

1

ITCS 4/5145 Parallel Computing
Test 1 5:00 pm - 6:15 pm, Wednesday February 17, 2016

 Name: ...
Answer questions in space provided below questions. Use additional paper if necessary but make sure your name is on
additional sheets. Clearly show how you obtained your answers. (No points for simply writing a numeric answer without
showing how you got the answer, even if correct.) This is a closed book test. Do not refer to any materials except those
supplied for the test. Supplied: “Summary of OpenMP 3.0 C/C++ Syntax.” and “Basic MPI routines.”
 Total /40
 7 pages
Qu. 1 Answer each of the following briefly:

(a) According to Amdahl’s law, what the maximum speed-up of a parallel computation given that 90% of

the computation can be divided into parallel parts? What assumption are you making? 2

(b) How can one make five threads do exactly the same code sequence using OpenMP?

 2

(c) In the following OpenMP code sequence, which variable or variables must be declared as private

variables (in a private clause):

 int x, tid, a[100];
 #pragma omp parallel
 {
 tid = omp_get_thread_num();
 n = omp_get_num_threads();
 a[tid] = 10*n;
 }

 2

2

(d) What does the nowait clause do in the Open sections directive? 2

(e) What is the value of sum after the following OpenMP code sequence, i.e. what number does the printf

statement print out? 2

 int i, sum;
 omp_set_num_threads(2);
 sum = 0;

 #pragma omp parallel for reduction(+:sum)
 for (i = 0; i < 5; i++) {
 sum++;
 }
 printf("Sum = %d\n", sum);

(f) If x is a shared variable initialized to zero and three concurrent threads execute the statement x = x + 1;

what are the possible value of x afterwards? 2

3

(g) Identify all the dependencies in the following sequence:

1. a = b + c;
2. y = a;
3. a = 3;
4. x = y + z;

Clearly show how you got your answer. The statements are numbered so that you can refer to them.
 2

(h) In the MPI statement:

MPI_Send(&x,1,MPI_INT,1,msgtag, MPI_COMM_WORLD);

 what can be inferred about how x has been declared.
 2

(i) In MPI, how does the programmer specify how many processes the program will use? 2

4

(j) When does the MPI routine MPI_Send() return? 2

(k) What is a Jacobi iteration?
 2

(l) What does the -l option specify when used with the Linux C compiler (gcc or cc)? Give an example.

(The -l option was used in Assignment 2, but the question is asking what -l specifies in general.)

 2

5

The following include statements can be assumed:

 #include <stdio.h>
 #include <stdlib.h>
 #include <time.h>
 #include <omp.h>
 #include "mpi.h"

in Qu 2 a, b and c. However any define statements, variables, and arrays that you use must be declared.

Qu. 2 (a) Write a sequential C program to perform matrix addition adding two matrices A[N][N] and B[N][N]
to produce a matrix C[N][N]. The arrays hold doubles. N is a constant defined with a define statement and set to
256. In matrix addition, the corresponding elements of each matrix are added together to form elements of result
matrix, as shown below:

i.e. given elements of A as ai,j and elements of B as bi,j, each element of C computed as ci,j = ai,j + bi,j. You can
assume that the arrays are initialized with values but show where that would be in the program with comments.
 4

j

i

A B C

6

(b) Modify the program in 2(a) become an OpenMP program performing matrix addition using T threads where
T is a constant defined with a define statement and set to 16.
 4

7

(c) Modify the program in 2(a) to become an MPI program performing matrix addition using P processes where
P is determined when the code is executed. Partition the matrices into blksz rows, where blksz = N/P (Clue:
remember how matrix multiplication was done.) It can be assumed that N/P is an integer.
 8

