
Teaching Parallel Design Patterns
to Undergraduates in Computer Science

Richard A. Brown (Moderator)
St. Olaf College

rab@stolaf.edu
Joel C. Adams

Calvin College
adams@calvin.edu

Clayton Ferner
UNC Wilmington

cferner@uncw.edu

Elizabeth Shoop
Macalester College

shoop@macalester.edu

Barry Wilkinson
UNC Charlotte

abw@uncc.edu

SUMMARY
The industry shift emerging forms of parallel and distributed
computing (PDC), including multi-core CPUs, cloud computing,
and general-purpose use of GPUs, have naturally led to increased
presence of PDC elements undergraduate Computer Science
curriculum recommendations, such as the new and substantial
“PD” knowledge area in the joint ACM/IEEE CS2013
recommendations[1]. How can undergraduate students grasp the
extensive and complex range of PDC principles and practices, and
apply that knowledge in problem solving, while PDC
technologies continue to evolve rapidly?

Parallel design patterns are descriptions of effective solutions to
recurring parallel programming problems in particular contexts
and have emerged from long-standing industry practice. Parallel
patterns occur at all computational levels, ranging from low-level
concurrent execution patterns (such as message passing or thread
pool patterns) to high-level software design patterns suitable for
organizing entire systems or their components (such as model-
view-control or pipe and filter patterns). The sheer number of
parallel patterns, which reflect the full breadth and complexity of
PDC, can be quite daunting for a newcomer. However, the
ubiquity of parallel patterns in all forms of parallel and distributed
computation makes these patterns relevant and illuminating at all
undergraduate levels. Knowledge of parallel patterns, being
reusable elements of parallel design, guides problem-solving
during the creation of parallel programs; and those enduring
design patterns remain relevant and useful as new PDC
infrastructure emerges in this rapidly evolving field.

This panel presents four viewpoints representing various
approaches for teaching parallel patterns to CS undergraduates at
multiple academic levels. Moderator Dick Brown co-directs
(with Adams and Shoop) the CSinParallel project
(csinparallel.org), which produces and shares modular materials
for incrementally adding parallelism to existing undergraduate
computer science courses [2]. A former director of CS at St. Olaf,
he serves as an officer and executive board member of EAPF
(eapf.org). Brown will briefly review the goals of the session (3-4
min), introduce each panelist (10 min each), and moderate
discussion.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Curriculum.
D.1.3 [Programming Techniques]: Concurrent Programming –
Distributed programming, Parallel programming.
D.2.11 [Software Engineering]: Software Architectures –
Patterns.
D.1.3 [Programming Languages]: Language Constructs and
Features – Patterns.

General Terms: Algorithms, Design, Performance.

Keywords
Parallel computing, parallelism, distributed computing, education,
parallel design patterns, curriculum, design patterns, Seeds,
Paraguin, patternlets, exemplars.

1. JOEL ADAMS
Joel Adams is Professor and Chair of the Department of
Computer Science at Calvin College, and has been teaching his
students about concurrency and parallelism for more than 20
years. He has been the principle architect of four Beowulf
clusters, is a two-time Fulbright scholar, and is an ACM
Distinguished Educator.

Statement: A patternlet is an executable program that shows the
behavior of a parallel pattern, that is:

 Minimalist in terms of eliminating non-essential features, so
that students can easily grasp the program’s essential
concept.

 Scalable so that students can vary the number of threads and
observe how the program’s behavior changes.

 Syntactically correct so that students can use the program as
a working model for their own coding.

Each patternlet provides a simple way to introduce students to a
particular pattern. Patternlets are designed to be a flexible
pedagogical tool to help students master a particular parallel
concept in any appropriate course, whether as a hands-on activity
by students or as a live-coding demonstration by instructors.

Patternlets are an evolving collection; there are at this time 25 of
them – 14 in OpenMP and 11 in MPI – illustrating the single
program multiple data (SPMD), fork-join, master-worker,
parallel for loop, barrier, message passing, mutual exclusion,
scatter, gather, broadcast, reduction, data decomposition, and
other parallel patterns. Adams will present several patternlets

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s). Copyright
is held by the author/owner(s).
SIGCSE’14, March 5–8, 2014, Atlanta, Georgia, USA.
ACM 978-1-4503-2605-6/14/03.
http://dx.doi.org/10.1145/2538862.2538875

and discuss different ways they can be used to introduce
parallelism into the CS curriculum.

2. ELIZABETH SHOOP
Libby Shoop co-directs (with moderator Brown and co-panelist
Adams) the CSinParallel project (csinparallel.org) [2]. She
teaches several courses in the CS curriculum, ranging from the
introductory level to computer systems organization, software
development, and parallel and distributed systems.

Statement: The parallel and distributed computing (PDC)
curricular recommendations a decade from now may differ as
radically from today’s curricular recommendations as the PDC
aspects of CS2013 differ from those of CS2001. However, PDC
in some form is here to stay in the CS curriculum. As educators
we must ask ourselves two key questions: 1) Apart from parallel
algorithms, are there principles that we can teach our students in
the context of today’s PDC hardware and software milieu that
will remain relevant and abiding for the unforeseeable
technologies of the next decade? 2) Since all computing students
must now learn about PDC and some may not be interested in
PDC, how can we motivate today’s computing students to engage
with this rapidly evolving field?

We propose a two-pronged approach to addressing these issues.
 Our first “prong” is parallel programming patterns, which
emerge directly from the experience of professional practitioners.
These offer a practical and relevant collection of problem-solving
strategies that transcend particular technologies, enabling students
to acquire enduring intellectual and useful skills in PDC. Our
second “prong” is exemplar applications that apply PDC topics
and techniques in solving some (more or less) realistic problem.
Such exemplars provide convenient and useful resources for
presenting and comparing parallel and distributed computing
technologies. They also motivate students to learn PDC
principles and practices by helping them see how PDC makes an
impact in other fields. The combination of patterns and
exemplars provides a unified approach for motivating
undergraduates to develop parallel thinking, often with modest or
even negligible added costs to existing course syllabi.

3. BARRY WILKINSON
Barry Wilkinson is Professor of Department of Computer Science
at University of North Carolina, Charlotte and has been involved
in parallel computing since the 1970’s. He was a Supercomputing
2011 Undergraduate Engineering and Sciences award finalist in
2011. He has published six textbooks, four with second editions,
including Programming: Techniques and Application Using
Networked Workstations and Parallel Computers, with M. Allen,
1999, 2nd ed. 2005, Prentice Hall.

Statement: A pattern programming framework called Seeds has
been developed at UNC-Charlotte that enables programmers to
select a parallel pattern such as workpool and create parallel
executable code without writing any low-level message passing
code (MPI) [3]. The framework self-deploys on any parallel or
distributed computing platform including a single multicore
computer. This framework is currently being used in a senior
undergraduate parallel programming class taught to six
universities across North Carolina on the NCREN televideo
network. We believe pattern programming offers a very
promising approach to teaching parallel programming. We are
strong advocates for using patterns as they provide a guide to best

practices and provide scalable design structures. Parallel
programming is much easier for students, less likely to be flawed,
more scalable, and it allows others to understand the code better.
One can concentrate upon issues such as data partitioning and
performance. Wilkinson will present the Seeds framework and its
use in the undergraduate CS curriculum.

4. CLAYTON FERNER
Clayton Ferner is a professor of Computer Science at the
University of North Carolina Wilmington (UNCW). He has been
a faculty member at UNCW for 14 years and taught courses on
parallel computing, grid computing, programming languages,
compiler construction, operating systems, and data structures. He
has developed a parallelizing compiler that generates MPI code
suitable to run on a distributed-memory parallel system.

Statement: The Paraguin compiler, being developed at UNC-
Wilmington, is a source-to-source compiler that will translate
programs written in a style similar to OpenMP to a program that
runs in parallel on a distributed-memory system using MPI to
handle communication. Like OpenMP, the programmer directs
the parallelization through the use of pragma statements to
create the MPI code. The level of abstraction is much higher
using the Paraguin compiler than with MPI. Because it is a
source-to-source compiler, the user is free to inspect the result to
see how their algorithm was implemented as well as modify it.

Since OpenMP uses pragmas to create parallel code for
execution on shared-memory systems, our compiler can easily
create a hybrid program by passing the OpenMP pragmas
through to the MPI output code. The resulting output code is a
hybrid parallel program that uses MPI to create parallelization for
distributed-memory systems while simultaneously using OpenMP
to create parallelization between cores of processors.

The compiler also supports a few patterns through the use of
pragmas. The scatter/gather and stencil patterns have been
implemented with more patterns planned in the next year.
Students can create correct parallel programs implemented in MPI
using these patterns while avoiding issues such as deadlocks and
race conditions.

ACKNOWLEDGMENTS
Adams, Brown, and Shoop are supported by NSF DUE-
1225739/1225796/1226172. Ferner and Wilkinson are supported
by NSF DUE-1141005/1141006.

REFERENCES
[1] ACM/IEEE-CS Joint Task Force, “Computer Science

Curricula 2013.” [Online]. [Accessed: 07-Sep-2013]:
http://ai.stanford.edu/users/sahami/CS2013/.

[2] R. Brown and E. Shoop, “Modules in community: injecting
more parallelism into computer science curricula,” in
Proceedings of the 42nd ACM technical symposium on
Computer science education, New York, NY, USA, 2011,
pp. 447–452.

[3] B. Wilkinson, J. Villalobos, and C. Ferner, “Pattern
programming approach for teaching parallel and distributed
computing,” in Proceeding of the 44th ACM technical
symposium on Computer science education, New York, NY,
USA, 2013, pp. 409–414.

