpool2.c
 makefile (optional but useful)

which you will need to download from the course home at: “Parallel Programming Software” under
“Suzaku.” Place the files in the directory ParallelProg/Suzaku.

4

Part 1 Tutorial on the Suzaku workpool version 2 (30%)

Task 1 Compile and execute a simple workpool test program

A sample program test_workpool2.c, shown below demonstrates different data types that can be used
with put and get:

#include <stdio.h>
#include "suzaku.h"

#define T 4 // number of tasks, max = INT_MAX - 1

// workpool functions to be provided by programmer:

void init(int *tasks) { // sets number of tasks
 *tasks = T;
 return;
}

void diffuse(int taskID) {
 int j;
 char w[] = "Hello World";
 static int x = 1234; // only initialized first time function called
 static double y = 5678;
 double z[2][3];
 z[0][0] = 357;
 z[1][1] = 246;

 SZ_Put("w",w);
 SZ_Put("x",&x);
 SZ_Put("y",&y);
 SZ_Put("z",z);

 printf("Diffuse Task sent: taskID = %2d, w = %s, x = %5d, y = %8.2f, z[0][0] = %8.2f, z[1][1] = %8.2f\n",taskID, w,
x, y,z[0][0],z[1][1]);

 x++;
 y++;

 return;
}

void compute(int taskID) { // simply passing data multiplied by 10 in a different order
 char w[12] = "-----------";
 int x = 0;
 double y = 0;
 double z[2][3];
 z[0][0] = 0;
 z[1][1] = 0;

 SZ_Get("z",z);
 SZ_Get("x",&x);
 SZ_Get("w",w);
 SZ_Get("y",&y);

 printf("Compute Task received: taskID = %2d, w = %s, x = %5d, y = %8.2f, z[0][0] = %8.2f, z[1][1] = %8.2f\n",taskID,
w, x, y,z[0][0],z[1][1]);
 x = x * 10;
 y = y * 10;
 z[0][0] = z[0][0] * 10;
 z[1][1] = z[1][1] * 10;

5

 printf("Compute Result: taskID = %2d, w = %s, x = %5d, y = %8.2f, z[0][0] = %8.2f, z[1][1] = %8.2f\n",taskID, w,
x, y,z[0][0],z[1][1]);

 SZ_Put("xx",&x); // use different names for test, could have been same names
 SZ_Put("yy",&y);
 SZ_Put("zz",z);
 SZ_Put("ww",w)

 return;
}

void gather(int taskID) { // function done by master collecting slave results. Final results computed by master
 char w[12] = "-----------";
 int x = 0;
 double y = 0;
 double z[2][3];
 z[0][0] = 0;
 z[1][1] = 0;

 SZ_Get("ww",w);
 SZ_Get("zz",z);
 SZ_Get("xx",&x);
 SZ_Get("yy",&y);

 printf("Gather Task received: taskID = %2d, w = %s, x = %5d, y = %8.2f, z[0][0] = %8.2f, z[1][1] = %8.2f\n",taskID,
w, x, y,z[0][0],z[1][1]);

 return;
}

int main(int argc, char *argv[]) {
 int i; // All variables declared here are in every process
 int P; // number of processes, set by SZ_Init(P)

 SZ_Init(P); // initialize MPI message-passing environment
 // sets P to be number of processes
 printf("number of tasks = %d\n",T);

 SZ_Parallel_begin

 SZ_Workpool2(init,diffuse,compute,gather);

 SZ_Parallel_end; // end of parallel

 SZ_Finalize();

 return 0;
}

Note how the order of put and get are not the same although they could be the same. Also the names
used to identify the variables are chosen by the programmer. (They are limited to eight characters in the
current implementation for simplicity.)

Compile and execute this program with three processes.
Save a screenshot of the output. Make sure you understand the program and its output.

What to submit for Task 1

Your submission document should include the following:

1. Screenshot of the test_workpool2.c executing with three processes.

6

Task 2 Matrix Multiplication using workpool version 2

Multiplication of two matrices, A and B, to produce matrix C is shown below:

In the workpool implementation, one slave computes one ci,j element of the result as shown below:

(Note rows of A and columns of B are send to slaves; B is not broadcast.)

A program implementing this matrix multiplication called matrixmult_workpool2.c is given below:

#include <stdio.h>
#include "suzaku.h"

#define N 4 // size of matrices
#define T N * N // required Suzaku constant, number of tasks, max = INT_MAX - 1

double A[N][N], B[N][N], C[N][N], D[N][N];

void init(int *tasks) {
 *tasks = T;
 return;
}

void diffuse(int taskID) { // uses same approach as Seeds sample but inefficient copying arrays
 int i;
 int a, b;
 double rowA[N],colB[N];

Matrix multiplication
workpool

7

 a = taskID / N; // row
 b = taskID % N; // column
 for (i = 0; i < N; i++) {
 rowA[i] = A[a][i]; // copy row of A. Strictly do not need to as can do SZ_Put("rowA",A[a]);
 // but will be needed in block multiplication
 colB[i] = B[i][b]; // copy one column of B into output
 }

 SZ_Put("rowA",rowA);
 SZ_Put("colB",colB);
 return;
}

void compute(int taskID) {
 int i;
 double out;
 double rowA[N],colB[N];

 SZ_Get("rowA",rowA);
 SZ_Get("colB",colB);

 out = 0;
 for (i = 0; i < N; i++) {
 out += rowA[i] * colB[i];
 }

 SZ_Put("out",&out);
 return;
}

void gather(int taskID) {
 int a,b;
 double out;

 SZ_Get("out",&out);
 a = taskID / N;
 b = taskID % N;
 C[a][b]= out;

 return;
}

// additional routine

void print_array(double array[N][N]) { // print out an array
 int i,j;
 for (i = 0; i < N; i++){
 printf("\n");
 for(j = 0; j < N; j++) {
 printf("%5.2f ", array[i][j]);
 }
 }
 printf("\n");
 return;
}

int main(int argc, char *argv[]) {
 int i,j,k; // All variables declared here are in every process
 int p; // number of processes, set by SZ_Init()
 double sum;
 double time1, time2; // for timing in master

 SZ_Init(p); // initialize MPI environment, sets P to number of processes

 for (i = 0; i < N; i++) { // set some initial values for A and B
 for (j = 0; j < N; j++) {

8

 A[i][j] = i + j*N;
 B[i][j] = j + i*N;
 }
 }

 // sequential matrix multiplication, answer in D
 time1 = SZ_Wtime(); //start time measurement
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 sum = 0;
 for (k=0; k < N; k++) {
 sum += A[i][k]*B[k][j];
 }
 D[i][j] = sum;
 }
 }
 time2 = SZ_Wtime(); //end time measurement

 printf("Time of sequential computation: %f seconds\n", time2-time1);

 time1 = SZ_Wtime(); // record time stamp
 SZ_Parallel_begin // start of parallel section

 SZ_Workpool2(init,diffuse,compute,gather); // workpool matrix multiplication,answer in C

 SZ_Parallel_end; // end of parallel
 time2 = SZ_Wtime(); // record time stamp

 printf("Time of parallel computation: %f seconds\n", time2-time1);

 printf("Array A");
 print_array(A);
 printf("Array B");
 print_array(B);
 printf("Array C");
 print_array(C);

 // check sequential and parallel versions give same answers
 int error = 0;
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 if (C[i][j] != D[i][j]) error = -1;
 }
 }
 if (error == -1) printf("ERROR, sequential and parallel versions give different answers\n");
 else printf("Sequential and parallel versions give same answers\n");

 SZ_Finalize();

 return 0;
}

Compile and execute this program with three processes.
Try increasing the size of the matrices (e.g. 8 x 8, 16 x 16, etc) and report on your findings.
Save a screenshot of the output. Make sure you understand the program and its output.

What to submit for Task 2

Your submission document should include the following:

1. Screenshot of the matrixmult_workpool2.c executing with four processes.
2. Report on what happens when you increase the size of the matrices and why.

9

Part 2 Writing Your Own Code – Block Matrix Multiplication (70%)

Modify the sample matrix multiplication program to multiple two N x N matrices using the block matrix
multiplication algorithm shown below:

Block matrix multiplication

Each slave is given s rows and s columns. Pairs of s x s submatrices are multiplied and the results added
together to produce an s x s submatrix answer.

Choose N = 8 and s = 2. With s = 2, there are 16 submatrices and 16 tasks (T = 16). Test your program
with four processes. Make sure the parallel code gives the same answers as the sequential code.

It is extremely important that you implement the algorithm as
described. It is not acceptable to use the matrixmult_workpool2.c
code simply with 8 x 8 array size.

Suggestion when debugging Suzaku code. One can get strange error messages that appear to
relate to suzaku.c when compiling faulty application code. The errors are not in suzaku.c. They are
often caused by missing parentheses and errors in the application code that then cause the code on
suzaku.c to compile wrongly. It is suggested in these cases to comment out the Suzaku routines in the
application code to see what exactly is erroneous in the application code.

What to submit from this part

Your submission document should include the following:

1. A code listing of your program for block matrix multiplication, sufficiently commented so that
we can understand the program

2. Screenshot of your program executing with four processes.
3. Conclusions on using Suzaku workpool version 2 for block matrix multiplication. What are the

advantages over using the regular matrix multiplication algorithm in Part 1? (5 points)
4. Give a brief evaluation comparing and contrasting using Suzaku with MPI. Describe your

experiences and opinions, and give any suggestions for improvement. (5 points)

s x s submatrix

s

s

10

Assignment Report Preparation and Grading

Produce a report that shows that you successfully followed the instructions and performs all tasks by
taking screenshots and include these screenshots in the document.

Every task and subtask specified will be allocated a score so make sure you clearly identify each
part/task you did. Include code, not as screen shots of the listings but complete properly
documented code listing. The programs are often too long to see in a single screenshot and also not
easy to read if small. Using multiple screenshots is not option for code. Copy/paste the code into the
Word document or whatever you are using to create the report.

You will lose 10 points if you submit code as screenshots.

Assignment Submission

Convert your report into a single pdf document and submit the pdf file on Moodle by the due date as
described on the course home page. It is extremely important you submit only a pdf file.

You will lose 10 points if you submit in any other format (e.g. Word, OpenOffice, ...). Submitting a zip
with multiple files is especially irritating.

