
Toward using higher-level abstractions to teach Parallel Computing 
Clayton Ferner 

University of North Carolina 
Wilmington 

601 S. College Rd. 
Wilmington, NC 28403, USA 

cferner@uncw.edu 

Barry Wilkinson 
University of North Carolina 

Charlotte 
9201 University City Blvd. 
Charlotte, NC 28223 USA 

abw@uncc.edu 

Barbara Heath 
East Main Evaluation & Consulting, 

LLC  
P.O. Box 12343 

Wilmington, NC 28405 USA 
bheath@emeconline.com 

 
 

Abstract— We have developed two new approaches to teaching 
parallel computing to undergraduates using higher level tools 
that lead to ease of programming, good software design, and 
scalable programs.  The first approach uses a new software 
environment that creates a higher level of abstraction for 
parallel and distributed programming based upon a pattern 
programming approach. The second approach uses compiler 
directives to describe how a program should be parallelized. 
We have studied whether using the above tools better helps the 
students grasp the concepts of parallel computing across the 
two campuses of the University of North Carolina Wilmington 
and the University of North Carolina Charlotte using a 
televideo network. We also taught MPI and OpenMP in the 
traditional fashion with which we could ask the students to 
compare and contrast the approaches. An external evaluator 
conducted three surveys during the semester and analyzed the 
data.  In this paper, we discuss the techniques we used, the 
assignments we gave the students, and the results of what we 
learned. 

Keywords- pattern programming; compiler directives; 
parallel computing; distributed computing. 

I.  INTRODUCTION 
General-purpose computers now have multiple cores. It 

is common to see processors with 4 cores; although, soon we 
can expect desktop computers to have 10s and even 100s of 
cores. It is no longer sufficient for computer science students 
to be trained solely in the programming of single processor 
systems. It is now imperative that all computer science 
students, graduate as well as undergraduate, develop the 
skills to successfully program for systems with multiple 
processors. Although the multiple cores on a single die use a 
shared-memory model, as the number of cores increase, it 
will become necessary to use distributed-memory and 
hierarchical-memory models. Furthermore, GPUs are 
becoming more common as an effective way to increase 
performance. 

Parallel computing has typically been treated as an 
advanced topic in computer science. It must now be treated 
as a core topic. However, most parallel computing classes 
use low-level tools such as MPI for distributed-memory 
sytems, OpenMP for shared-memory systems and 
CUDA/OpenCL for high performance GPU computing. 
Such a course also uses fairly simple problems. 
Unfortunately, this approach does not give the student 
programmer the skills to tackle larger problems nor skills in 

computational thinking for parallel applications. In addition, 
programmers have to deal with issues such as deadlock and 
mutual exclusion. A programming approach is needed that 
raises the level of abstraction to make parallel programming 
easier and also more scalable. 

To address the above problems, we have developed two 
new approaches to create a higher level of abstraction for 
parallel and distributed computing.  The first approach uses a 
new software environment we have developed that creates a 
higher level of abstraction for parallel and distributed 
programming based upon a pattern programming approach. 
The second approach is uses compiler directives to describe 
how a program should be parallelized for a distributed-
memory system.  

We developed new educational materials based on these 
two approaches to teach parallel computing. In Fall 2012, we 
taught a course in parallel computing jointly at the 
University of North Carolina Wilmington and the University 
of North Carolina Charlotte broadcast to both campuses 
using the North Carolina Research and Education televideo 
network (NCREN) connecting universities across North 
Carolina.  Our goal was to determine if using the above tools 
would better help the students grasp the concepts of parallel 
computing. We also taught MPI and OpenMP in the 
traditional fashion with which we could ask the students to 
compare and contrast the approaches. An external evaluator 
conducted three surveys during the semester and analyzed 
the data.  In this paper, we discuss the techniques we used, 
the assignments we gave the students, and the results of what 
we learned. 

Teaching effectiveness data was collected by co-author 
Heath completely independent of the two instructors Ferner 
and Wilkinson and was not released to the instructors until 
after the course had finished and graded. Proper Institutional 
Review Board (IRB) protocols were followed throughout 
including using consent forms and maintaining complete 
confidentiality of individual students. Student participation 
was completely voluntary.  The class size was around 58 
students with about a third participating in the surveys. The 
class was a mix of undergraduate and graduate students, all 
studying computer science, with approximately half being 
undergraduate students. The prerequisite for the course is 
two semesters of programming plus a course on data 
structures. The data collected and presented herein is from 
the first offering of this new approach, and the results will be 
used to improve our materials. 

Third NSF/TCPP Workshop on Parallel and Distributed Computing Education (EduPar-13), held in conjunction with the  
27th IEEE International Parallel & Distributed Procession Symposium (IPDPS 2013), Boston, MA, May 20, 2013. 



The rest of this paper is organized as follows. Existing 
work is briefly reviewed in Section II. In Section III, we 
describe the two new approaches. In Section IV, we describe 
the survey instruments. In Section V, we present and discuss 
the results. Finally, Section VI concludes. 

II. EXISTING WORK 
The idea of design patterns in software engineering has 

been around for many years [5] and applied to undergraduate 
teaching [1]. The pattern approach to parallel programming 
has been explored in the influential  textbook by Mattson et 
al. [7] written for software developers, and also in several 
research projects including at University of Illinois at 
Urbana-Champaign, University of California, Berkeley [6], 
and University of Torino/Università di Pisa Italy [4]. 
Industrial efforts in this direction include Intel [8] and 
Microsoft [11]. These projects do not focus on teaching 
parallel programming at the undergraduate level; rather they 
promote higher-level tools for programming style, 
scalability, and productivity. We extend such goals to 
undergraduate parallel programming teaching. 

Renault and Parrot [9] have created a pre-processors that 
can automatically generated MPI derived datatypes from the 
C data types. The goal is to assist the programmer with 
creating the complex MPI datatypes needed for the 
transmission of user-defined datatypes. Their work, however, 
does not generate the code to parallelize an algorithm. The 
closest work to our work on compiler directives is the 
llCoMP compiler for the llc language [10]. The llc language 
allows the programmer to specify parallel constructs for both 
MPI and OpenMP using llc and OpenMP pragma statements. 

In their work, Reyes, Dorta, Almeida, and Sande discuss the 
use of “static” and “dynamic patterns”.  However, it appears 
that these patterns are compiler optimizations designed to 
improve the efficiency of the communication rather than user 
defined patterns related to the algorithm structure. Our 
compiler also has directives to specify parallel constructs to 
use both MPI and OpenMP. We plan to introduce new 
directives specifically to describe an algorithm through a 
pattern. 

III. TWO APPROACHES TO HIGHER LEVEL 
ABSTRACTIONS 

A. Patterns 
In this approach, the programmer first identifies an 

appropriate parallel computational pattern or patterns to 
solve the problem rather than immediately starting with a 
low-level API such as MPI or OpenMP. We focus on higher 
level computational patterns such as workpool, pipeline, 
stencil, divide and conquer, and synchronous all-to-all as 
illustrated in Figure 1 rather than lower level constructs such 
as fork-join and loop. Our pattern programming framework, 
called Seeds, was developed as part of a PhD project 
exploring distributed computing by Jeremy Villalobos and is 
Java-based [13]. A C++ version is in development. 

The framework will automatically distribute tasks across 
distributed computers and processors, once the programmer 
has selected the pattern, specified the data to be sent to and 
from the processors/processes, and specified the computation 
to be performed by the processors/processes. The framework 
has built-in patterns including workpool, pipeline, stencil, 
and synchronous all-to-all. Other patterns can be 

Figure 1: Parallel Patterns 

 

(e) All-to-all

(a) Workpool 

   

 

(b) Pipeline

(d) Divide and conquer 

 

(c) Stencil 

Compute node 

 Master (Source/sink)

Two-way connection

One-way connection

   

  

 
Divide 

 

Merge 

   

 

Stage 1 Stage 3Stage 2



implemented by the programmer using more advanced 
knowledge of the framework. The framework will self-
deploy on distributed computers, clusters, and multicore 
processors, or a combination of distributed- and shared-
memory computers. The key aspect is the programmer does 
not program using low level message passing APIs such as 
MPI or OpenMP. Instead, the patterns are implemented 
automatically, relieving the programmer of concerns for 
message-passing deadlock. The programmer has a very 
simple programming interface avoiding the complexities of 
putting message-passing statements in the actual code. 
Figure 2 shows an example of the workpool pattern for the 
Monte Carlo estimation of π. The user must provide details 
of the diffuse, compute, and gather operations. 

Our pattern programming framework is used for 
problems that traditionally would be coded in MPI for a 
message-passing computing platform or OpenMP for shared 
memory multicore platform. The first implementation used 
JXTA P2P networking and will run on both multicore or 
distributed platforms, or a combination (Windows, mac or 
Linux). A later thread-based version of the framework was 
implemented for running more efficiently just on multicore 
platforms.  In either case, students use the Eclipse IDE. Just 
two classes are needed, one for the master and slave methods 
and one to deploy the framework and run the code. More 
details of the programmer’s interface with tutorials can be 
found [14].  Its use in an educational undergraduate teaching 
setting was first described in [12]. 

In the course, we also teach HPC GPU programming 
with CUDA as in most complete parallel programming 
courses. However, we first start this section with introducing 
the data parallel pattern and then use CUDA as one (low-
level) implementation of the pattern.  Our strategy to work 
from computational strategies down to the implementation 
rather than start with the implementation that can change.  
For example, although CUDA is the prevalent programming 
environment for HPC GPU programming, higher level tools 
are becoming available, such as OpenACC (a compiler 
directive approach). 

B. Compiler Directives 
In teaching parallel computing in the past, we have found 

that students more easily learn to use effectively OpenMP on 
a shared-memory system than MPI on a distributed-memory 
system. OpenMP is a slightly higher level of abstraction than 
MPI, although they are not comparable. We wanted to create 
a similar abstraction as OpenMP but for distributed-memory 
systems.  This was the catalyst for the creation of the 
Paraguin compiler [2][3]. 

The Paraguin compiler is a compiler we built at the 
University of North Carolina Wilmington using the SUIF 
compiler system created at Stanford University. The 
Paraguin compiler generates a parallel solution using MPI 
that is suitable for execution on a distributed-memory system 
based on programmer directives.  Similar to OpenMP in 
which the programmer specifies parallelization techniques 
through the use of #pragma statements, the Paraguin 
compiler also takes direction from the programmer though 
the use of #pragma statements. The goal is to provide a 

similar level of abstraction as OpenMP but for distributed-
memory systems. Figure 3 shows an example of using the 
Paraguin compiler directives for matrix multiplication.  

One advantage of such an approach is that only compilers 
that recognize a particularly-named pragma will process it. 
All others will ignore it. For example, one can created a 
sequentially-executed program from the same source using 
gcc as the compiler. The pragma statements do not need to 
be removed or commented out. Furthermore, this makes it 
possible to create a hybrid program, which takes advantage 
of both shared-memory and distributed-memory, by using 
multiple types of pragmas. At present, the programmer can 
implement algorithms matching a particular pattern only 
through the use of templates. In the future, our compiler will 
have directives specifically to describe patterns, similar to 
the way described in Section III.A.  

IV. SURVEY INSTRUMENTS 
During the pilot offering of our new course in Fall 2012, 

students were invited to provide feedback that would assist 
with the development of the future course offerings. 
Feedback was collected by the external evaluator via three 

public Data DiffuseData (int segment) { 
    DataMap<String, Object> d= 
                 new DataMap<String, Object>(); 
    d.put("seed", R.nextLong()); 
    // returns a random seed for each job unit 
    return d;  
} 
 
public Data Compute (Data data) { 
    DataMap<String, Object> input =  
                  (DataMap<String,Object>)data;  
    DataMap<String, Object> output = new  
                     DataMap<String, Object>(); 
    // get random seed  
    Long seed = (Long) input.get("seed");      
    Random r = new Random();  
    r.setSeed(seed); 
    Long inside = 0L; 
    for (int i = 0; i < DoubleDataSize ; i++) { 
        double x = r.nextDouble(); 
        double y = r.nextDouble(); 
        double dist = x * x + y * y; 
        if (dist <= 1.0)  
            ++inside;  
    } 
    // to return to GatherData() 
    output.put("inside", inside); 
    return output; 
} 
 
public void GatherData (int segment, Data dat) 
{ 
    DataMap<String,Object> out =  
                  (DataMap<String,Object>) dat; 
    Long inside = (Long) out.get("inside"); 
    // aggregate answer from all worker nodes. 
    total += inside;  
} 
  

Figure 2: Example Workpool Pattern in the Seeds Framework for the 
Monte Carlo Estimation of π 



surveys: a pre-, mid-, and post-course survey. Students who 
provided consent and completed each of the three surveys 
were entered in a drawing for one of eight $25 Amazon gift 
cards. For each survey, 58 invitations were sent to students at 
both campuses. The response rates for the three surveys 
were: 36%, 29%, and 28%, respectively. 

The purpose of the pre- and post-semester surveys was to 
assess the degree to which the students learned the material 
taught during this offering.  A set of seven pre-course items 
were developed for this purpose. The items were presented 
with a six-point Likert scale from “strongly disagree” (1) 
through “strongly agree” (6). Table I shows the questions 
that were on these surveys. There were additional questions 
on the post-semester survey related to students’ feedback of 
the course, but the results of those questions are not 
discussed in this paper, because they are focused upon the 
delivery, helpfulness of the instructors, required learning 
outside the classroom, and suggestions for improvement. The 
information garnered from that data did not focus on the 
effectiveness of our approaches. 

The questions from the mid-semester survey included 
some open-ended questions related to the assignments. Table 
II provides the questions that were asked. In addition to these 
questions, students were also asked to rate the relative 
difficulty of using Pattern Programming, MPI, and the 
Paraguin compiler directives using a six-point Likert scale 
from “very easy” (1) through “very difficult” (6). The 
purpose of this mid-semester survey was to compare and 
contrast our new approaches to parallel programming with 
just using MPI. The goal of this survey was to help us revise 
our materials. 

V. RESULTS 
At the outset of the course, students responded in the 
“disagree” to “mildly disagree” range for all items presented 
indicating that students were not familiar with the topics or 
methods. However, by the conclusion of the course, students 
responded in the “mildly agree” to “agree” range to the same 
survey items, indicating that they learned the topics and how 
to use the methods (Table III). 

TABLE I.  PRE- AND POST-SEMESTER SURVEY QUESTIONS 

Item 

I am familiar with the topic of parallel patterns for structured 
parallel programming. 
I am able to use the pattern programming framework to create a 
parallel implementation of an algorithm. 
I am familiar with the CUDA parallel computing architecture. 
I am able to use CUDA parallel computing architecture. 
I am able to use MPI to create a parallel implementation of an 
algorithm. 
I am able to use OpenMP to create a parallel implementation of an 
algorithm. 
I am able to use the Paraguin compiler (with compiler directives) 
to create a parallel implementation of an algorithm. 
 

The students indicated that they mostly did not feel able 
to use the tools to implement algorithms in parallel in the 
beginning of the semester. By the end of the semester, the 
students were mostly confident in their ability to implement 
parallel algorithms.  Naturally, this is expected.  What is not 
expected is that the students indicated greater confidence in 
using the lower level parallel tools (MPI, OpenMP, and 
CUDA) than in using our new approaches (patterns and the 
Paraguin compiler). There are two possible explanations for 
this lower confidence in the higher level tools: 1) the tools 
need improvement to be easier to use; and 2) students 
preferred the flexibility and control of the lower level tools. 
Based upon the next set of data, both explanations are true. 

The students were asked to provide open-ended 
comments comparing and contrasting the Seeds tool (Pattern 
Programming) with MPI. Table IV shows the comments 
made by students. There were more comments, but they were 
left out to conserve space. 

The second comment describes well the students’ 
sentiments. Computer Science students are accustomed to 
having control.  It is true that the Seeds framework takes 
control from the user when the user is working within the 
“basic” layer of the framework. The framework is 
constructed in three layers, the “basic” layer, the “advanced” 
layer, and the “expert” layer. The basic layer provides 
standard well-established patterns, and the programmer need 
only implement a few simple Java interface methods. The 
advanced  layer  exposes  some   of  the  internal  routines  to  

TABLE II.  OPEN-ENDED QUESTIONS COMPARING THE METHODS USED 
FOR PARALLEL PROGRAMMING. 

Item 

Describe the benefits and drawbacks between the following 
methods: Pattern Programming (Assignment 1) and MPI 
(Assignment 2). 
Describe the benefits and drawbacks between the following 
methods: Pattern Programming (Assignment 1) and Paraguin 
Compiler Directives (Assignment 3). 
Describe the benefits and drawbacks between the following 
methods: MPI (Assignment 2) and Paraguin Compiler 
Directives (Assignment 3). 

#pragma paraguin begin_parallel 
#pragma paraguin bcast a b 
#pragma paraguin forall  C   p   i   j   k \ 
                       0x0  -1   1 0x0 0x0 \ 
                       0x0   1  -1 0x0 0x0 
 
#pragma paraguin gather 1   C   i   j   k \ 
                          0x0 0x0 0x0   1 \ 
                          0x0 0x0 0x0  -1 
 
for (i = 0; i < N; i++) { 
   for (j = 0; j < N; j++) { 
      for (k = 0; k < N; k++) { 
         c[i][j] = c[i][j] + a[i][k] * b[k][j]; 
      } 
   } 
} 
#pragma paraguin end_parallel 

Figure 3: Example Paraguin Compiler Directives for Monte Carlo 
Estimation of π 



TABLE III.  PRE- AND POST-SURVEY RESULTS OF FAMILIARITY WITH 
TOPICS AND METHODS 

Item 
Pre Post 

Mean (sd) 
N=21 

Mean (sd) 
N=16 

I am familiar with the topic of 
parallel patterns for structured 
parallel programming. 

2.74 
(1.59) 

4.44 
(1.09) 

I am able to use the pattern 
programming framework to create 
a parallel implementation of an 
algorithm. 

2.38 
(1.60) 

4.25 
(0.86) 

I am familiar with the CUDA 
parallel computing architecture. 

2.29 
(1.55) 

4.63 
(0.72) 

I am able to use CUDA parallel 
computing architecture. 

1.95 
(1.43) 

4.44 
(0.89) 

I am able to use MPI to create a 
parallel implementation of an 
algorithm. 

2.24 
(1.26) 

4.88 
(0.81) 

I am able to use OpenMP to create 
a parallel implementation of an 
algorithm. 

2.19 
(1.12) 

5.06 
(1.24) 

I am able to use the Paraguin 
compiler (with compiler 
directives) to create a parallel 
implementation of an algorithm. 

1.76 
(0.89) 

4.13 
(1.15) 

 
enable new patterns to be created or existing patterns to be 
optimized. The expert layer exposes the deployment and 
security services for the programmer who wants to increase 
the performance. We use the basic layer in our undergraduate 
parallel programming class. We feel that the advanced layer 
would have provided the students with a comparable feeling 
of “control” over their programs. This is an easy 
modification although it will take time away from other 
aspects of the course. Nonetheless, we are encouraged by the 
comments indicated the relative ease with using the Seeds 
framework. 

The students were also asked to provide open-ended 
comments comparing and contrasting using the Paraguin 
compiler with compiler directives to generate MPI code with 
programming directly with MPI. Table V shows the 
comments made by students. 

From the comments made by student in Table V, we see 
that some students found using the compiler directives to be 
easier and some did not. On the other hand, students did not 
seem to have the same “control” issue they did with the 
Seeds framework. The Paraguin compiler generated the 
source MPI code.  The user is free to inspect the resulting 
code and even modify and recompile it.  Therefore, the 
students could see how the abstraction was being 
implemented. 

Table VI shows the results of comparing the relative 
difficulty of the three methods used to program parallel 
algorithms. The results show that students felt that Pattern 
Programming was the easiest of the three while the Paraguin 
compiler directives approach was the hardest. This agrees 
with  the  students’  responses  to  the  open-ended  questions  

TABLE IV.  OPEN-ENDED STUDENT COMMENTS COMPARING 
PATTERNED PROGRAMMING WITH MPI 

“MPI is more flexible but pattern programming is easy to 
use.” 
“Using the seeds framework for pattern programming made it 
easy implement patterns for workflow. However, seeds works 
at such a high level that I do not understand how it implements 
the patterns. MPI gave me much more control over how 
program divides the workflow, but it can often be difficult to 
write a complex program that requires a lot of message 
passing between systems.” 
“mpi is easier to understand than seeds” 
“Since our implimentation [sic] of MPI was in c, it allowed far 
more control and a higher level of efficiency than Seed's 
allowed for.” 
“Pattern programming is more high-level and easier to 
implement, while MPI is more lower-level and much more 
difficult to implement.” 
“Assignment 2 was more straight forward and easier to 
understand than Pattern Programming. I feel that because the 
Pattern Programming was a new topic it was assumed it would 
be easier than what it was.” 
“Pattern Programming offers a higher level of abstraction 
when designing parallel programs, but [MPI] gives the 
programmer greater control over the internals, which aids in 
solving particular problems. Each method's strengths could, to 
certain people, also be its weakness” 
“Pattern programming is pre set up and easier to implement 
then mpi. However mpi seems to permit you to split things up 
more as you want. Also the pattern programming framework 
we used wont' [sic] work in c.” 
“Pattern programing provides various forms of message 
passing methods. For programing with MPI is a bit difficult.” 
“Pattern Programming:- Liked using java, easier to understand 
what was going on.- Seeds was not stable, sometime would 
work and sometimes would not work MPI:- Easier to  see  the 
parrellzation- Much more difficult to use in C when I had 
never used the language before. Not enough time was 
dedicated to going over MPI” 

 
comparing the three methods. Interestingly, the standard 
deviation went up as the mean went down. 

We feel that the concerns of the Paraguin being 
complicated are legitimate.  The compiler was designed to 
provide significant flexibility over partitioning nested loops. 
This flexibility overly complicated the partitioning directive.  
We have already implemented a simpler version of the 
directive to parallelize a loop, which will be introduced in 
the next offering of this course. 

VI. CONCLUSIONS 
In this paper, we present preliminary results from a 

course on Parallel Programming where we tried two new 
methods to raise the level of abstraction for parallel 
computing.  The first method used a framework for 
specifying patterns. The second method used compiler 
directives to generation MPI code. We used survey 
instruments to measure students’ understanding of the 
concepts  as well  as have them compare the various methods  



TABLE V.  OPEN-ENDED STUDENT COMMENTS COMPARING COMPILER 
DIRECTIVES USING THE PARAGUIN COMPILER WITH MPI 

“I found Paraguin to be useful because it eliminated the need for 
me to write the more complex message passing routines in MPI. 
However, I found it difficult to debug errors in the code and also 
determine the correct loop dependencies.” 
“Paraguin is incomplete, confusing, and has no debugging 
tools.” 
“Paraguin Compiler was much easier to use because it would 
generate the MPI code automatically.” 
“The Paraguin assignment was simpler and easier to understand 
how it worked as you could see the code which the compiler 
actually made for you.” 
“Paraguin might be beneficial for some parallelizing problems 
that have a lot of layers of interior loops.” 
“Paraguin overcomplicates something simple. Using paraguin 
takes more time to formulate the required input than the time 
spent typing straightforward for loops.” 
“MPI is the underlying code that gets generated by Paraguin, so 
the comparison is slim. MPI can give the programmer more 
control over internal actions, but you lose the abstraction 
Paraguin offers” 
“Programming is lengthy for mpi compare to paraguin for the 
same reasons as parallel.” 
“I did like how we did MPI before paraguin.  Understanding 
MPI was much more helpful when it came time to do paraguin.  
MPI was more difficult because of trying to visualize the scatter, 
broadcast, and gather methods while trying to keep the 
partitioning to the number of processors.  Paraguin takes care of 
that for you with the parallel pragma statements.” 

 

TABLE VI.  RELATIVE DIFFICULTY OF THE THREE METHODS OF 
PARALLEL COMPUTING 

 Mean (sd) 
Pattern Programming 3.63 (0.89) 

MPI 3.25 (1.13) 

Paraguin Compiler Directives 2.56 (1.26) 
 
and tools. We are using this information to revise the 
materials we’ve developed. 

What we have discovered from the material presented 
here is that the students would benefit from using the Seeds 
framework at an advanced layer instead of simply the basic 
layer.  Not only will this give the students’ a sense of control 
over their programs, the will also benefit from seeing how 
their concepts of parallelization are being implemented. 
Second, we learned that the compiler directives were 
designed in a way that overly complicates matters. We have 
already started and partially completed the reworking of the 
compiler directives to make the simpler.  We expect the new 
directives to be much easier for undergraduate students to 
learn and use. 

The perceived advantage of our pattern programming 
framework was that it provided the programmer a higher 
level and simpler interface avoid low level implement details 
– this then leads to more structured scalable designs. 

However the students did not fully appreciate this model 
although many would have seen design patterns in software 
engineering courses.  We feel that we can accomplish our 
goal of raising the level of abstraction for parallel computing 
by using more sophisticated engineering applications that 
can be implemented using patterns. 

 

ACKNOWLEDGMENT 
This material is based upon work supported by the 

National Science Foundation under the collaborative grant 
#1141005/1141006. Any opinions, findings, and conclusions 
or recommendations expressed in this material are those of 
the authors and do not necessarily reflect the views of the 
National Science Foundation. 

REFERENCES 
[1] Astrachan, O. 1998. Design Patterns: An Essential Component of CS 

Curricula, SIGCSE Bulletin and Proceedings. 30, 1, 153-160. 
[2] Ferner, C.S. 2006. Revisiting communication code generation 

algorithms for message-passing systems, International Journal of 
Parallel, Emergent and Distributed Systems (JPEDS) 21(5), 323-344. 

[3] Ferner, C. S. 2002. The Paraguin compiler---Message-passing code 
generation using SUIF, in Proceedings of the IEEE SoutheastCon 
2002, Columbia, SC, 1-6. 

[4] Fastflow. University of Torino, Italy /Università di Pisa. 
http://calvados.di.unipi.it/dokuwiki/doku.php?id=ffnamespace:about 

[5] Gamma, E., Helm., R., Johnson, R., and Vlissides, V. 1995. Design 
Patterns. Addison-Wesley, New York. 

[6] Keutzer, K., and Mattson, T. Our Pattern Language (OPL): A Design 
Pattern Language for Engineering (Parallel) Software. 
http://parlab.eecs.berkeley.edu/wiki/_media/patterns/paraplop_g1_1.p
df. 

[7] Mattson, T. G., Sanders, B. A., and Massingill, B. L. 2004. Patterns 
for Parallel Programming. Addison Wesley. 

[8] McCool, M., Reinders, J., and Robison, A. 2012. Structured Parallel 
Programming: Patterns for Efficient Computation. Morgan 
Kaufmann. 

[9] Renault, E., Parrot, C. MPI Pre-processor: Generating MPI Derived 
Datatypes from C Datatypes Automatically, in Proceedings of 
the2006 International Conference on Parallel Processing Workshops 
(ICPPW’06), Columbus, OH, August 14-18, 2006. 

[10] Reyes, R., Dorta, A.J., Almeida, F., Sande, F., Automatic hybrid 
MPI+OpenMP code generation with llc, in Proceedings of Recent 
Advances in Parallel Virtual Machine and Message Passing 
Interface, 16th European PVM/MPI Users’ Group Meeting, Espoo, 
Finland, September 7-10, 2009. 

[11] Toub, S. Patterns of Parallel Programming Understanding and 
Applying Parallel Patterns with the .Net Framework 4 and Visual C#. 
Microsoft. 
http://www.microsoft.com/download/en/details.aspx?displaylang=en
&id=19222 

[12] Wilkinson, B., Villalobos, J., and Ferner, C. 2013. Pattern 
Programming Approach for Teaching Parallel and Distributed 
Computing. SIGCSE 2013 Technical Symposium on Computer 
Science Education.  Denver, Colorado. To appear. 

[13] Villalobos, J. 2011. Running Parallel Applications on a 
Heterogeneous Environment with Accessible Development Practices 
and Automatic Scalability. PhD diss. University of North Carolina 
Charlotte. 

[14] Villalobos, J. Parallel Grid Application Framework. http://coit-
grid01.uncc.edu/seeds/ 

 


