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Study Guide 
 

Week 3 January 25th 2016 - January 31st 2016 
 

Author B. Wilkinson    Modification date January 22, 2016 
 

Study Materials on Moodle 
 

 PowerPoint Slides 
o Programming with Shared Memory-II 
o Programming with Shared Memory-III 

 Video 
o Lecture 4 video: 75-minute video of Lecture 4 in Fall 2014 continuing programming with 

shared memory and OpenMP synchronization routines. 
o Lecture 5-2 video: video of the second part of Lecture 5 in Fall 2014 on shared memory 

performance issues. (The higher quality video contains the whole Lecture 5. The first part 
on the stencil pattern and assignment 2 will be covered in Week 4) 

o Lecture 6 video: 75-minute video of Lecture 6 in Fall 2014 continuing on shared memory 
performance issues. 

 Sample Quiz Questions 
o Shared memory performance issues 

 
Tasks 
 

 Mini-Quiz: Answer the short posted quiz before 11:55 pm Sunday January 31st, 2016. 
 Complete Assignment 1 OpenMP Tutorial 

o Assignment 1 Instructions (Week 2) 
o Assignment 1 Due: Sunday January 31st, 2016 (Week 3) 

 
Moodle Saba meeting –7 pm Friday January 29th, 2016 
 
Programming with Shared Memory-II continues the basic concepts on shared memory programming - 
issues with accessing shared data, introducing critical sections, locks, condition variables, how critical 
sections serialize code, how deadlock might occur, semaphores, and monitors. There is a Pthreads 
program example. It is not expected that you become a Pthreads programmer. Pthreads program examples 
are for illustration purposes. In this course, we do not write low-level Pthreads programming in 
assignments. Rather we focus on higher level tools. 
 
OpenMP was introduced in Week 2 and is continued in Week 3, dealing with accessing shared data and 
synchronization, OpenMP critical, barrier, atomic, and flush. 
 
Programming with Shared Memory-III covers how to recognize parallelism. It begins with generic 
notations to specify parallelism, including the forall notation, which will appear later. A basic way to 
recognize parallelism is to use Bernstein’s conditions, which is described. You are expected to be able to 
apply Bernstein’s conditions to a series of statements to determine whether they can be executed together 
or in any order. 
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Processor caches are provided so that code and data can be retrieved by the processor at a higher speed 
than using the main memory. This topic is covered fully in an architecture class.  Here we are interested in 
a negative effect on the performance of parallel programs called false sharing. When a processor makes 
request for a memory location and it is not in its cache, a set of consecutive locations from memory 
(called a block or line) containing the requested location are brought in the cache. This is done because it 
is expected that the other locations will be needed in the future and it is more efficient to transfer the 
complete block or line. A problem arises in a multiprocessor system is that consecutive locations might be 
used store data items used by different processors but not shared. In a multiprocessor system, there will be 
multiple caches. If a data item is altered in the cache of one processor, any copies of the complete line 
holding the data item in other caches must be updated or invalidated (depending upon the cache coherence 
policy). Either way is not good for performance.  If the line is invalidated, when the cache is accessed by 
their respective processors for the same line, they must retrieve the line from the main memory even 
though they had not altered their data items in the line. The final part of the slides describes the concept of 
sequential consistency. You would be expected to be able to define this term. 
 
 


