

1

Suzaku Pattern Programming Framework Specification
Version 1.0

B. Wilkinson, March 14, 2016.

Suzaku is a pattern parallel programming framework developed at UNC-Charlotte that enables programmers to
create pattern-based MPI programs without writing MPI message passing code implicit in the patterns. The
purpose of this framework is to simplify message passing programming and create better structured and scalable
programs based upon established parallel design patterns. Suzaku is implemented in C and provides both low
level message passing patterns such as point-to point message passing and higher level patterns such as workpool.
Suzaku is still under development. Several unique patterns and features are being provided including a
generalized graph pattern that enables any pattern that can be described by a directed graph to be implemented
and a dynamic workpool for solving application such as the shortest path problem. To use Suzaku, you must have
an implementation of MPI installed. OpenMPI is recommended. This document describes the application program
structure, the low level message passing routines, and the workpool pattern.

1. Basic Structure and Low Level Routines

1.1 Program structure

The computational model is similar to OpenMP but using processes instead of threads. With the process-based
model, there is no shared memory. The structure of a Suzaku program is shown below. The computation begins
with a single master process (after declaring variables that are duplicated in all processes and the initialization of
the environment). One or more parallel sections can be created that will use all the processes including the master
process. Outside parallel sections the computation is only executed by the master process.

int main (int argc, char **argv) {
 int P, ... // variables declaration and initialization

 SZ_Init(P); // initialize message-passing environment

 // sets P to number of processes
 ...

 SZ_Parallel_begin // start of parallel section

 …

 SZ_Parallel_end // end of parallel section

 ...

 SZ_Finalize();

 return(0);
}

 Suzaku program structure

All the variables declared here are duplicated in each process.

All initializations here will apply to all copies of the variables.

After call to SZ_Init() only master process executes code, until a parallel section.

Only master process executed code here.

After SZ_Parallel_begin, all processes execute

code, until a SZ_Parallel_end

No Suzaku routines here.

2

1.2 Program Structure Routines

Initialization

SZ_Init(int P);

Purpose: To be used to initialize the message passing environment and declare variables used by Suzaku
internally. No Suzaku routines must be placed before SZ_Init(P). SZ_Init(P) is required and sets P to be
the number of processes in each process. After SZ_Init(P), all code is executed just by the master
process, just as in OpenMP, a single thread executes the code by default. All processes have a process
ID, an integer from 0 to P - 1. The master ID is 0.

Parameter:

P Name of integer variable used to store number of processes. Must be declared by the
programmer for each process before SZ_Init().

Assumptions and limitations: argc and argv must be declared in main(). The number of processes is set
on the command line when executing the program using the MPI command mpiexec and read from the
command line. As a message-passing model, there are no shared variables. All variables are local to a
process, and generally should be declared before SZ_Init(P). p is an output parameter but does not need
the & address operator because implementation as a macro (inline substitution).

Finalize

SZ_Finalize();

Purpose: To be used at the end of the program to close MPI. SZ_Finalize() is required. No Suzaku
routines must be placed after SZ_Finalize().

Assumptions and Limitations: All processes still exist after SZ_Finalize() and any code placed after
SZ_Finalize() will be executed by all processes. Typically one does not want to do this so do not place
any call after SZ_Finalize(). Do not call any Suzaku routines after SZ_Finalize(). Any MPI-based code
such as Suzaku routines will not execute and will cause an error condition. (). This is the same as with
MPI_Finalize().

Parallel Section

SZ_Parallel_begin
...

SZ_Parallel_end;

Purpose: Used to indicate code executed by all processes. SZ_Parallel_begin corresponds to the
parallel directive in OpenMP and after it all code is executed by all the processes.

3

SZ_Parallel_end is required to mark the end of the parallel, and includes a global barrier to match a
parallel section in OpenMP without a no-wait clause. After that, the code is again just executed by the
master process.

Limitations: Multiple parallel sections are allowed. However a master process cannot nest a parallel
section. When the parallel section begins, the “master section” automatically ends. Hence the scope of
any variable declared after SZ_Init() and before a parallel section ends at the SZ_Parallel_begin. If
you want a variable to have the scope of all master sections, declare it before SZ_Init(). Similarly one
cannot have a loop or structured block in the master section that includes a parallel section.

 1.3 Runtime Environment

Process ID

SZ_Get_process_num();

Purpose: Returns the process ID and mirrors the omp_get_thread_num() routine in OpenMP, which
gives the thread ID. Processes are numbered from 0 to P - 1 where there are P processes, with the
master process having number zero.

1.4 Low-Level Patterns

Patterns are created within a parallel section. The following low-level patterns implemented so far:

 Point-to-point pattern
 Broadcast (master to all slaves)
 All-to-All Broadcast (all slaves to all slaves)
 Scatter (from master to slaves)
 Gather (from slaves to master)
 Master-slave pattern

Point-To-Point Pattern

SZ_Point_to_point(p1, p2, a, b);

Purpose: Sends data from one process to another process.

Parameters:

p1 Source process ID
p2 Destination process ID
a Pointer to the source array
b Pointer to destination array

Limitation: The source and destination can be individual character variables, integer variables, double
variables, or 1-dimensional arrays of characters, integers, or doubles, or multi-dimensional arrays of
doubles. The type does not have to be specified. Multi-dimensional arrays of other types are not
currently supported. The address of an individual variable specified by prefixing the argument the &
address operator.

4

Broadcast Pattern

SZ_Broadcast(double a);

Purpose: To broadcast an array from the master to all processes.

Parameter:

a Pointer to the source array in the master and the destination array in all processes (source
and destination)

Limitation: The source and destination can be individual character variables, integer variables, double
variables, or 1-dimensional arrays of characters, integers, or doubles, or multi-dimensional arrays of
doubles. The type does not have to be specified. Multi-dimensional arrays of other types are not
currently supported. The address of an individual variable specified by prefixing the argument the &
address operator. This feature has been added as sometimes it is necessary to send a single value, but it
is inefficient and should be avoided if possible.

All-to-All Broadcast Pattern

SZ_AllBroadcast(double a)

Purpose: To broadcast the ith row of a 2-D array from the ith process to every other process, for all i.1

Parameters:

a Pointer to array (source and destination)

Limitation: The array must be a two-dimensional array of doubles. Assumes there are P rows in the
array.

Scatter Pattern

SZ_Scatter(double a, double b);

Purpose: To scatter an array from the master to all processes, that is, to send consecutive blocks of data
in an array to consecutive destinations. The size of the block sent to each process is determined by the
size of the destination array, b. Typically used with 2-D arrays sending one or more rows to each
process.

Parameters:

a Source pointer to an array to scatter in the master.
b Destination pointer to where data is placed in each process.

1 This is not the same as an MPI_Allgather(). In MPI_Allgather(), the block of data sent from the ith process is received by
every process and placed in the ith block of the receive buffer.

5

Limitation: The source and destination arrays must be arrays of doubles in the current implementation.
The source and destination can be the same if the underlying MPI implementation allows that (as in
OpenMPI but not MPICH).

Gather Pattern

SZ_Gather(double a, double b);

Purpose: To gather an array from all processes to the master process, that is, to collect a block of data
from all processes to the master placing the blocks in the destination in the same order as the source
process IDs. This operation is the reverse of scatter. The size of the block sent from each process is
determined by the size of the source array, b. Typically used with 2-D arrays receiving one or more rows
from each process.

Parameters:

a Source pointer to an array being gathered from all processes to the master.
b Destination pointer in master where elements are gathered.

Limitation: The source and destination arrays must be arrays of doubles in the current implementation.
The source and destination can be the same if the underlying MPI implementation allows that (as in
OpenMPI but not MPICH).

Master Process

SZ_Master
<Structured block>

Purpose: To be used to indicate code only executed only by the master process (within a parallel
section). Must be followed by the code to be executed by master as a single statement or a structured
block, e.g.:

SZ_Master {

... // code executed by master only

}

The opening parenthesis can be on the same line or the next line.2

Specific Process

SZ_Process(PID)
<Structured block>

2 OpenMP directives require the opening parenthesis to be on the next line.

6

Purpose: To be used to indicate code only executed only by a specific process (within a parallel
section). Must be followed by the code to be executed by master as a single statement or a structured
block, e.g.:

SZ_ Process(PID) {

... // code executed by specific process only

}

The opening parenthesis can be on the same line or the next line.

Parameter:

PID ID of process that is to execute structured bock, as obtained from
SZ_Get_process_num();

Note: SZ_Process(0) is the same as SZ_Master. SZ_Process() might be useful for testing and
debugging but in general it is recommended that one should avoid using SZ_Process() as it does not
conform to the concept of using the pattern approach and leads to unstructured programming.

Master-Slave Pattern

The master-slave pattern can be implemented in Suzaku using broadcast, scatter, and gather patterns.
For efficient mapping to collective MPI routines, the master also acts as one of the slaves. The function
that the slaves execute is placed after the scatter and broadcast and before the gather. For example,
matrix multiplication might look like:

SZ_Parallel_begin

 SZ_Scatter(a,c); // Scatter A array
 SZ_Broadcast(b); // broadcast B array

 … // compute function, block matrix multiplication. Programmer implements routine

 SZ_Gather(b,a); // gather results

SZ_Parallel_end;

Complete sample programs are given later.

Synchronization and Timing

The following routine can be used within a parallel section:

Barrier

SZ_Barrier();

7

Purpose: Waits until all processes reach this point and then returns. Process synchronization is implicit
in message-passing routines, but occasionally one wants to create a synchronization point.

Timing

SZ_Wtime();

Purpose: To provide time stamp. Returns the number of seconds since some time in the past (a floating-
point number representing wallclock). Simply substitutes MPI_Wtime(). It is expected that this routine
would be called only by the master process outside a parallel section

Sample usage:

double start, end;

start = SZ_Wtime();
SZ_Parallel_begin

... // to be timed
 SZ_Parallel_end;

end = SZ_Wtime();

printf("Elapsed time = %f seconds\n", end - start);

1.5 Implementation Limitations of Low-Level Routines

1. Use of macros. Macros are currently used to implement the low level routines described so far to
avoid needing to specify the data type and size. Macros perform in-line text substitution and
substitute the formal parameter with the provided arguments without regard to type or any implied
meaning before compilation. Great care is needed with macros as there are situations in which in-
line substitution will not work. Most of the message passing macros have been written to allow them
to be placed anywhere a single statement could be placed but none of macros must be used in the
body of if, if-else or other control constructs if it is possible not all the processes execute the code. In
general, it is best to avoid placing any Suzaku macros or routines inside control constructs.
Interestingly the MPI standard allows implementers to implement a few specific MPI routines as
macros.

2. Variables names: Programmer cannot use a variable name starting with __sz (two underscores sz)

because the macros perform in-line substitution of code and use these variable names. The higher-
level compiled routines described later do not have this limitation.

3. Macro Arguments

Mostly arguments are specified as pointers. For an array that would simply be the name of the array.
Single variables can be specified by prefixing the variable name with the & address operator, or a
one-element array could be used. Sending a single data item would be inefficient but is sometimes
necessary, and is allowed with a single variable prefixed with the & address operator or with the use
of a one-element array. To send multiple variables, it is recommended to pack individual values into
an array for transmission to another process.

4. Size of Arrays:

8

The macros use sizeof() to determine the size of array arguments. All arrays being sent between
processes must be declared in such a way that the size of the array can be obtained using sizeof().
Hence the arrays cannot be created dynamically using malloc. Generally declare arrays statically
where their size is known at compile time, e.g. double A[N]; where N is a defined constant. C
allows “variable length arrays” to be declared where the size is specified as a variable, for example
double A[x]; where x is previously declared and assigned values. The size of variable length arrays
can be returned with sizeof() but variable length arrays have limitations. For example the maximum
size is more limited as the arrays are stored on the stack and static storage allocation using the static
keyword is not allowed and variable length arrays are not allowed at file scope. However sometimes
variable length arrays will be necessary. An example using variable length arrays is given the matrix
multiplication code given later.

5. Data Types:

To make the implementation simple, in many cases the data being sent between processes must be
doubles (variables or arrays of any dimension). SZ_Point_to_point() and SZ_Broadcast()) also
allow a wide range of other types for added flexibility and the likelihood that other types may be
needed - characters, integers, doubles, 1-dimensional arrays of characters, 1-dimensional arrays of
integers, 1-dimensional arrays of doubles, and multi-dimensional arrays of doubles. The type and
size does not have to be specified. Multi-dimensional arrays of other types are not currently
supported. Floats are not supported at all.

6. Synchronization:

The implementation of all Suzaku low-level message passing routines now have been made
synchronous for ease of use, that is, all the processes involved do not return until the whole
operation has been completed. This is not the same as the MPI. There is some confusion in the
literature on this matter as the MPI standard does not define its implementation and it is possible that
a particular implementation is more constraining than the standard. The basic MPI point-to-point and
collective routines do not necessarily synchronize processes. Each process will return when their
local actions have completed (“locally blocking”). This means that the point-to-point routine will
return in the source when the message has left the source process but the message may not have
reached the destination. It does allow the programmer to alter the values of the variables used as
augments in the source process though. The destination process returns when the message has been
received and similarly the programmer to alter the values of the variables used as augments in the
destination process. MPI does offer synchronous versions of point-to-point message passing that are
used here, and in fact even when MPI programmers use the local blocking routines, there must allow
for the possibility that they will operate in synchronous fashion. The MPI collective routines also are
non-blocking. Each process will return when it has completed its local actions. In Suzaku, a barrier
is added to force all the processes to wait to each other as MPI does not offer synchronous collective
routines.

7. Software needed. To use Suzaku, you must have an MPI environment installed. We use OpenMPI.

8. Printing

Printing output generated by different processes can be a challenge. Although standard output is
redirected to the master process, when the output would appear is indeterministic generally and the

9

output individual processes might appear if different orders. A single printf output any one process
will not be disturbed once it starts, that is the individual characters of the printf buffer will not be
interleaved with those of another printf of another process, but the complete lines might be
interleaved. One solution to make sure the printout of an array is keep together and ensuring the
output is in process order is shown below:

 1.6 Compilation and Execution of Low-Level Routines

To use Suzaku, you must have an MPI installed. We use and recommend OpenMPI. Currently the low-
level message passing patterns described in this document are implemented with macros placed in
suzaku.h. The programmer must include the suzaku.h file to use the Suzaku macros, i.e.:

#include "suzaku.h" // Suzaku macros
 ...

int main (int argc, char **argv) {
 ...

return(0);
}

Here, the suzaku.h file must be in the same directory as the main source program. argc and argv must
be provided as main parameters for MPI. To compile a program prog1 containing suzaku macros,
simply compile as an MPI program, i.e., execute the command:

 mpicc -o prog1 prog1.c

mpicc uses gcc to links libraries and create the executable, and all the usual features of gcc can be used.

To execute prog1, issue the command:

 mpiexec -n <no_of processes> ./prog1

where <no_of processes> is the number of processes you wish to use.

PID = SZ_Get_process_num(); // get process ID
for (i = 0; i < P; i++) {
 if (i == PID) {
 printf("Received by process %d \n",PID);
 for (j = 0; j < 10; j++)
 printf("%5.2f ",A[j]); // print it out at destination
 }
 SZ_Barrier();
}

10

2. Workpool Pattern - Version 1

2.1 Workpool

The workpool pattern is like a master-slave pattern but has a task queue that provides load balancing, as
shown below. Individual tasks are given to the slaves. When a slave finishes a task and returns the
result, it is given another task from the task queue, until the task queue is empty. At that point, the

master waits until all outstanding results are returned. The termination condition is the task queue empty
and all result collected.

Workpool with a task queue

Algorithm. In the implementation of the workpool described here (version 1), the data items being sent
between the master process and slave processes are limited to 1-D arrays. The programmer deposes the
problem into T tasks. Each task consists of a 1-D array of D doubles with an associated task ID. Each
slave result for a task consists of a 1-D array of R doubles with the associated task ID. The master sends
out tasks to slaves. Slaves return results and are given new tasks, or a terminator message if there are no
more tasks, i.e. if the number of tasks sent reaches T. The number of tasks can be less than number of
slaves, equal to the number of slaves, or greater than the number of slaves. If the number of tasks is the
same as the number of slaves, the workpool becomes essentially a master-slave pattern.

Programmer-written routines. The Suzaku workpool interface is modeled on the Seeds framework. The
programmer must implement four routines:

 init() Sets values for the number of tasks (T), the number of data items in each task (D),
and the number of data items in each result (R). Called once by all processes at the
beginning of the computation.

 diffuse() Generates the next task when called by the master
 compute() Executed by a slave, takes a task generated by diffuse and generates the

corresponding result
 gather() Accepts a slave result and uses it to develop the final answer

Slaves

Master

Result

Task from
task queue

Compute

Aggregate
answersTask queue

Another Task if task
queue not empty

11

diffuse()

compute()

gather()

Slaves

Message passing done by framework

Master

diffuse, compute, and gather routines

diffuse(), compute(), and gather() are dependent upon the application, and often very short.

Workpool code. The workpool itself is implemented by the provided routine SZ_Workpool() placed
within a parallel section. init(), diffuse(), compute(), and gather() are called by SZ_Workpool() and
given as input parameters. They can be re-named to accommodate for example multiple workpools in a
single program.

2.2 Program structure

The program structure is shown below and consists of the four programmer routines and the Suzaku
routines.

#include <stdio.h>
#include <string.h>
#include "suzaku.h"

void init(int *T, int *D, int *R) {
 ...
 return;
}
void diffuse(int *taskID,double output[D]) {
 ...
 return;
}

void compute(int taskID, double input[D], double output[R]) {
 ...
 return;
}

void gather(int taskID, double input[R]) {
 ...
 return;
}

int main(int argc, char *argv[]) {

 int P; // number of processes

12

 SZ_Init(P); // initialize MPI message-passing environment

 SZ_Parallel_begin

 SZ_Workpool(init, diffuse, compute, gather);

 SZ_Parallel_end;

 printf("Workpool results\n ... ",); // print out workpool results
 ...

 SZ_Finalize();

 return 0;
}

Workpool program structure

2.3 Signatures of Programmer-Written Routines

Init

 void init(int *tasks, int * data_items, int *result_items)

This routine will be called at the beginning of the workpool by all processes. At the very least, it must
set values for number of tasks (T), number of data items in each task (D), and number of data items in
each result (R). The routine may be used for other initialization purposes. There is no implicit
synchronization.

Parameters (pointers to integers):

int *tasks Input parameter for the number of tasks
int *data_items Input parameter for the number of data items (doubles) in each task
int *result_items Input parameter for the number of data items (doubles) in result of each task

Limitations: The number of tasks, T, must be equal or less than INT_MAX – 1, but this is very unlikely
to be an issue. For D and R, the limiting factor is the maximum size of dynamic arrays on the platform.

A typical coding sequence would be:

#define T 6 // number of tasks, one task for each body
#define D 30 // number of data items in each task
#define R 5 // number of data items in result of each task

void init(int *tasks, int *data_items, int *result_items) { // all processes execute this at beginning
 *tasks = T;
 *data_items = D;
 *result_items = R;
 ...
 return;
}

Any names can be used in the formal parameter list.

13

Diffuse

The signature of this routine is:

void diffuse(int taskID, double output[D])

This routine generates the next task when called by the master.

Parameters:

int taskID Input parameter for the task ID for the associated task
double output[D] Output parameter for the task data, given as an array of D doubles

Notes: taskID is provided by the framework, from 0 to T - 1. Each time diffuse is called, taskID is
incremented. taskID is carried with the task throughout the workpool. taskID provides a mechanism to
do specific actions with particular tasks or results. When used by the programmer, taskID corresponds
to a segment number in Seeds.

Compute

The signature of this routine is:

void compute(int taskID, double input[D], double output[R])

This routine is executed by a slave. It takes a task generated by diffuse and generates the corresponding
result.

Parameters:

int taskID Input parameter for the task ID for the associated task
double input[D] Input parameter for the task data, given as an array of D doubles
double output[R] Output parameter for the result, given as an array of R doubles

Gather

The signature of this routine is:

void gather(int taskID, double input[R])

This routine accepts a slave result and develops the final answer. Called by the master.

Parameters:

int taskID Input parameter for the task ID for the associated task
double input[R] Input parameter for the slave result, given as an array of R doubles

Notes: gather() is used to aggregate the answer from the task results during the workpool operation,
and programmers are free to do this any way they like and whatever the application dictates. To be able
to reach the answer from outside gather, the final answer can be declared globally at the top of the
program outside main.

14

2.4 Signature of Suzaku Workpool Routine

This routine is provided and implements the workpool. It calls init(), diffuse(), compute(), and
gather(). SZ_Workpool() must be called within a Suzaku parallel section. The signature of the routine
is:

 void SZ_Workpool (void (*init)(int *T, int *D, int *R),
 void (*diffuse)(int *taskID,double output[]),
 void (*compute)(int taskID, double input[], double output[]),
 void (*gather)(int taskID, double input[]))

Parameters:

 *init Function pointer to init function
 *diffuse Function pointer to diffuse function
 *compute Function pointer to compute function
 *compute Function pointer to gather function

Notes: The function pointers could have been eliminated if their names were standardized (as in Seeds),
e.g. init, diffuse, compute, and gather, but specifying the function names makes it more obvious which
functions are used by the workpool, and also allows multiple workpools each using different function
pointers. No data arrays need to be declared for Suzaku. These are generated by Suzaku dynamically.

The programmer can implement routines outside the workpool as the need arises. Results from the
gather need to be used to create the final answer and variables declared outside main to be reachable
from gather and other routines.

2.5 Compilation and Execution

Workpool code: The workpool routine SZ_Workpool() is implemented in suzaku.c. It can be compiled
with:

 mpicc -c -o suzaku.o suzaku.c

to create an object file suzaku.o (note the -c option). This avoids having to recompile suzaku.c every
time you compile application code.

Application code: SZ_Workpool() does not use suzaku.h itself but since a workpool needs to be within
a parallel section, the application code must include suzaku.h. For the commands below, the two files:

 suzaku.h

 suzaku.o

must be placed in the same directory as the source file. To compile an application workpool program
prog1.c, issue the command:

 mpicc -o prog1 prog1.c suzaku.o

A make file is provided for the sample programs.

15

Instead of pre-compiling suzaku.c into suzaku.o, one could also compile both suzaku.c and prog1.c
together with:

mpicc -o prog1 prog1.c suzaku.c

To execute prog1, issue the command:

 mpiexec –n <no_of processes> prog1

where <no_of processes> is the number of processes you wish to use. The workpool needs at least two
processes, master and one slave. Note the master does not act as one slave as in the master-slave pattern
in Part 1 because collective routines are not used.

2.6 Debug Messages

A version of the SZ_Workpool() routine is provided that
includes print statements to see how the tasks are allocated
to slaves and results returned. This version is called
SZ_Workpool_debug() and can be found in suzaku.c. To
use, rename SZ_Workpool() in the application code to
SZ_Workpool_debug() and recompile.

Sample output with debug messages

16

3. Workpool Version 2

A version of the Suzaku workpool has been implemented that mirrors the interface in Seeds by using
“put” to pack data into tasks and results and “get” to retrieve the data. To differentiate between the
versions, the initial version of the workpool is called version 1 and the workpool with put and get
routines is called version 2. Version 2 may incur a greater overhead that version 1 but may be more
elegant to use and is basis of the dynamic workpool described in Section 4.

Put Routine

The put routine is used by the programmer to insert data into a task and is called in the compute routine,
once for each data item inserted into the task. The signature is:

SZ_Put(char[8] key, void *x)

Purpose: Places data into the send buffer and associates a user-defined name to it.

Parameters:

key String or string constant
x Pointer to data being stored in the message buffer and mapped to key

Limitations: x can be an individual character variable, integer variable, double variable or 1-dimensional
array of characters, integers, or doubles, or a multi-dimensional array of doubles. The type does not have
to be specified. Multi-dimensional arrays of other types are not currently supported. The address of an
individual variable specified by prefixing the argument the & address operator. key is a programmer
selected string to identify the data, up to eight characters and there is a maximum of 10 keys (i.e. 10 puts
to the same message buffer). These size limitations could be increased if needed but the mapping is
attached to the message and so incurs an overhead.

Get Routine

The get routine is used by the programmer to extract data from a task and is called in the diffuse routine,
once for each data item extracted from the task. The signature is:

SZ_Get(char[8] key, void *x)

Purpose: Extract data from the received message that is associated with a user-defined name.

Parameters:

key String or string constant
x Pointer to data being retrieved from the message buffer mapped to key

Limitations: x can be an individual character variable, integer variable, doublevariable, or 1-dimensional
array of characters, integers, or doubles, or a multi-dimensional array of doubles. The type does not have
to be specified. Multi-dimensional arrays of other types are not currently supported. The address of an
individual variable specified by prefixing the argument the & address operator. key is a string up to
eight characters and there is a maximum of 10 keys (i.e. 10 puts to the same message buffer). These size

17

limitations could be increased if needed but the mapping is attached to the message and so incurs an
overhead.

The workpool routines init(), diffuse(), compute(), and gather() now have different and simplified
signatures:

init()

The init() routine now only has to set the number of tasks, T. D, the number of data items in each task
and R, the number of data items in result of each task are not now used as they are determined with the
put routines, i.e., the signature of init() is:

 void init(int *T)

Parameter:

int *T Input parameter for the number of tasks (pointers to an integer)

diffuse()

The diffuse() only needs the input parameter from the framework to provide the taskID. The output
parameter output[] is not needed, i.e., the signature of diffuse() is:

void diffuse(int tasksID)

Parameter:

int taskID Input parameter for the task ID for the associated task

compute()

The compute() only needs the input parameter from the framework to provide the taskID. The input
parameter input[] and output parameter output[] are not needed, i.e., the signature of diffuse() is:

void diffuse(int tasksID)

Parameter:

int taskID Input parameter for the task ID for the associated task

gather()

The gather() only needs the input parameter from the framework to provide the taskID. The input
parameter input[] is not needed, i.e., the signature of gather() is:

18

void gather(int tasksID)

Parameter:

int taskID Input parameter for the task ID for the associated task

Suzaku Workpool Routine

The workpool routine is now called SZ_workpool2 and has the signature:

void SZ_Workpool2 (void (*init)(int *T),
 void (*diffuse)(int *taskID),
 void (*compute)(int taskID),
 void (*gather)(int taskID))

Parameters:

 *init Function pointer to init function
 *diffuse Function pointer to diffuse function
 *compute Function pointer to compute function
 *compute Function pointer to gather function

Implementation Details

The put and get operations are achieved by using the MPI pack mechanism that enables a message to be
constructed with multiple data items of any type and the MPI unpack mechanism that enables the data to
be extracted from the packed message. To provide the greatest flexibility a lookup table is created that
associates the key with the position in the buffer where the variable is packed, and this look-up table is
attached to the complete message before the message is sent. Then SZ_Get() can be called in any order
and also SZ_Put() can be called in any order. Also each message could have the same or different
named data if required. This implementation does not need the input and output buffers to be declared
by the programmer and are not parameters in diffuse, compute, and gather. The only parameter needed
is the taskID. The size of the x is not needed, but x must be declared statically such that sizeof() can be
used. Both SZ_Put and SZ_Get are macros in suzaku.h that find the size using sizeof and then each
call a routine (SZ_pack_data() and SZ_unpack_data() respectively) in the workpool program in
suzaku.c. These routines then call a routine to map the data to a key or unmap the data given a key
before packing or unpacking. SZ_Put and SZ_Get do not return error values but routines they call can
create error messages, notably if the allocated memory space is exhausted when mapping or packing, or
the name cannot be found in the map in “unmapping.”

The map is implemented as two 1-D arrays, one array holding the keys as character strings and the other
holding the positions in the message buffer as integers. The map can be attached at the front or the end
of the message. Both have been tried. At the front requires a fixed sized map for all messages so that the
start of the data is known before mapping. At the end requires a pointer to it at the front and potentially
the map could be a different size for each message although that was not implemented.

If the programmer uses SZ_Put() or SZ_Get() within control statements such as if statements, it is
safest to include braces, e.g.

19

if (task_no == 0) { SZ_Put("mydata",data1); } else {SZ_Put("mydata",data2);}

because macros do in-line substitution and consist of multiple statements. (Internally they are wrapped
around do { … } while(0); statements but that is not sufficient.)

Also in the example given, all messages sent will have data called “mydata.” If one sends messages with
different named data, one would need to recognize that at the destination. Using SZ_Get() with a name
that does not exist in the message will result in an error message (“name not found”).

Compilation and Execution

SZ_Workpool2() and associated routines are held in suzaku.c. Compilation and execution is the same
as for workpool version 1 except for naming the workpool as SZ_Workpool2() in the application code.

20

4. Workpool Version 3

This version of the workpool implements a workpool where new tasks can be added to the task queue
during the computation as might be needed for problems such as the shortest path problem. We call this
a dynamic workpool as opposed to the static workpool where the number of tasks in the task queue is
fixed.

The routines SZ_Put() and SZ_Get() are available from version 2 to add data to task and results. In
addition one new routine, SZ_Insert_task(), is available for use by the programmer to add tasks to the
task queue:

SZ_Insert_task

The signature of this routine is:

int SZ_Insert_task(int taskID)

Purpose: This routine adds a task to the task queue.

Parameter:

int taskID Input parameter for the task ID for the associated task, provided by the framwork

Return value: An integer giving the number of tasks in the task queue afterwards or -1 if the tasks queue
is already full and a task cannot be added.

Limitations: The task queue is maintained by the master process and not accessible by the slaves. Hence
the routine can only be called by the master process, either within init(), diffuse(), or gather(), i.e. it
cannot be used by the slaves in compute().

Note: The programmer is not expected to remove tasks for the task queue as this will be done by the
framework.

Suzaku Workpool Version 3 Routine

Version 3 is based upon version 2 and purposely uses the same signature as version 2 (except the
workpool routine name, SZ_Workpool3()):

 void SZ_Workpool3 (void (*init)(int *T),
 void (*diffuse)(int *taskID),
 void (*compute)(int taskID),
 void (*gather)(int taskID))

Parameters:

 *init Function pointer to init function
 *diffuse Function pointer to diffuse function
 *compute Function pointer to compute function

21

 *compute Function pointer to gather function

init() now needs to initialize the task queue using SZ_Insert_task() instead of specify the number of
tasks but for compatibility with version 2, the input parameter *T (no of tasks) is retained. If the number
of tasks is set to a number greater than 0, version 3 will implement the static workpool by automatically
initializing the task queue for one task (taskID = 0) and inserting a consecutive task when a task is taken
from the queue, up to T tasks.

Compilation and Execution

SZ_Workpool3() and associated routines are held in suzaku.c. Compilation and execution is the same
as for workpool version 2 except for naming the workpool as SZ_Workpool3() in the application code.
Version 3 can be used with version 2 application programs without any other change to the application
code.

Implementation Details

The workpool algorithm implemented for Version 3 is shown below:

The task queue is a first-in first-out queue. Tasks are identified by an integer taskID, which could be
duplicated and are not necessarily unique consecutive numbers as in version 2. (If a particular instance

Get task

Task queue

Master

Init()
Put initial
tasks into
tasks queue

diffuse()

Send task

Slaves

Receive task

If terminate
message

Terminate process

compute()

Send result

Receive

gather()

Send terminator to all slaves

All slaves free
and no tasks

Terminate master

Programmer adds task(s) in init() and optionally in gather()

Sends from
slaves will wait
until they can be
picked up by the

master

Choose a
free slave

At least one
slave busy

While a
task and
a free
slave

22

of a task needs to be differentiated further, that information can be added by the programmer, see later.)
It is also necessary to maintain information about the slaves. Whenever a message is sent to a slave,
slave set as busy and number of busy slaves incremented by 1. Whenever a result is received back slave
set as free and number slaves decremented by 1. A slave has to be chosen from those free and a round-
robin algorithm is used.

Initially the task queue is initialized with at least one task in the workpool routine init(). Then a task is
retrieved from the task queue, diffuse() is executed and the complete task with any addition information
added by diffuse is sent to a free slave if there is one. When there are no more free slaves or no more
tasks, the master process waits for one slave to return a result. Slaves accept tasks, execute compute(),
and return results, which could include new tasks packed into an integer array. The master picks up the
results of one slave, and executes a gather() routine provided with the task ID. The gather routine might
find new tasks to add to the task queue. The master then repeats the complete sequence taking tasks
from the task queue and sending tasks to free slaves, etc. The sequence stops when there are no new
tasks and all slaves are free. Then all slaves are terminated with termination messages from the master
and the master terminates. This algorithm avoids needing to use concurrent processes or threads for
diffuse and gather, which were tried but is complicated by the need for shared memory, critical sections,
and an MPI implementation that is thread-safe for the thread-based solution.

23

5. Pipeline Pattern

The iterative synchronous pipeline pattern has been implemented. In the pipeline pattern, the
computation is divided into a series of tasks that have to be performed one after the other, with the result
of one task passed on to the next task, like an assembly manufacturing line. One computational unit, a
slave here, performs each task:

In the iterative synchronous pipeline pattern, the pipeline is within an iteration loop, to achieve increased
performance as in an assembly line. At each iteration, tasks pass from one process to the adjacent
process in the pipeline.

Task	N

Task	1 Task	3 Task	2

Result

Slaves

Master Pipeline	pattern

Repeat
Stop

Task	N

Task	1 Task	3 Task	2

Result

Slaves

Master

Pipeline pattern

Check termination
condition

24

Master

Slaves

compute()

diffuse() gather()

compute() compute()

Suzaku Pipeline

The programmer’s interface is purposely similar to other patterns. The slaves execute the compute
routine and the master executes the diffuse and gather routines:

This approach is the same as the pipeline pattern in Seeds. The basic version uses 1-D arrays as in the
workpool version 1 as this is the most likely data structure and most efficient implementation although
there is no technical reason why version 2 put and get mechanism could not be incorporated.

The programmer must implement:

 void init() To initialize the number of tasks, T, and the size of each task, D at beginning of

computation. Executed by all processes. Other initializations can be done

 void diffuse () Generates next task when called by master. Sent to the first slave

 void compute() Executed by the slaves. Takes task received and generates corresponding result

 void gather() Accepts result from final slave and develops final result. Called by Master.

Signatures:

The signatures art the same as the workpool version 1:

void diffuse (int taskID, double output[N])
void compute (int taskID, double input[N], double output[N])
void gather (int taskID, double input[N])

The pattern is implemented by SZ_Pipeline() with the signature:

SZ_Pipeline(void (*init)(int *T, int *D, int *R),
 void (*diffuse)(int *taskID,double output[]),
 void (*compute)(int taskID, double input[], double output[]),
 void (*gather)(int taskID, double input[]))

25

Termination

The pipeline will terminate naturally after T * (P-1) steps where are T tasks and P processes. A routine
is provided to be able to terminate the pattern earlier when a termination condition exists:

void SZ_Terminate()

This routine would be called by the gather routine.

Debugging

A routine is provided that will cause debug messages to be displayed during the pipeline operation:

void SZ_Debug()

This routine would be placed immediately before SZ_Pipeline() with parallel section. This approach
could be used in others rather than provide two separate routines as in the workpool version 1. (Not sure
which is best yet.) With pre-implemented patterns it is really important to be able to understand and
watch the execution steps as the programmer does not have access to the underlying implementation.

Program structure

The program structure is similar to a workpool and shown below, consisting of the four programmer
routines and the Suzaku routines.

#include <stdio.h>
#include <string.h>
#include "suzaku.h"

void init(int *T, int *D, int *R) {
 ...
 return;
}
void diffuse(int *taskID,double output[D]) {
 ...
 return;
}

void compute(int taskID, double input[D], double output[R]) {
 ...
 return;
}

void gather(int taskID, double input[R]) {
 ...
 return;
}

int main(int argc, char *argv[]) {

 int P; // number of processes
 SZ_Init(P); // initialize MPI message-passing environment

26

 SZ_Parallel_begin

 SZ_Debug();

 SZ_Pipeline(init, diffuse, compute, gather);

 SZ_Parallel_end;

 printf("Pipeline results\n ... ",); // print out results
 ...

 SZ_Finalize();

 return 0;
}

Pipeline program structure

Compilation and Execution

SZ_Pipeline() and associated routines are held in suzaku.c. Compilation and execution is the same as
for other Suzaku patterns.

27

6. Generalized Patterns

Message passing patterns connect sources and destinations together in various ways. The master-slave
pattern connects the master to slave processes but the slaves are not interconnected. Any communication
between slaves has to go through the master. The master-slave pattern is the basic pattern for parallel
programming using a computational strategy of dividing the work into parts to be done by the slaves.
The (static) workpool extends the master-slave pattern to include a task queue providing a load
balancing feature. The dynamic workpool extends it further to enable new tasks to be added during the
communication. For particular algorithms, a specific interconnection pattern might offer advantages and
the pipeline pattern is one such specialized pattern. Other such patterns include the stencil pattern in
which slaves are arranged in two or three dimensional meshes and each slave connects to its neighbors
in the mesh. The stencil pattern can be generalized into what we call overlapping connectivity patterns
where how near a neighbor should be to be connected can be different, leading to many nearest neighbor
patterns. The extreme case is where each slave connects to all the other slaves in an all-to-all pattern.
The other extreme is where each slave connects to only one other slave. The (unidirectional) pipeline
pattern connects each slave to the next slave in the pipeline. There are many other possible connection
patterns for example binary trees and arbitrary connection patterns for specific problems.

Rather than implement every pattern in a unique way, the approach taken in Suzaku is to implement a
pattern based upon a directed graph called here a connection graph. We call this approach a generalized
pattern. Any connection pattern can be created this way. Of course one has to avoid messaging deadlock
in the pattern implementation and it may be the implementation is not as efficient as specific
implementations for specific patterns.

Most patterns are repeated as synchronous iterative patterns terminating when a termination condition
occurs, usually either a fixed number of iterations or when the computed values converge sufficiently
(i.e. do not change by more than a given value). The Suzaku generalized pattern is a synchronous
iterative pattern with a master-slave structure as illustrated in Figure 1. The master sends initial data to
all slaves and collects results from all slaves at the end of the computation. The slaves compute and send
values to those slaves that are interconnected, repeatedly until the termination condition exists. The
master also acts as one slave as in the master-slave pattern. For greatest flexibility, the programmer
implements the iteration loop and low level routines are provided that the programmer to construct the
pattern. Broadcast/scatter/gather rely on using existing low level Suzaku routines. Two additional
routines are provided for the programmer:

SZ_Pattern_init(“pattern_name”,T,D,R) – to initialize the connection graph for standard patterns
(all-to-all, pipeline, stencil so far)

SZ_Pattern_send(A,B) – to send an array from each slave to all connected slaves according to the
connection graph

28

Overall structure

SZ_Parallel_begin // parallel section, all processes do this

 SZ_Pattern_init(“pattern_name",T,D,R); // set up slave interconnections in each slave
 … // initialize data, input and output arrays

 SZ_Broadcast(input); // broadcast initial data to all slaves, if needed

 for (i = 0; i < steps; i++) { // in this case a fixed number of iteration
 compute(i,input,output); // slaves execute compute, master acts as a slave
 SZ_Pattern_send(output,input); // sent compute results to connected slaves
 }

 SZ_Gather(input,result); // collect results from slaves

SZ_Parallel_end; // end of parallel

Each slave maintains two arrays input[][] and output[]. Input[][] holds the data sent from connected
slaves. Slaves create results in output[] to be send to connected slaves. The connection graph specifies
how the data is arranged in these arrays, see next.

The broadcast corresponds to diffuse in the general case and could be coded inside a routine called
diffuse(). Similarly gather corresponds to gather in the general case and could be coded inside a routine
called gather().

Implementation

Figure 1 Generalized iterative synchronous pattern

Repeat

Stop

Slaves

Connection
pattern

Broadcast/scatter
and gather

Master

Check
termination
condition

29

To be able to use the provided routines, one needs to appreciate the connection graph.

Connection graph: The connection graph specifies which slaves are interconnected and the location in
the destination for the incoming data. It is a directed graph so it would be possible for the connection to
be in one direction although that would be unusual. The graph is a P x P adjacency matrix,
connection_graph[P][P], where there are P processes (slaves, as the master acts as one slave) and
illustrated below for eight slaves:

 Destination process

 0 1 2 3 4 5 6 7 8

 0

 1 x

 2

Source 3

process 4

 5

 6

 7

 8

The source data being transferred is a 1-D array of doubles, output[N]. The destination array is a 2-D
array, input[P][N]. The graph entry at connection_graph[i][j] indicates:

 -1 No connection
 x A connection process i to process j, and the value, x, indicates the row in the destination array

where the data is to be placed, i.e. input[x][N].

This would allow a fully connected graph with each value received held in a separate location. In a
partially connected graph, not all rows in input[][] would be used. The graph can be set up to create any
pattern including all-to-all, pipeline, stencil, binary tree etc. The all-to-all, pipeline, and stencil patterns
have been created so far. Once the pattern is created, a generalized send routine uses the connection
graph and send output[] to all connected processes, storing the data in the designated row of input[][].

The basic version sends 1-D arrays as in the workpool version 1 as this is the most likely data structure
and most efficient implementation although there is no technical reason why version 2 put and get
mechanism could not be used. The arrays hold doubles.

Master acts as slave 0

Slaves

Slaves

30

Sample connection graph patterns

1. "all-to-all"

 Destination process

 0 1 2 3 4 5 6 7 8

 0 -1 0 0 0 0 0 0 0 0
 1 1 -1 1 1 1 1 1 1 1
 2 2 2 -1 2 2 2 2 2 2
 3 3 3 3 -1 3 3 3 3 3
Source 4 4 4 4 4 -1 4 4 4 4
process 5 5 5 5 5 5 -1 5 5 5
 6 6 6 6 6 6 6 -1 6 6
 7 7 7 7 7 7 7 7 -1 7
 8 8 8 8 8 8 8 8 8 -1

i.e. the array output[N] from slave i will be sent to the ith row of input (input[i][N]) and all locations
of input will be used.

2. " pipeline" (note: a ring)

 Destination process

 0 1 2 3 4 5 6 7 8

 0 -1 0 -1 -1 -1 -1 -1 -1 -1
 1 -1 -1 0 -1 -1 -1 -1 -1 -1
 2 -1 -1 -1 0 -1 -1 -1 -1 -1
 3 -1 -1 -1 -1 0 -1 -1 -1 -1
Source 4 -1 -1 -1 -1 -1 0 -1 -1 -1
process 5 -1 -1 -1 -1 -1 -1 0 -1 -1
 6 -1 -1 -1 -1 -1 -1 -1 0 -1
 7 -1 -1 -1 -1 -1 -1 -1 -1 0
 8 0 -1 -1 -1 -1 -1 -1 -1 -1

i.e. the array output[N] from slave i will be sent to the first row of input (input[0][N]) and input[1][N]
… input[N-1][N] will not be used.

3. 2-D "stencil"

Slaves are arranged in a square 2-D mesh. The number of slaves must have an integer squareroot. Nine
slaves gives a 3 x 3 stencil. Processes are numbered in natural order:

 0 1 2
 3 4 5
 6 7 8

x = 0

x = source process ID

31

Apart from slaves at the edges, each slave connects to the four neighbors on left, right, up and down,
e.g. process 4 connect to 1, 3, 5 and 7. The edges only connect to those slaves that exist, e.g. process 1
connects to 0, 2, and 4. In most stencil computations, a constant boundary value is used by the process
in the computation where it does not have neighboring process.

Processes will receive up to four output[] arrays, one from each neighbor loaded into input[0][],
input[1][], input[2][], and input[3][]. Values for x:

 From the process to the left x = 0
 From the process to the right x = 1
 From the process above it x = 2
 From the process below it x = 3

to all each to be placed in different location.

Below is shown for a 3 x 3 stencil (9 x 9 connection graph):

 Destination process

 0 1 2 3 4 5 6 7 8
 0 -1 0 -1 2 -1 -1 -1 -1 -1
 1 1 -1 0 -1 2 -1 -1 -1 -1
 2 -1 1 -1 -1 -1 2 -1 -1 -1
 3 3 -1 -1 -1 0 -1 2 -1 -1
Source 4 -1 3 -1 1 -1 0 -1 2 -1
process 5 -1 -1 3 -1 1 -1 -1 -1 2
 6 -1 -1 -1 3 -1 -1 -1 0 -1
 7 -1 -1 -1 -1 3 -1 1 -1 0
 8 -1 -1 -1 -1 -1 3 -1 1 -1

Routines (in suzaku.c)

SZ_Pattern_init

 void SZ_Pattern_init(const char* pattern, int N)

Purpose: To initialize the connection graph , connection_graph[P][P] to one of various selectable
patterns and create message buffer space for the generalized send routines. This routine provides a copy
of the connection graph and message buffer space to all processes and is called within a parallel section
before using the pattern with SZ_Generalized_send().

Parameters:

pattern Name of the pattern as a string constant (input parameter). So far:
 "all-to-all"
 "pipeline" or “ring”

32

 "stencil

N Number of data items, i.e. size of output[] (input parameter).

Limitation: connection_graph[P][P] is statically declared as 20 x 20 elements, setting the maximum
number of slaves (processes) to be 20. It is not expected that P would be very large in most systems, but
can be altered in suzaku.c. The actual size of P being used is established with SZ_Init(). The size N is
not so limited as the message buffer is declared dynamically in suzaku.c. This routine must only be
called within a parallel section.

SZ_Generalized_send

void SZ_Generalized_send(double *output, double *input)

Purpose: To send the array output[N] to all connected processes as specified in the connection graph.
The destination process stores the array in row of input[P][N] given by the connection graph.

Parameters:

 *output Pointer to the array output[N] in source process
 *input Pointer to the array input[P][N] in destination

Limitation: It is assumed that N is the value set in SZ_Pattern_init() and P is the value set in SZ_Init()
for indexing into the array output[][]. This routine must only be called within a parallel section.

User defined patterns

void SZ_Set_connection_graph(int *g)

Purpose: To set the connection_graph[P][P]to the values given by the user-supplied input array, g[][].

Parameter:

 *g Pointer to the array g[P][P] holding the pattern where P is the current number of

processes

Debugging

void SZ_Print_connection_graph(void)

Purpose: To cause the master to print the current connection graph, connection_graph[P][P], for test
purposes.

Parameters: None

33

Implementation Notes: Messaging is done point to point and a barrier in present at the end to ensure all
processes complete before returning, i.e. the routine is synchronous as are low level Suzaku message
passing routines but it is implemented as a routine and not as a macro. If all MPI_send()’s precede
MPI_recv()’s in a process, there is a possible deadlock if sends become synchronous because of lack of
buffer storage. To avoid possible deadlock, the implementation uses MPI buffered sends with explicit
buffer space. Beforehand calling MPI_BSend()for the first time in a process, it is necessary to call
MPI_Buffer_attach() to attach a buffer. The size of the buffer needs to be only big enough for all
pending sends in a process. Here each process just needs space for one message. At end of all sends
MPI_Buffer_detach() should be called. SZ_Pattern_finalize() will do this if the programmer wants to
use it.

Compilation and Execution

The generalized pattern routines are found in suzaku.c. Application code using them must be compiled with the
math libraries, -lm option even if suzuku.o is recompiled.

34

Appendix A Sample Programs with Suzaku routines

1. Low level routines

Point-to-Point Pattern

A sample program called pt-to-pt.c is given below that demonstrates the point-point pattern:

#include <stdio.h>
#include <string.h>
#include "suzaku.h" // Suzaku macros

int main(int argc, char *argv[]) {
 // All variables declared here are in every process
 int i, P, PID;
 double a[10] = {0,1,2,3,4,5,6,7,8,9};
 double b[10] = {0,0,0,0,0,0,0,0,0,0};
 char a_message[20];
 char b_message[20];
 strcpy(a_message, "Hello, world");
 strcpy(b_message, "------------");
 double p;
 double q;
 p = 123;

 SZ_Init(P); // initialize MPI message-passing environment
 // sets P to number of processes, not used here

 SZ_Parallel_begin // parallel section, all processes do this

 PID = SZ_Get_process_num(); // get process ID

 SZ_Point_to_point(0, 1, a_message, b_message); // send a message from one process to another

 if (PID == 1) printf("Received by process %d = %s\n",PID,b_message); // print it out at destination

 SZ_Point_to_point(0, 1, a, b); // send an array of doubles from one process to another

 if (PID == 1) { // print it out at destination
 printf("Received by process %d = ",PID);
 for (i = 0; i < 10; i++)
 printf("%2.2f ",b[i]);
 printf("\n");
 }

 SZ_Point_to_point(0, 1, &p, &q); // send an single number from one process to another

 if (PID == 1) printf("Received by process %d = %f\n",PID,q); // print it out at destination

 SZ_Parallel_end; // end of parallel, implicit barrier

 SZ_Finalize();
 return 0;
}

Suzaku pt-to-pt.c program

Note: All the variables

declared here are

duplicated in each

process. All initializations

here will apply to all

copies of the variables.

After call to SZ_Init() only master process executes code, until a parallel section.

Only master process executed code here.

35

Matrix Multiplication with Master-Slave Pattern

A sample program called matrixmult.c is given below that demonstrates many of the Suzaku macros.

#define N 64
#include <stdio.h>
#include <time.h>
#include "suzaku.h" // Suzaku routines

int main(int argc, char *argv[]) {
 int i, j, k, error = 0; // All variables declared here are in every process
 double A[N][N], B[N][N], C[N][N], D[N][N], sum;
 double A1[N][N]; // used in slaves to hold scattered a
 double C1[N][N]; // used in slaves to hold their result
 double time1, time2; // use clock for timing
 int P; // P, number of processes
 int blksz; // used to define blocksize in matrix multiplication

 SZ_Init(P); // this initializes MPI environment
 // just master process after this
 if (N % P != 0) {
 error = -1;
 printf("Error -- N/P must be an integer\n");
 }

 for (i = 0; i < N; i++) { // set some initial values for A and B
 for (j = 0; j < N; j++) {
 A[i][j] = j*1;
 B[i][j] = i*j+2;
 }
 }

 for (i = 0; i < N; i++) { // sequential matrix multiplication
 for (j = 0; j < N; j++) {
 sum = 0;
 for (k=0; k < N; k++) {
 sum += A[i][k]*B[k][j];
 }
 D[i][j] = sum;
 }
 }

 time1 = SZ_Wtime(); // record time stamp
 SZ_Parallel_begin

 SZ_Scatter(A,A1); // Scatter A array into A1
 SZ_Broadcast(B); // broadcast B array

 blksz = N/P;
 for(i = 0 ; i < blksz; i++) {
 for(j = 0 ; j < N ; j++) {
 sum = 0;
 for(k = 0 ; k < N ; k++) {
 sum += A1[i][k] * B[k][j];
 }
 C1[i][j] = sum;
 }
 }

After call

to SZ_Init()

only

master

process

executed

code, until

a parallel

section.

Parallel

section

All

processes

executing

All the variables declared

here are duplicated in

each process. All

initializations here will

apply to all copies of the

variables.

36

 SZ_Gather(C1,C); // gather results

 SZ_Parallel_end; // end of parallel, back to just master, note a barrier here

 time2 = SZ_Wtime(); // record time stamp

 int error = 0; // check sequential and parallel versions same answers, within rounding
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 if ((C[i][j] - D[i][j] > 0.001) || (D[i][j] - C[i][j] > 0.001)) error = -1;
 }
 }

 if (error == -1) printf("ERROR, sequential and parallel code give different answers.\n");
 else printf("Sequential and parallel code give same answers.\n");

 printf("elapsed_time = %f (seconds)\n", time2 - time1);

 SZ_Finalize();
 return 0;
}

Suzaku matrixmult.c program

The matrices are initialized with values within the program rather than reading an input file. The
sequential and parallel results are checked against each other in the code. The matrix multiplication
algorithm implemented is the same as in a previous MPI assignment. Matrix A is scattered across
processes and matrix B is broadcast to all processes. SZ_Broadcast(), SZ_Scatter(),and SZ_Gather()
must only be called within a parallel region and correspond to the MPI routines for broadcast, scatter
and gather.

After

SZ_parallel_

end, only

master

process

executed

code.

37

2 Workpool Version 1

Adding and Multiplying Numbers

// Suzaku Workpool pattern version 1 Application: Adding and multiplying numbers. B. Wilkinson April 3, 2015
#include <stdio.h>
#include <string.h>
#include "suzaku.h"

#define T 6 // number of tasks, max = INT_MAX - 1
#define D 10 // number of data items in each task, doubles only
#define R 2 // number of data items in result of each task, doubles only

// No arrays need to be declared for Suzaku. Following used in this particular application, not required in general

double workpool_result[T][R]; // Final results computed by workpool, in gather()
double task[T][D]; // Initial data, T tasks, each task D elements, created by initialize() for
testing

// workpool functions to be provided by programmer:

void init(int *tasks, int *data_items, int *result_items) {
 *tasks = T;
 *data_items = D;
 *result_items = R;
 return;
}

void diffuse(int *taskID,double output[D]) {
 int j; // taskID not used
 static int temp = 0; // only initialized first time function called
 for (j = 0; j < D; j++)
 output[j] = ++temp; // set elements to consecutive data values
}

void compute(int taskID, double input[D], double output[R]) {
 // function done by slaves -- simply adding the numbers together, and multiply them
 output[0] = 0;
 output[1] = 1;
 int i;
 for (i = 0; i < D; i++) {
 output[0] += input[i];
 output[1] *= input[i];
 }
 return;
}

void gather(int taskID, double input[R]) { // function done by master collecting slave results
 // Final results computed by master, uses taskID
 int j;
 for (j = 0; j < R; j++) {
 workpool_result[taskID][j] = input[j];
 }
}

// additional routines used in this application

void initialize() { // create initial data for sequential testing, not used by workpool

 int i,j;
 int temp = 0;
 for (i = 0; i < T; i++) { // initialize data
 for (j = 0; j < D; j++) // set elements to consecutive data values
 task[i][j] = ++temp;

38

 }
 printf("Initial data\n"); // print out data
 for (i = 0; i < T; i++) {
 for (j = 0; j < D; j++)
 printf(" %5.2f",task[i][j]);
 printf("\n");
 }
}

void compute_seq() { // Compute results sequentially and print out

 int i,j;
 double seq_result[T][D]; //** Final results computed sequentially
 printf("Sequential results, add and multiply elements\n"); // print out results
 for (i = 0; i < T; i++) {
 seq_result[i][0] = 0;
 seq_result[i][1] = 1;
 for (j = 0; j < D; j++) {
 seq_result[i][0] += task[i][j]; // add up all numbers in task result in [0]
 seq_result[i][1] *= task[i][j]; // multiply up all numbers in task result in [1]
 }
 printf("%5.2f ", seq_result[i][0]); // print result 0
 printf("%5.2e", seq_result[i][1]); // print result 1
 printf("\n");
 }
}

int main(int argc, char *argv[]) {
 // All variables declared here are in every process
 int i;
 int P; // number of processes, set by SZ_Init(P)

 SZ_Init(P); // initialize MPI message-passing, sets P to be number of
processes

 printf("number of tasks = %d\n",T);
 printf("number of data items in each task = %d\n",D);
 printf("number of data items in each result = %d\n",R);

 initialize(); // create initial data for sequential testing, not used by workpool
 compute_seq(); // compute results sequentially and print out

 SZ_Parallel_begin

 SZ_Workpool(init,diffuse,compute,gather);

 SZ_Parallel_end; // end of parallel

 printf("\nWorkpool results\n"); // print out workpool results
 for (i = 0; i < T; i++) {
 printf("%5.2f ", workpool_result[i][0]); // result
 printf("%5.2e", workpool_result[i][1]); // result
 printf("\n");
 }
 SZ_Finalize();
 return 0;
}

39

Sample output

40

Version with debug messages
 Sample output:

This version could be used for educational purposes.

41

Monte Carlo calculation

// Suzaku Workpool pattern version 1 -- Application: Monte Carlo Pi. B. Wilkinson April 4, 2015

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>

#include "suzaku.h"

// required Suzaku constants
#define T 100 // number of tasks, max = INT_MAX - 1
#define D 1 // number of data items in each task, doubles only
#define R 1 // number of data items in result of each task, doubles only

// constant used in computation
#define S 1000000 // sample pts done in a slave

// gobal variable
double total = 0; // final result

// required workpool functions

void init(int *tasks, int *data_items, int *result_items) {
 *tasks = T;
 *data_items = D;
 *result_items = R;
 return;
}

void diffuse(int *taskID,double output[D]) {
 // taskID not used in computation
 static int temp = 0; // only initialized first time function called
 output[0] = ++temp; // set seed to consecutive data value
}

void compute(int taskID, double input[D], double output[R]) {

 int i;
 double x, y;
 double inside = 0;

 srand(input[0]); // initialize random number generator
 for (i = 0; i < S; i++) {
 x = rand() / (double) RAND_MAX;
 y = rand() / (double) RAND_MAX;
 if ((x * x + y * y) <= 1.0) inside++;
 }
 output[0] = inside;
 return;
}

void gather(int taskID, double input[R]) {

 total += input[0]; // aggregate answer
}

// additional routines used in this application

double get_pi() {

 double pi;
 pi = 4 * total / (S*T);
 printf("\nWorkpool results, Pi = %f\n",pi); // print out workpool results

42

}

int main(int argc, char *argv[]) {
 // All variables declared here are in every process
 int i;
 int P; // number of processes, set by SZ_Init(P)
 double time1, time2; // for timing

 SZ_Init(P); // initialize MPI environment, sets P to number of processes

 printf("number of tasks = %d\n",T);
 printf("number of samples done in slave per task = %d\n",S);

 time1 = SZ_Wtime(); // record time stamp
 SZ_Parallel_begin // start of parallel section

 SZ_Workpool(init,diffuse,compute,gather);

 SZ_Parallel_end; // end of parallel
 time2 = SZ_Wtime(); // record time stamp

 get_pi(); // calculate final result
 printf("elapsed_time = %f (seconds)\n", time2 - time1);

 SZ_Finalize();

 return 0;
}

Sample output

_

43

Matrix multiplication

// Suzaku Workpool pattern version 1 -- Application: Matrix Multiplication. B. Wilkinson April 5, 2015

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include "suzaku.h"

// required Suzaku constants
#define T 100 // number of tasks, max = INT_MAX - 1
#define D 6 // number of data items in each task, 3 elements of row A and 3 elements of column B
#define R 1 // number of data items in result of each task

#define N 3 // size of arrays

double A[N][N], B[N][N], C[N][N], Cseq[N][N];

// required workpool functions

void init(int *tasks, int *data_items, int *result_items) {
 *tasks = T;
 *data_items = D;
 *result_items = R;
 return;
}

void diffuse(int taskID,double output[D]) { // uses same approach as Seeds sample but inefficient copying
arrays
 // taskID used in computation
 int i;
 int a, b;
 a = taskID / N;
 b = taskID % N;
 for (i = 0; i < N; i++) { //Copy one row of A and one column of B into output
 output[i] = A[a][i];
 output[i+N] = B[i][b];
 }
 return;
}

void compute(int taskID, double input[D], double output[R]) {

 int i;
 output[0] = 0;
 for (i = 0; i < N; i++) {
 output[0] += input[i] * input[i+N];
 }
 return;
}

void gather(int taskID, double input[R]) {

 int a,b;
 a = taskID / 3;
 b = taskID % 3;
 C[a][b]= input[0];
 return;
}

// additional routines used in this application

void initialize() { // initialize arrays

44

 int i,j;
 for (i = 0; i < N; i++){
 for(j = 0; j < N; j++) {
 A[i][j] = i + N * j + 1;
 B[i][j] = j + N * i + 1;
 }
 }
 return;
}

void seq_matrix_mult(double A[N][N], double B[N][N], double C[N][N]) {

 int i,j,k;
 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++) {
 C[i][j] = 0;
 for (k = 0; k < N; k++)
 C[i][j] += A[i][k] * B[k][j];
 }
 return;
}

void print_array(double array[N][N]) { // print out an array

 int i,j;
 for (i = 0; i < N; i++){
 printf("\n");
 for(j = 0; j < N; j++) {
 printf("%5.2f ", array[i][j]);
 }
 }
 printf("\n");
 return;
}

int main(int argc, char *argv[]) {
 // All variables declared here are in every process
 int i;
 int P; // number of processes, set by SZ_Init(P)
 double time1, time2; // use clock for timing

 SZ_Init(P); // initialize MPI environment, sets P to number of processes

 initialize(); // initialize input arrays
 printf("Array A");
 print_array(A);
 printf("Array B");
 print_array(B);

 seq_matrix_mult(A,B,Cseq);
 printf("Multiplication sequentially");
 print_array(Cseq);

 time1 = SZ_Wtime (); // record time stamp
 SZ_Parallel_begin // start of parallel section

 SZ_Workpool(init,diffuse,compute,gather);

 SZ_Parallel_end; // end of parallel
 time2 = SZ_Wtime(); // record time stamp

 printf("Workpool results");
 print_array(C); // print final result
 printf("Elapsed_time = %f (seconds)\n", time2 - time1);

 SZ_Finalize();

45

 return 0;
}

Sample output (Note number of processes does not have to be the same as number of elements

46

3. Workpool version 2

Test program with different data types

A sample usage is in test_workpool2.c, shown below that demonstrates different data types that can be
used with put and get:

// Suzaku Workpool version 2 with put and get test program
// B. Wilkinson Nov 16, 2015

#include <stdio.h>
#include "suzaku.h"

#define T 4 // number of tasks, max = INT_MAX - 1

// workpool functions to be provided by programmer:

void init(int *tasks) { // sets number of tasks
 *tasks = T;
 return;
}

void diffuse(int taskID) {
 int j;
 char w[] = "Hello World";
 static int x = 1234; // only initialized first time function called
 static double y = 5678;
 double z[2][3];
 z[0][0] = 357;
 z[1][1] = 246;

 SZ_Put("w",w);
 SZ_Put("x",&x);
 SZ_Put("y",&y);
 SZ_Put("z",z);

 printf("Diffuse Task sent: taskID = %2d, w = %s, x = %5d, y = %8.2f, z[0][0] = %8.2f, z[1][1] = %8.2f\n",taskID, w,
x, y,z[0][0],z[1][1]);

 x++;
 y++;

 return;
}

void compute(int taskID) { // simply passing data multiplied by 10 in a different order
 char w[12] = "-----------";
 int x = 0;
 double y = 0;
 double z[2][3];
 z[0][0] = 0;
 z[1][1] = 0;

 SZ_Get("z",z);
 SZ_Get("x",&x);
 SZ_Get("w",w);
 SZ_Get("y",&y);

 printf("Compute Task received: taskID = %2d, w = %s, x = %5d, y = %8.2f, z[0][0] = %8.2f, z[1][1] = %8.2f\n",taskID,
w, x, y,z[0][0],z[1][1]);
 x = x * 10;
 y = y * 10;
 z[0][0] = z[0][0] * 10;

47

 z[1][1] = z[1][1] * 10;
 printf("Compute Result: taskID = %2d, w = %s, x = %5d, y = %8.2f, z[0][0] = %8.2f, z[1][1] = %8.2f\n",taskID, w,
x, y,z[0][0],z[1][1]);

 SZ_Put("xx",&x); // use different names for test, could have been same names
 SZ_Put("yy",&y);
 SZ_Put("zz",z);
 SZ_Put("ww",w)

 return;
}

void gather(int taskID) { // function done by master collecting slave results. Final results computed by master
 char w[12] = "-----------";
 int x = 0;
 double y = 0;
 double z[2][3];
 z[0][0] = 0;
 z[1][1] = 0;

 SZ_Get("ww",w);
 SZ_Get("zz",z);
 SZ_Get("xx",&x);
 SZ_Get("yy",&y);

 printf("Gather Task received: taskID = %2d, w = %s, x = %5d, y = %8.2f, z[0][0] = %8.2f, z[1][1] = %8.2f\n",taskID,
w, x, y,z[0][0],z[1][1]);

 return;
}

int main(int argc, char *argv[]) {
 int i; // All variables declared here are in every process
 int P; // number of processes, set by SZ_Init(P)

 SZ_Init(P); // initialize MPI message-passing environment
 // sets P to be number of processes

 printf("number of tasks = %d\n",T);

 SZ_Parallel_begin

 SZ_Workpool2(init,diffuse,compute,gather);

 SZ_Parallel_end; // end of parallel

 SZ_Finalize();

 return 0;
}

test_workpool2.c

Note how the order of put and get are not the same although they could be the same. Also the names
used to identify the variables are chosen by the programmer. (They are limited to eight characters in the
current implementation for simplicity.)
Sample output is given below:

48

49

Matrix Multiplication

A program implementing matrix multiplication in the same way as the Seeds sample matrix
multiplication program called matrixmult_workpool2.c is given below:

// Suzaku Workpool pattern version 2 -- Application: Matrix Multiplication
// B. Wilkinson Nov 16, 2015

#include <stdio.h>
#include "suzaku.h"

#define T 9 // required Suzaku constant, number of tasks, max = INT_MAX - 1
#define N 3 // size of matrices

double A[N][N], B[N][N], C[N][N], Cseq[N][N];

// required workpool functions

void init(int *tasks) {
 *tasks = T;
 return;
}

void diffuse(int taskID) { // same approach as Seeds sample but inefficient copying arrays
 // taskID used in computation
 int i;
 int a, b;
 double rowA[3],colB[3];

 a = taskID / N;
 b = taskID % N;
 for (i = 0; i < N; i++) { //Copy one column of B into output, do not need to copy row of A
 colB[i] = B[i][b];
 }

 SZ_Put("rowA",A[a]);
 SZ_Put("colB",colB);

 return;
}

void compute(int taskID) {

 int i;
 double out;
 double rowA[3],colB[3];

 SZ_Get("rowA",rowA);
 SZ_Get("colB",colB);

 out = 0;
 for (i = 0; i < N; i++) {
 out += rowA[i] * colB[i];
 }

 SZ_Put("out",&out);

 return;

50

}

void gather(int taskID) {

 int a,b;
 double answer;
 SZ_Get("out",&answer);
 a = taskID / 3;
 b = taskID % 3;
 C[a][b]= answer;

 return;
}

// additional routines used in this application

void initialize() { // initialize arrays

 int i,j;
 for (i = 0; i < N; i++){
 for(j = 0; j < N; j++) {
 A[i][j] = i + N * j + 1;
 B[i][j] = j + N * i + 1;
 }
 }
 return;
}

void seq_matrix_mult(double A[N][N], double B[N][N], double C[N][N]) {

 int i,j,k;
 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++) {
 C[i][j] = 0;
 for (k = 0; k < N; k++)
 C[i][j] += A[i][k] * B[k][j];
 }
 return;
}

void print_array(double array[N][N]) { // print out an array

 int i,j;
 for (i = 0; i < N; i++){
 printf("\n");
 for(j = 0; j < N; j++) {
 printf("%5.2f ", array[i][j]);
 }
 }
 printf("\n");
 return;
}

int main(int argc, char *argv[]) {
 // All variables declared here are in every process
 int i;
 int P; // number of processes, set by SZ_Init(P)
 double time1, time2; // for timing

51

 SZ_Init(P); // initialize MPI environment, sets P to number of processes

 initialize(); // initialize input arrays
 printf("Array A");
 print_array(A);
 printf("Array B");
 print_array(B);

 seq_matrix_mult(A,B,Cseq);
 printf("Multiplication sequentially");
 print_array(Cseq);

 time1 = SZ_Wtime(); // record time stamp
 SZ_Parallel_begin // start of parallel section

 SZ_Workpool2(init,diffuse,compute,gather);

 SZ_Parallel_end; // end of parallel
 time2 = SZ_Wtime(); // record time stamp

 printf("Workpool results");
 print_array(C); // print final result
 printf("Elapsed_time = %f (seconds)\n", time2 - time1);

 SZ_Finalize();

 return 0;
}

Note in Seeds it is necessary to copy each row of A into a separate array for the put operation but in the
Suzaku version it is not necessary as elements in each row are stored in consecutive locations in the C
language and we can simply refer to the pointer to the row (A[a]).

52

4. Workpool version 3

1. test1_workpool3.c

Program to test task queue and messaging:

// Suzaku Dynamic Workpool3 -- Queue test
// B. Wilkinson Nov 23, 2015

#include <stdio.h>
#include <string.h>
#include "suzaku.h"

// workpool functions to be provided by programmer:

void init(int *T) { // insert initial tasks in task queue

 SZ_Master { // only master can insert tasks
 printf("Init() inserting 0 and 1 into queue task\n");
 SZ_Insert_task(0); // add some tasks
 SZ_Insert_task(1);
 }
 return;
}

void diffuse(int task_no) { // allows programmer to add additional information to task before sending to slave
 char message[] = "Hello world";
 char abc[] = "abc";

 if (task_no == 0) { SZ_Put("message",message); } else {SZ_Put("message",abc);}
 printf("Diffuse, -- Next Task = %d\n",task_no);

 return;
}

void compute(int task_no) {

 int i;
 int tasks[4];
 int task;
 int slave;
 char message [20];

 for (i = 0; i < 4;i++) tasks[i] = -1;

 slave = SZ_Get_process_num();

 SZ_Get("message",message); // get task
 printf("Slave %d -- Task received. Task = %d, message = %s\n",slave,task_no,message);

 // some computation, add new tasks

 if (task_no == 1) { // taskID 1 generates new tasks
 tasks[0] = 6;
 tasks[1] = 7;
 }
 SZ_Put("tasks",tasks);

 return;
}

void gather(int task_no) {

 int i;
 int tasks[4];

 SZ_Get("tasks",tasks);

 printf("Gather -- Task = %d received. ",task_no);

53

 for (i = 0; i < 4;i++) {
 if (tasks[i] != -1) {
 SZ_Insert_task(tasks[i]);
 printf("New task %d added to queue. ",tasks[i]);
 }
 }
 printf("\n");

 return;
}

int main(int argc, char *argv[]) {
 int i; // All variables declared here are in every process
 int P; // number of processes, set by SZ_Init(P)

 SZ_Init(P); // initialize MPI message-passing environment
 // sets P to be number of processes
 SZ_Parallel_begin

 SZ_Workpool3(init,diffuse,compute,gather);

 SZ_Parallel_end; // end of parallel

 SZ_Finalize();

 return 0;
}

Sample output

54

2. Shortest path problem

From page 214, Parallel Programming Techniques and Applications, 2nd ed. by B. Wilkinson, Prentice
Hall 2005.

Sequential version, shortest_path.c:
// shortest path problem, sequential version B. Wilkinson Nov 25, 2015
#include <stdio.h>
#include <string.h>
#define N 6 // number of nodes
#define QSIZE 10 // size of queue

int w[N][N]; // Adjacency matrix for w
int dist[N]; //Current minimum distances
int newdist_j;

int queue[QSIZE]; // task queue
int queue_front; // task queue index for next task to add
int queue_rear; // task queue index for next item to remove
int q_no_tasks; // number of items in queue

void print_dist() {
 int i;
 printf("Current minimum distances = ");
 for (i = 0; i < N; i++)
 printf("%3d ", dist[i]);
 printf("\n");
 return;
}

int queue_insert(int taskID) { // insert task into task queue
 int status;
 status = 0;
 if (q_no_tasks == QSIZE) {
 status = -1; // Queue full, no task added
 } else {
 queue[queue_front] = taskID; // Task added
 q_no_tasks = q_no_tasks + 1;
 queue_front = (queue_front + 1) % QSIZE; // front points to next free space to insert
 status = q_no_tasks; // returns number of tasks in queue
 }
 return status;
}

int queue_remove(int *taskID) { // remove task from task queue
 int status;
 status = 0;
 if (q_no_tasks == 0) {
 status = -1; // Queue empty
 } else {
 *taskID = queue[queue_rear]; // Task removed
 q_no_tasks = q_no_tasks - 1;
 queue_rear = (queue_rear + 1) % QSIZE; // rear points to next item to remove
 status = q_no_tasks; // returns number of tasks in queue
 }
 return status;
}

void queue_print() { // for testing
 int i;
 printf("Contents of queue: ");
 if (q_no_tasks == 0) printf("Queue empty\n");

 for(i = 0; i < q_no_tasks; i++) {
 printf("%d ",queue[(queue_rear + i) % QSIZE]); // print queue[(rear + i) % QSIZE]
 }
 printf("\n");
 return;
}

void queue__init() { // initialize to zero

55

 int i;
 queue_front = 0; // task queue index for next task to add
 queue_rear = 0; // task queue index for next item to remove
 q_no_tasks = 0; // number of items in queue
 return;
}

int main(int argc, char *argv[]) {
 int i,j;

 for (i = 0; i < N; i++) dist[i] = 99999; // initialize to greater than the max possible distance
 dist[0] = 0; // distance from first node to itself = zero

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 w[i][j] = -1; // initialize to no connection
 w[0][1] = 10; // set specific connections
 w[1][2] = 8;
 w[1][3] = 13;
 w[1][4] = 24;
 w[1][5] = 51;
 w[2][3] = 14;
 w[3][4] = 9;
 w[4][5] = 17;

 printf("Adjacency matrix for w\n");
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++)
 printf("%3d ", w[i][j]);
 printf("\n");
 }

 queue__init();
 queue_insert(0); // insert first node 0 into queue
 queue_print();
 while (queue_remove(&i) != -1) { // vertex i from queue
 printf("Vertex %d removed ",i);
 queue_print();print_dist();
 for (j = 0; j < N; j++) { // check each dest. j from vertex i, seq. order (j = 0; j < N; j++), book order j = N-1; j >= 0; j--
 if (w[i][j] != -1) { // if destination j connected directly
 newdist_j = dist[i] + w[i][j]; // distance to j thro i using current shortest distance to i
 if (newdist_j < dist[j]) { // update shortest distance to j if shorter
 dist[j] = newdist_j;
 if (j < N-1) { // do not add last vertex (destination)
 queue_insert(j);
 printf("New shorter distance to vertex %d found. Vertex added to queue.\n",j);
 queue_print();print_dist();
 }
 }
 }
 }
 }

 return 0;

}

Sample output

56

57

Workpool version: shortpath_workpool3.c

// Suzaku Workpool version 3 -- Shortest path B. Wilkinson Nov 25, 2015

#include <stdio.h>
#include <string.h>
#include "suzaku.h"
 // shortest path data
#define N 6 // number of nodes
int w[N][N]; // Adjacency matrix for w. Each process will have a copy of this without needing to broadcast it
int dist[N]; // Current minimum distances. Each prcess will have their own copy
int newdist_j;

// workpool functions to be provided by programmer:

void init(int *T) { // initialize w and dist (all processes) and insert initial tasks in task queue (master)

 int i,j;

 for (i = 0; i < N; i++) dist[i] = 99999; // initialize to greater than the max possible distance
 dist[0] = 0; // distance from first node to itself = zero

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 w[i][j] = -1; // initialize to no connection
 w[0][1] = 10; // set specific connections, matches values in book
 w[1][2] = 8;
 w[1][3] = 13;
 w[1][4] = 24;
 w[1][5] = 51;
 w[2][3] = 14;
 w[3][4] = 9;
 w[4][5] = 17;

 SZ_Master {
 SZ_Insert_task(0); // insert first node 0 into queue, strictly only the master needs to do this
 printf("Init() inserting 0 into task queue\n"); // only the queue in the master if used
 }
 return;
}

void diffuse(int taskID) { // diffuse attaches the current distances

 SZ_Put("dist",dist); // from global array dist[] in master

 printf("Diffuse Task %d sent with dist %3d %3d %3d %3d %3d %3d\n",taskID,dist[0],dist[1],dist[2],dist[3],dist[4],dist[5]);

 return;
}

void compute(int taskID) {

 int i,j;
 int new_tasks[N]; // max of N new tasks
 int slave;

 SZ_Get("dist",dist); // update array dist[] in slave

 slave = SZ_Get_process_num();

 for (i = 0; i < N; i++) new_tasks[i] = 0;

 printf("Slave %d Task %d recvd with dist%3d %3d %3d %3d %3d
%3d\n",slave,taskID,dist[0],dist[1],dist[2],dist[3],dist[4],dist[5]);

 i = 0;
 for (j = 0; j < N; j++) { // check each destination j from vertex taskno, sequential order
 if (w[taskID][j] != -1) { // if destination j connected directly
 newdist_j = dist[taskID] + w[taskID][j]; // distance to j thro i using current shortest distance to i
 if (newdist_j < dist[j]) { // update shortest distance to j if shorter
 dist[j] = newdist_j;
 if (j < N-1) { // do not add last vertex (destination)
 new_tasks[i] = j;

58

 i++;
 printf("Slave %d Task %d New shorter dist. to vertex %d found. Vertex added to result\n",slave,taskID,j);
 }
 }
 }
 }

 printf("Slave %d Task %d Tasks generated %2d,%2d,%2d,%2d,%2d,%2d, current dist. %3d %3d %3d %3d %3d
%3d\n",slave,taskID,new_tasks[0],new_tasks[1],new_tasks[2],new_tasks[3],new_tasks[4],new_tasks[5],dist[0],dist[1],dist[2],dist[3],d
ist[4],dist[5]);

 SZ_Put("result",new_tasks);
 SZ_Put("dist",dist);

 return;
}

void gather(int taskID) {

 int i;
 int dist_recv[N];
 int new_tasks[N]; // max of N new task

 SZ_Get("result",new_tasks); // this will only get the first added task
 SZ_Get("dist",dist_recv);

printf("Gather Task %d Tasks received %2d,%2d,%2d,%2d,%2d,%2d, dist. received %3d %3d %3d %3d %3d
%3d\n",taskID,new_tasks[0],new_tasks[1],new_tasks[2],new_tasks[3],new_tasks[4],new_tasks[5],dist_recv[0],dist_recv[1],dist_recv[
2],dist_recv[3],dist_recv[4],dist_recv[5]);

 for (i = 0; i < N; i++)
 if (dist_recv[i] < dist[i]) dist[i] = dist_recv[i]; // this will update dist in master. Possible received values on the smallest

 for (i = 0; i < N; i++) {
 if (new_tasks[i] != 0) {
 SZ_Insert_task(new_tasks[i]);
 }
 }

printf("Gather Task %d current dist. %3d %3d %3d %3d %3d %3d\n",taskID,dist[0],dist[1],dist[2],dist[3],dist[4],dist[5]);

 return;
}

int main(int argc, char *argv[]) {
 // All variables declared here are in every process
 int i,j;
 int P; // number of processes, set by SZ_Init(P)

 SZ_Init(P); // initialize MPI message-passing environment
 // sets P to be number of processes
 SZ_Parallel_begin

 SZ_Workpool3(init,diffuse,compute,gather);

 SZ_Parallel_end; // end of parallel

 printf("\nFinal results: distances %3d %3d %3d %3d %3d %3d\n",dist[0],dist[1],dist[2],dist[3],dist[4],dist[5]);

 SZ_Finalize();

 return 0;
}

Sample output

59

60

5 Pipeline pattern

pipeline_sort.c

A pipeline to implement insert sort:

The basic algorithm for process Pi is:

Receive x from Pi-1
if (stored_number < x) {

 send stored_number to Pi
 x = stored_number;

} else send x to Pi

pipeline_sort.c implements this pipeline pattern:

// Suzaku pipeline sorting using a pipeline B. Wilkinson Dec 3rd, 2015
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "suzaku.h" // Basic Suzaku macros

#define N 1 // Size of data being sent
#define P 4 // Number of processes and number of numbers, each process only handles one number

void init(int *T,int *D,int *R) { // initialization. R not used
 *T = 4;
 *D = 1;
 //*R = 1; // not used
 srand(999);

return;
}

void diffuse (int taskID,double output[N]) {
 if (taskID < P) output[0] = rand()% 100; // P numbers, a number between 0 and 99
 else output[0] = 999; // otherwise terminator

return;
}

void compute(int taskID, double input[N], double output[N]) { // Only input[0] used in this application static
double largest = 0;
 if (input[0] > largest) {
 output[0] = largest; // copy current largest into send array
 largest = input[0]; // replace largest with received number

Compare

x
min

P
1

Compare

Smallest number

P
2

Compare

P
3

Next smallest number

Series of number
to sort

x
n-1

, … x
1
, x

0

Larger numbers

61

 } else {
 output[0] = input[0]; // copy received number into send array
 }

return;
}

void gather(int taskID,double input[N]) {
 if (input[0] == 999) SZ_terminate();

return;
}

int main(int argc, char *argv[]) {
 int p; // p is actual number of processes when executing program
 SZ_Init(p); // initialize MPI message-passing environment
 if (p != P) // number of processes hardcoded
 printf("ERROR number of processes must be %d\n",P);

 SZ_Parallel_begin // parallel section, all processes do this

 SZ_Debug();
 SZ_Pipeline(init,diffuse,compute,gather);

 SZ_Parallel_end; // end of parallel

 SZ_Finalize();

 return 0;
}

Sample output:

62

63

5. Generalized pattern
Sample programs

1. all-to-all pattern, pattern_test.c

This program simply tests the all-to-all pattern.

// testing generalized patterns, pattern_test.c B. Wilkinson Dec 19, 2015 Notes: master acts as one slave
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "suzaku.h" // Basic Suzaku macros

//Declared as constants to allow static arrays for input and output
#define D 2 // # of data items in slave data.
#define P 4 // Number of processes -- this code must be run only with this number of processes

void compute(int taskID, double B[P][D], double A[D]) { // each slave

 printf("Slave %d step %d A[0]=%5.2f, B[0][0]=%5.2f, B[1][0]=%5.2f, B[2][0]=%5.2f, B[3][0]=%5.2f\n",
SZ_Get_process_num(), taskID,A[0],B[0][0],B[1][0],B[2][0],B[3][0]);

 return;
}

int main(int argc, char *argv[]) {
 int i,j,p; // p is actual number of processes when executing program
 double A[D],B[P][D]; // A is the slave data, B holds data sent from other slaves
 int steps = 2; // number of time steps

 SZ_Init(p); // initialize MPI message-passing environment

 if (p != P) printf("ERROR Program must be run with %d processes\n",P);

 SZ_Parallel_begin // parallel section, all processes do this

 for (i = 0; i < D; i++) { // all processes
 A[i] = SZ_Get_process_num();
 for (j = 0; j < P; j++){ // initialize data
 B[j][i] = 0;
 }
 }

 SZ_Pattern_init("all-to-all",D); // set up slave interconnections

 SZ_Print_connection_graph(); // for checking

 //SZ_Broadcast(A); // broadcast initial data to all slaves

// not actually needed here as data is initialized in each process
 for (i = 0; i < steps; i++) {

 compute(i, B, A); // slaves execute compute, master acts as one slave
 SZ_Generalized_send(A, B); // sent compute results to connected slaves

 }
 SZ_Gather(A,A); // collect results from slaves, gather()

 SZ_Parallel_end; // end of parallel
 SZ_Finalize();
 return 0;
}

64

Sample output

Notice compute simply prints out the input and output arrays. The first iteration, there are at their
initialized values. The second iteration shows them updated after the messaging done by
SZ_Generalized_send(A, B).

65

Master

Slaves

compute()

diffuse() gather()

compute() compute()

2. Sorting using a generalized pipeline pattern – gen_pipeline_sort.c

The basic pipeline is shown below described in terms of diffuse, compute and gather:

Here, the master does not act as one slave. It generates numbers and receives the final results.

// Sorting using a generalized pattern pipeline B. Wilkinson Dec 19, 2015.
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "suzaku.h" // Basic Suzaku macros

#define D 1 // # of data items in slave data.
#define P 4 // Number of processes -- must be run only with this number of processes,
int main(int argc, char *argv[]) {
 int i, j, p,pid; // p is actual number of processes when executing program
 int T = 3 * P; // number of time steps
 double A[D]; // data to send (D = 1).
 double B[P][D]; // received data, from each source
 static double largest = 0;

 for (i = 0; i < D; i++) A[i] = 0; // initialize to zero
 for (i = 0; i < P; i++) // initialize receive so can see what received
 for (j = 0; j < D; j++)
 B[i][j] = -999;

 srand(1); // initialize rand()

 SZ_Init(p); // initialize MPI message-passing environment
 if (p != P) // number of processes hardcoded
 printf("ERROR number of processes must be %d\n",P);

 SZ_Parallel_begin // parallel section, all processes do this

 SZ_Pattern_init("pipeline",D); // set up slave interconnections
 SZ_Print_connection_graph(); // for checking

 for (i = 0; i < T; i++) {

 pid = SZ_Get_process_num(); // identify process

 if (pid ==0) { // master generates next number to sort, ends with a terminator

 if (i < P) A[0] = rand()% 100; // P numbers, a number between 0 and 99
 else A[0] = 999; // otherwise terminator
 printf("Master sends %3.0f and receives %3.0f\n",A[0],B[0][0]);

66

 } else { // slaves execute compute, using B to create A.

 if (B[0][0] > largest) {
 A[0] = largest; // copy current largest into send array
 largest = B[0][0]; // replace largest with received number
 } else {
 A[0] = B[0][0]; // copy received number into send array
 }

 }

 SZ_Generalized_send(A,B); // sent results, includes master to slave, slave to master
 SZ_Barrier(); // wait for every process to complete

 }

 SZ_Parallel_end; // end of parallel

 SZ_Finalize();

 return 0;
}

Notice A and B are static arrays to match the generalized send routine. The program could have been written with
specific diffuse, compute and gather routines.

Sample output:

3. Stencil pattern – gen_heat.c

67

The following solve the two-dimensional heat distribution problem. For simplicity, only 16 points are
used and one of 16 processes for each point. The approach can be be extended to have each process
handle multiple points. This is left as an exercise.

// Basic heat distribution program to demostrate synchronous stencil program. gen_heat.c B. Wilkinson Dec 28, 2015
// simplistic version with each process doing one point

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "suzaku.h" // Basic Suzaku macros

#define D 1 // # of data items in slave data
#define P 16 // Number of processes -- this code must be run only with this number of processes
#define N 6 // Number of pts in each dimension, to include border 6 x 6
#define M 4 // Number of pts in each dimension, not including border 4 x 4

int main(int argc, char *argv[]) {
 int i,j,x,y,t; // loop counters
 int T = 100; // time period
 int p, pid;

 double pts[N][N]; // array of points to include fixed borders
 double A[1]; // point being computed in slave, output array
 double B[P][D]; // input array
 double temp[M][M]; // hardcoded for 4 x 4

 double pts_seq[2][N][N]; // array to do computation sequentailly.
 int current = 0;
 int next = 1;

 SZ_Init(p); // initialize MPI message-passing environment
 if (p != P) printf("ERROR Program must be run with %d processes\n",P);
 printf("Number of points in each dimension = %d\n",N);
 printf("Number of time steps = %d\n",T);

/* -------------------------- Set up inital values ---------------*/
 for(i = 0; i < N; i++) // load inital values into array
 for(j = 0; j < N; j++) // border and inner points = 20
 pts[i][j] = 20; // note C row major order, row i, col j
 for(i = 2; i < N-2; i++)
 pts[0][i] = 100.0; // top row = 100

 printf("Initial numbers"); // print numbers
 for(i = 0; i < N; i++)
 for(j = 0; j < N; j++) {
 if (j == 0) printf("\n");
 printf("%7.2f",pts[i][j]);
 }
 printf("\n");

 // compute values sequentially to check with parallel result, done using Jacobi iteration

 for(i = 0; i < N; i++) // load inital values into array
 for(j = 0; j < N; j++) {
 pts_seq[current][i][j] = pts[i][j];
 pts_seq[next][i][j] = pts[i][j];
 }
 for (t=0; t < T; t++) { // do computation sequentially, using Jacobi iteration
 for (i=1; i < N-1; i++)
 for (j=1; j < N-1; j++)
 pts_seq[next][i][j] = 0.25 * (pts_seq[current][i-1][j] + pts_seq[current][i+1][j] + pts_seq[current][i][j-1] +
pts_seq[current][i][j+1]);
 current = next;
 next = 1 - current;
 }

/* -------------------------Computation-----------------------------------*/

 SZ_Parallel_begin // parallel section, all processes do this

 SZ_Pattern_init("stencil",D); // set up slave interconnections

68

 SZ_Broadcast(pts); // synchronous, includes a barrier
 // Set up initial values in each slave
 pid = SZ_Get_process_num();
 x = pid / M; // row, hardcoded for 16 processes 4 x 4
 y = pid % M; // column
 i = x + 1; // location in pts[][]
 j = y + 1;
 A[0] = pts[i][j]; // copy location in pts[][] into A[0]
 B[0][0] = pts[i][j-1]; // left
 B[1][0] = pts[i][j+1]; // right
 B[2][0] = pts[i-1][j]; // up
 B[3][0] = pts[i+1][j]; // down

 for (t = 0; t < T; t++) { // compute values over time T

 A[0] = 0.25 * (B[0][0] + B[1][0] + B[2][0] + B[3][0]); // slaves execute computation,

\\ master acts as one slave
 SZ_Generalized_send(A,B); // sent compute results in A to B in connected slaves
 }

 SZ_Gather(A,temp); // collect results from slaves (A), into array temp, gather()

 SZ_Parallel_end; // end of parallel

/* ------------------------- Results -----------------------------------*/

 for (x = 0; x < N; x++) { // update inside points
 for(y = 0; y < N; y++) {
 if ((x > 0) && (x < N-1) && (y > 0) && (y < N-1)) { // inside point
 i = x - 1;
 j = y - 1;
 pts[x][y] = temp[i][j];
 }
 }
 }
 printf("Final numbers"); // print numbers
 for (i = 0; i < N; i++) {
 for(j = 0; j < N; j++) {
 if (j == 0) printf("\n");
 printf("%7.2f",pts[i][j]);
 }
 }
 printf("\n");

 int error = 0; // check sequential and parallel versions give same answers
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 if ((pts[i][j] - pts_seq[current][i][j] > 0.001) || (pts_seq[current][i][j] - pts[i][j] > 0.001))
 { error = -1; break;}
 }
 if (error == -1) break;
 }

 if (error == -1) printf("ERROR, sequential and parallel versions give different answers\n");
 else printf("Sequential and parallel versions give same answers within +-0.001\n");

 SZ_Finalize();

 return 0;
}

Sample output:

69

70

4 Printout of patterns – gen_connect_test.c

The following simply prints out the three patterns implemented.

// testing generalized graph gen_connect_test.c B. Wilkinson Dec 28, 2015
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "suzaku.h" // Basic Suzaku macros
#define D 2 // # of data items in slave data.

int main(int argc, char *argv[]) {
 int p; // p is actual number of processes when executing program

 SZ_Init(p); // initialize MPI message-passing environment

 SZ_Parallel_begin // parallel section, all processes do this
 SZ_Pattern_init("all-to-all",D); // set up slave interconnections
 SZ_Master { printf("all-to all pattern\n"); }
 SZ_Print_connection_graph(); // for checking

 SZ_Pattern_init("pipeline",D); // set up slave interconnections
 SZ_Master { printf("pipeline pattern\n"); }
 SZ_Print_connection_graph(); // for checking

 SZ_Pattern_init("stencil",D); // set up slave interconnections
 SZ_Master { printf("stencil\n"); }
 SZ_Print_connection_graph(); // for checking

 SZ_Parallel_end; // end of parallel
 SZ_Finalize();

 return 0;
}

Sample output:

