
 

1 
 

Study Guide 
 

Week 5 February 8th, 2016 – February 14th, 2016 
 

Author B. Wilkinson    Modification date February 6, 2016 
 
Study Materials on Moodle 
 

 PowerPoint Slides 
o MPI Collective Routines 
o MPI Synchronization 

 Video 
o Lecture 8 video: 75-minute video of Lecture 8 in Fall 2014 on collective data transfer 

routines. 
o Lecture 9 video: 75-minute video of Lecture 7 in Fall 2014 on synchronization. 

 Sample Quiz Questions 
o Collective MPI routines 
o Asynchronous MPI 

 
Tasks 
 

 Mini-Quiz: Answer the short posted quiz before 11:55 pm Sunday February 14th, 2016. 
 Complete Assignment 2 OpenMP heat distribution problem, graphics 

o Assignment 2 Due: Sunday February 14th, 2016 (Week 5) 
 Assignment 3 MPI tutorial using command line and Eclipse-PTP 

o Assignment 3 Instructions 
o Assignment 3 Due: Sunday February 28th, 2016 (Week 7) 

 
Moodle Saba meeting – Friday February 12th, 2015, 4 pm 
 
MPI Collective Routines continues the material on MPI and introduces collective data transfer patterns - 
broadcast, scatter, gather, reduce, and all-to-all. An important aspect of these routines is that all processes 
must call the routines with the same (or equivalent) parameters. This is actually very convenient with MPI 
usually consisting of a single program. Also although collective operations could be achieved by the 
programmer with multiple point-to-point MPI routines, it expected that the collective MPI routines are 
more efficient. The MPI standard does not specifically say how they are to be implemented although the 
semantics are to be same as using locally blocking point-to-point MPI routines in the manner they return. 
Unfortunately that is not a precise statement as it will depend upon how they are implemented. We can 
expect MPI data transfer collective routines to be implemented using a tree construction that leads to 
logarithmic time complexity. Generally the sources of data will return when all the data has been sent and 
each destination will return when they receive the data they are waiting for, i.e. processes do not wait for 
each other. If you need for all processes to wait for each other before continuing you will need to add an 
explicit barrier, see the next section. Other things to note about collective data transfer routines is that one 
process is called the root (not necessarily rank = 0), which is either is the destination collecting all the 
data or the source sending all the data out to other processes. The data itself can be a single data item such 
as an integer or floating point number or a group of items of the same type stored in consecutive locations 
(i.e., parts of an array). In an exam, you are not expected to memorize the parameter list of MPI routines, 
as that will be given, although you will be expected to write MPI code using these routines.  



 

2 
 

The Powerpoint slides match those use in the Fall 2014 videos. However I have doubts about using scatter 
where the number of blocks does not equally divide into data array, leaving some processes without any 
data. The MPI standard seems to be silent on this matter and I think it is better not to do this. Assignment 
3 Part 4 actually addresses the possibility in a different way. 
 
MPI Synchronization explores how to synchronize MPI processes, covering synchronous point-to-point 
send routine MPI_SSend(), three-way protocol implementation, asynchronous routines MPI_ISend() and 
MPI_IRecv() and how they might convert to synchronous routines, and MPI_Barrier() routine and its 
implementation. Finally safety and deadlock are discussed and the use of deadlock-free routines including 
MPI_Sendrecv(). Note MPI_Recv() is defined as a locally blocking routine and used with MPI_Send() 
but it is also synchronous as it also only returns when the transfer is complete and hence is also used with 
MPI_SSend(), i.e. there is no “MPI_SRecv()” routine. 
 
Sample Quiz Questions: Review the sample questions on collective and asynchronous routines. 
 
Assignment 3 Instructions:  Assignment 3 is a tutorial on MPI with most of the MPI code given. The 
focus is on matrix multiplication. The code is executed on the command line and through Eclipse-PTP on 
the VM (or native installation) and on the UNCC cluster. For the UNCC cluster, review the notes on 
using the cluster carefully first. The last part, Part 4, is the only part that needs a little new code to be 
devised. The purpose of Assignment 3 is to become proficient in compiling and executing MPI code on a 
variety of setting and very detailed instructions are given. Although you have two weeks to complete this 
assignment, start early. 
 
Note: If some of the nodes of the cluster are unavailable in the last few days before the assignment is due 
(Week 7) use those nodes that are available. If all the nodes the cluster are unavailable, use your own 
computer to complete Part 3. Of course you will not be able to use multiple computers. Watch for 
announcements. Document in your report about the availability of nodes. Best to start early to avoid this 
possibility. 
 
There will be an online test in Week 6. Watch for announcements. 
 


