SUZAKU Pattern Programming Framework Specification

2 - Workpool Pattern Version 1

B. Wilkinson, March 17, 2016

2.1 Workpool

The workpool pattern is like a master-slave pattern but has a task queue that provides load balancing, as shown
below. Individual tasks are given to the slaves. When a slave finishes a task and returns the result, it is given
another task from the task queue, until the task queue is empty. At that point, the master waits until all

Slaves
Compute (B} - - - - - - - m - m - mmmm
Another Task if task
gueue not empty
Result

Task from

]
task queue Aggregate

Task queue answers

Master
outstanding results are returned. The termination condition is the task queue empty and all result collected.

Workpool with a task queue

Algorithm. In the implementation of the workpool described here (version 1), the data items being sent between
the master process and slave processes are limited to 1-D arrays. The programmer deposes the problem into T
tasks. Each task consists of a 1-D array of D doubles with an associated task ID. Each slave result for a task
consists of a 1-D array of R doubles with the associated task 1D. The master sends out tasks to slaves. Slaves
return results and are given new tasks, or a terminator message if there are no more tasks, i.e. if the number of
tasks sent reaches T. The number of tasks can be less than number of slaves, equal to the number of slaves, or
greater than the number of slaves. If the number of tasks is the same as the number of slaves, the workpool
becomes essentially a master-slave pattern.

Programmer-written routines. The Suzaku workpool interface is modeled on the Seeds framework. The
programmer must implement four routines:

e init() Sets values for the number of tasks (T), the number of data items in each task (D), and the
number of data items in each result (R). Called once by all processes at the beginning of the
computation.

o diffuse() Generates the next task when called by the master
e compute() Executed by a slave, takes a task generated by diffuse and generates the corresponding result

1

e gather() Accepts a slave result and uses it to develop the final answer

Slaves

Master

Message passing done by framework

diffuse, compute, and gather routines
diffuse(), compute(), and gather() are dependent upon the application, and often very short.

Workpool code. The workpool itself is implemented by the provided routine SZ_Workpool() placed within a
parallel section. init(), diffuse(), compute(), and gather() are called by SZ_Workpool() and given as input
parameters. They can be re-named to accommodate for example multiple workpools in a single program.

2.2 Program structure

The program structure is shown below and consists of the four programmer routines and the Suzaku routines.
#include <stdio.h>
#include <string.h>
#include "suzaku.h"
void init(int *T, int *D, int *R) {
'r.éturn;
}
void diffuse(int *taskID,double output[D]) {

return;

}
void compute(int taskID, double input[D], double output[R]) {
ir.éturn;
}
void gather(int taskID, double input[R]) {
return;
}
int main(int argc, char *argv([]) {
int P; /I number of processes
SZ_Init(P); /l'initialize MPI message-passing environment

2

SZ Parallel_begin
SZ_ Workpool(init, diffuse, compute, gather);
SZ Parallel_end;

printf("Workpool results\n ... ",); // print out workpool results

SZ_Finalize();
return O;

Workpool program structure

2.3 Signatures of Programmer-Written Routines
Init
void init(int *tasks, int * data_items, int *result_items)

This routine will be called at the beginning of the workpool by all processes. At the very least, it must set
values for number of tasks (T), number of data items in each task (D), and number of data items in each result
(R). The routine may be used for other initialization purposes. There is no implicit synchronization.

Parameters (pointers to integers):
int *tasks Input parameter for the number of tasks
int *data_items Input parameter for the number of data items (doubles) in each task

int *result_items Input parameter for the number of data items (doubles) in result of each task

Limitations: The number of tasks, T, must be equal or less than INT_MAX — 1, but this is very unlikely to be
an issue. For D and R, the limiting factor is the maximum size of dynamic arrays on the platform.

A typical coding sequence would be:

#define T 6 /I number of tasks, one task for each body
#define D 30 /I number of data items in each task
#define R 5 /I number of data items in result of each task

void init(int *tasks, int *data_items, int *result_items) { // all processes execute this at beginning
*tasks = T;
*data_items = D;
*result_items = R;
return;

}

Any names can be used in the formal parameter list.

Diffuse

The signature of this routine is:

void diffuse(int taskID, double output[D])

This routine generates the next task when called by the master.

Parameters:
int task1D Input parameter for the task ID for the associated task
double output[D] Output parameter for the task data, given as an array of D doubles

Notes: taskID is provided by the framework, from O to T - 1. Each time diffuse is called, taskiD is
incremented. taskID is carried with the task throughout the workpool. taskID provides a mechanism to do
specific actions with particular tasks or results. When used by the programmer, taskiD corresponds to a
segment number in Seeds.

Compute
The signature of this routine is:
void compute(int tasklD, double input[D], double output[R])

This routine is executed by a slave. It takes a task generated by diffuse and generates the corresponding result.

Parameters:
int task1D Input parameter for the task ID for the associated task
double input[D] Input parameter for the task data, given as an array of D doubles
double output[R] Output parameter for the result, given as an array of R doubles
Gather

The signature of this routine is:
void gather(int taskID, double input[R])

This routine accepts a slave result and develops the final answer. Called by the master.

Parameters:
int task1D Input parameter for the task ID for the associated task
double input[R] Input parameter for the slave result, given as an array of R doubles

Notes: gather() is used to aggregate the answer from the task results during the workpool operation, and
programmers are free to do this any way they like and whatever the application dictates. To be able to reach the
answer from outside gather, the final answer can be declared globally at the top of the program outside main.

2.4 Signature of Suzaku Workpool Routine

This routine is provided and implements the workpool. It calls init(), diffuse(), compute(), and gather().
SZ_Workpool() must be called within a Suzaku parallel section. The signature of the routine is:

4

void SZ_Workpool (void (*init)(int *T, int *D, int *R),
void (*diffuse)(int *taskIiD,double output[]),
void (*compute)(int taskID, double input[], double output[]),
void (*gather)(int taskID, double input[]))

Parameters:
*init Function pointer to init function
*diffuse Function pointer to diffuse function
*compute Function pointer to compute function
*compute Function pointer to gather function

Notes: The function pointers could have been eliminated if their names were standardized (as in Seeds), e.g.
init, diffuse, compute, and gather, but specifying the function names makes it more obvious which functions are
used by the workpool, and also allows multiple workpools each using different function pointers. No data arrays
need to be declared for Suzaku. These are generated by Suzaku dynamically.

The programmer can implement routines outside the workpool as the need arises. Results from the gather need
to be used to create the final answer and variables declared outside main to be reachable from gather and other
routines.

2.5 Compilation and Execution

Workpool code: The workpool routine SZ_Workpool() is implemented in suzaku.c. It can be compiled with:

mpicc -C -0 suzaku.o suzaku.c

to create an object file suzaku.o (note the -c option). This avoids having to recompile suzaku.c every time you
compile application code.

Application code: SZ_Workpool() does not use suzaku.h itself but since a workpool needs to be within a
parallel section, the application code must include suzaku.h. For the commands below, the two files:

suzaku.h
suzaku.o

must be placed in the same directory as the source file. To compile an application workpool program progl.c,
issue the command:

mpicc -0 progl progl.c suzaku.o
A make file is provided for the sample programs.

Instead of pre-compiling suzaku.c into suzaku.o, one could also compile both suzaku.c and progl.c together
with:

mpicc -0 progl progl.c suzaku.c
To execute progl, issue the command:

mpiexec —n <no_of processes> progl

where <no_of processes> is the number of processes you wish to use. The workpool needs at least two
processes, master and one slave. Note the master does not act as one slave as in the master-slave pattern in Part

1 because collective routines are not used.
2.6 Debug Messages

A version of the SZ_Workpool() routine is provided that
includes print statements to see how the tasks are allocated
slaves and results returned. This version is called
SZ_Workpool_debug() and can be found in suzaku.c. To
rename SZ Workpool() in the application code to
SZ_Workpool _debug() and recompile.

®
o
B
B
i
a3
A
.
a

#A ParallelProg-32 [Running] - Oracle VM VirtualBox

abw@abw-VirtualBox:~/Paralle’
ult_workpool
number
number of data items in each
number of data items in each
Initial data

1.00

21.00

31.00

41.00 L1

51.80 00 53.80 54.

5 sults, add and

HWorkpool r
(]

abw@abw-VirtualBox: ~/ParallelProg/Suzaku

1Prog/Suzakus mplexec -

task = 18
result = 2

59.08 66.00
multiply elements

for task 2
1t from slave 1

for task 3
1t from slave 1

slave 2

BogsdEad @ rghtar

Sample output with debug messages

to

use,

Sample programs
1. Adding and multiplying numbers

/I Suzaku Workpool pattern version 1 Application: Adding and multiplying numbers. B. Wilkinson April 3, 2015
#include <stdio.h>

#include <string.h>

#include "suzaku.h"

#define T 6 /I number of tasks, max = INT_MAX -1
#define D 10 /I number of data items in each task, doubles only
#define R 2 /I number of data items in result of each task, doubles only

/I No arrays need to be declared for Suzaku. Following used in this particular application, not required in general

double workpool_result[T][R]; /l Final results computed by workpool, in gather()
double task[T][D]; /l'Initial data, T tasks, each task D elements, created by initialize() for testing

/I workpool functions to be provided by programmer:

void init(int *tasks, int *data_items, int *result_items) {
*tasks = T;
*data_items = D;
*result_items = R;

return;
}
void diffuse(int *taskID,double output[D]) {

intj; // taskID not used

static int temp = 0; /I only initialized first time function called

for j =0;) <D; j++)

output[j] = ++temp; I/l set elements to consecutive data values

}

void compute(int taskID, double input[D], double output[R]) {
/I function done by slaves -- simply adding the numbers together, and multiply them

output[0] = 0;
output[1] = 1;
inti;
for (i=0;i<D;i++){

output[0] +=input[i];

output[1] *= input[i];

return;
}
void gather(int taskID, double input[R]) { /I function done by master collecting slave results
/I Final results computed by master, uses taskID
intj;
for (j=0;j<R;j++){
workpool_result[taskID][j] = input[j];
}
}
/I additional routines used in this application
void initialize() { /l create initial data for sequential testing, not used by workpool
inti,;
inttemp =0;
for (i=0;i<T;i++){ /[initialize data
for (j =0;j <D;j++) /] set elements to consecutive data values

task[i][j] = ++temp;

}
printf("Initial data\n"); /l print out data
for(i=0;i<T,;i++){

for (j =0;j<D;j++)

printf(" %5.2f" task[i][j]);

printf("\n");
}
}
void compute_seq() { /I Compute results sequentially and print out
inti,;
double seq_result[T][D]; /I** Final results computed sequentially
printf("Sequential results, add and multiply elements\n"); // print out results
for (i=0;i<T;i++){
seq_result[i][0] = O;
seq_result[i][1] = 1;
for (j =0; j<D; j++) {
seq_result[i][0] += task]i][j]; // add up all numbers in task result in [0]
seq_result[i][1] *= task[i][j]; // multiply up all numbers in task result in [1]
}
printf("%5.2f ", seq_result[i][0]); /I print result 0
printf("%5.2e", seq_result[i][1]); /I print result 1
printf("\n");
}
}

int main(int argc, char *argv[]) {

/I All variables declared here are in every process

inti;
int P; /I number of processes, set by SZ_Init(P)
SZ_Init(P); /I initialize MPl message-passing, sets P to be number of processes

printf("number of tasks = %d\n",T);
printf("number of data items in each task = %d\n",D);
printf("number of data items in each result = %d\n",R);

initialize(); /l create initial data for sequential testing, not used by workpool
compute_seq(); /I compute results sequentially and print out

SZ_Parallel_begin

SZ_Workpool(init,diffuse,compute,gather);

SZ Parallel_end; /I end of parallel
printf("\nWorkpool results\n"); /I print out workpool results
for (i=0;i<T;i++){
printf("%5.2f ", workpool_result[i][0]); /I result
printf("%5.2e", workpool_result[i][1]); /I result
printf("\n");

}
SZ_Finalize();
return 0O;

Sample output

*A ParallelProg-32 Clone [Running] - Oracle VM VirtualBox

Termin:

File Edit View Search Terminal Help

0570 abw@abw-VirtualBox: ~/SuzakuTest

abw@abw-VirtualBox:~/SuzakuTest$ mpiexec
number of tasks = 6
number of data items in each task = 10
number of data items in each result = 2
Initial data
1.00 2.00 3.00 4.00 5.00 6.00 7
11.00 12.00 13.00 14.00 15.00 16.00 17
21.00 22.00 23.00 24.00 25.00 26.00 27
31.00 32.00 33.00 34.00 35.00 36.00 37
41.00 42.00 43.00 44.00 45.00 46.00 47
51.00 52.00 53.00 54.00 55.00 56.00 57.

-n 3

.00
.00
.00
.00
.00

00

8.
18.
28.
38.
48.
58.

Sequential results, add and multiply elements

55.00 3.63e+06
155.00 6.70e+11
255.00 1.09e+14
355.00 3.08e+15
455.00 3.73e+16
555.00 . 14e+17

Workpool results

55.00 3.63e+06

155.00 6.70e+11

255.00 1.09e+14

355.00 3.08e+15

455.00 3.73e+16

555.00 2.74e+17
abw@abw-VirtualBox:~/SuzakuTest$ I

. Jworkpool test

ty B o aosrm &

2o EE 0| @ (#)Right

Version with debug messages
Sample output:

r

"j.r:ParallelF‘rcg—32-FINi‘aLlRunmng]—Ora(ieVI\‘I\.’uﬂua!Bm o ||ETE

@ S & abw@abw-VirtualBox: ~/ParallelProg/Suzaku

abw@abw-VvirtualBox:~/ParallelProg/Suzaku$ make addmult_workpool_D

mpicc -o addmult_workpool_D addmult_workpool_D.c suzaku.o
abw@abw-VirtualBox:~/ParallelProg/Suzaku$ mpiexec -n 3 addmult_workpool_D
number of tasks = 6

number of data items in each task = 10

number of data items in each result = 2
Initial data
1.00 2.0 3.00 4.00 5.00 6.00 7.00 8.
11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.
21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.
31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.
41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.
51.00 52.00 53.00 54.00 55.00 56.00 57.00 58.
Sequential results, add and multiply elements
55.00 3.63e+06

155.00 6.70e+11

255.00 1.09%e+14

355.00 3.08e+15

455.00 3.73e+16

555.00 2.74e+17

Master sending initial task © to slave 1
Slave 1 received task ID @

Slave 1 sending result back for task @

Master sending initial task 1 to slave 2
Slave 2 received task ID 1

Master receiving task 0 result from slave
Slave 2 sending result back for task 1

Master sending task 2 to slave 1

Slave 1 received task ID 2

Slave 1 sending result back for task 2

Master receiving task 1 result from slave
Master sending task 3 to slave 2

Slave 2 received task ID 3

Slave 2 sending result back for task 3

Master receiving task 2 result from slave
Master sending task 4 to slave 1

Slave 1 received task ID 4

Slave 1 sending result back for task 4

Master receiving task 3 result from slave
Master sending task 5 to slave 2

Master receiving task 4 result from slave
Master sending terminator to slave 1

Slave 1 received terminator

Slave 2 received task ID 5

Slave 2 sending result back for task S

Master receiving task 5 result from slave
Master sending terminator to slave 2

Slave 2 received terminator

Master finished, 6 tasks sent and received

BB O 6o

A

£
a/
7

Workpool results

55.00 3.63e+06

155.00 6.70e+11

255.00 1.09e+14

355.00 3.08e+15

455.00 3.73e+16

555.00 2.74e+17
abw@abw-VirtualBox:~/ParallelProg/Suzaku$

< m 3

BoOFgEEl O @ ® rotc

This version could be used for educational purposes.
10

2. Monte Carlo Pi calculation
MontePi_workpool.c:

/I Suzaku Workpool pattern version 1 -- Application: Monte Carlo Pi. B. Wilkinson April 4, 2015
#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <time.h>

#include "suzaku.h"

/I required Suzaku constants

#define T 100 /I number of tasks, max = INT_MAX -1
#define D 1 /I number of data items in each task, doubles only
#define R 1 /I number of data items in result of each task, doubles only

/I constant used in computation
#define S 1000000 /l sample pts done in a slave

/I gobal variable
double total = 0; /I final result

/I required workpool functions

void init(int *tasks, int *data_items, int *result_items) {
*tasks = T;
*data_items = D;
*result_items = R;
return;

}

void diffuse(int *taskID,double output[D]) {
/l taskID not used in computation

static int temp = 0; /I only initialized first time function called
output[Q] = ++temp; /] set seed to consecutive data value
}
void compute(int taskID, double input[D], double output[R]) {
inti;
double x, y;

double inside = 0;

srand(input[0]); /[initialize random number generator
for(i=0;i<S;i++){
x =rand() / (double) RAND_MAX;
y =rand() / (double) RAND_MAX;
if((x*x+y*y)<=1.0)inside++;

output[0] = inside;
return;

}

void gather(int taskID, double input[R]) {

total +=input[0]; /l aggregate answer

}
/I additional routines used in this application
double get_pi() {

double pi;

pi =4 * total / (S*T);
printf("\nWorkpool results, Pi = %f\n" pi); /I print out workpool results

11

}

int main(int argc, char *argv[]) {
/I All variables declared here are in every process
inti;
int P; /I number of processes, set by SZ_Init(P)
clock_t timel, time2; // use clock for timing
SZ_Init(P); /[initialize MPI environment, sets P to number of processes

printf("number of tasks = %d\n",T);
printf("number of samples done in slave per task = %d\n",S);

timel = clock(); // record time stamp
SZ_Parallel_begin / start of parallel section

SZ_ Workpool(init,diffuse,compute,gather);

SZ Parallel_end; /I end of parallel
time2 = clock(); // record time stamp

get_pi(); /[calculate final result
printf("elapsed_time =\t%lIf (seconds)\n", (double)(time2 - timel)/CLOCKS_PER_SEC);

SZ Finalize();

return O;

}

Sample output

':’? ParallelProg-32 Clone [Running] - Oracle VM VirtualBox

Terminal File Edit View Search Terminal Help B <

AW <

abw@abw-VirtualBox: ~/SuzakuTest/Workpool

abw@abw-VirtualBox:~/SuzakuTest/Workpool$ mpiexec -n 3 ./MontePi_workpool
number of tasks = 100
number of samples done in slave per task = 1000000

Workpool results, Pi = 3.141763
elapsed_time = 2.603975 (seconds)
abw@abw-VirtualBox:~/SuzakuTest/Workpools [

412PM %

fe o= =R @EJRightCtrl

12

3 Matrix multiplication

matrixmult_workpool.c

/I Suzaku Workpool pattern version 1 -- Application: Matrix Multiplication. B. Wilkinson April 5, 2015
#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <time.h>

#include "suzaku.h"

/I required Suzaku constants

#define T 9 /I number of tasks, max = INT_MAX -1

#define D 6 /I number of data items in each task, 3 elements of row A and 3 elements of column B
#define R 1 /I number of data items in result of each task

#define N 3 /] size of arrays

double A[N][N], B[N][N], C[N][N], Cseq[N][N];
/I required workpool functions

void init(int *tasks, int *data_items, int *result_items) {
*tasks = T;
*data_items = D;
*result_items = R;
return;

}

void diffuse(int taskID,double output[D]) { /[uses same approach as Seeds sample but inefficient copying arrays
/l taskID used in computation
inti;
int a, b;
a=taskID/N;
b =taskID % N;
for (i=0; i <N;i++){ //Copy one row of A and one column of B into output
output[i] = A[a][i];
output[i+N] = B[i][b];

return;

}

void compute(int taskID, double input[D], double output[R]) {

inti;
output[0] = 0;
for (i=0; i <N; i++){
output[0] +=input[i] * input[i+N];

}
return;
}
void gather(int taskID, double input[R]) {
int a,b;
a=tasklD/3;

b =taskID % 3;
Cla][b]= input[0];
return;

}

/I additional routines used in this application

13

void initialize() { // initialize arrays

inti,;
for (i =0; i <N; i++){
for(j=0;j<N;j++){
Al][] =i+ N>*j+1;
BLIl =j+N*i+1;

}

return,;

}
void seq_matrix_mult(double A[N][N], double B[N][N], double C[N][N]) {

inti,j,k;
for (i=0; 1 <N;ji++)
for (j =0;j <N; j++) {
C[i][j] = 0;
for (k =0; k <N; k++)
} Clil[jl += Ali][k] * BIKILI;

return;

}

void print_array(double array[N][N]) { // print out an array

inti,;
for (i =0; i <N; i++)({
printf("\n");
for(j=0;j<N;j++){
printf("%5.2f ", array[i][j]);
}

}
printf("\n");
return;

}

int main(int argc, char *argv[]) {
/I All variables declared here are in every process

inti;

int P; /I number of processes, set by SZ_Init(P)

clock_t timel, time2; // use clock for timing

SZ_Init(P); /[initialize MPI environment, sets P to number of processes
initialize(); /[initialize input arrays

printf("Array A");
print_array(A);
printf("Array B");
print_array(B);

seq_matrix_mult(A,B,Cseq);
printf("Multiplication sequentially");
print_array(Cseq);

timel =clock(); //record time stamp
SZ_Parallel_begin /I start of parallel section

SZ_ Workpool(init,diffuse,compute,gather);

SZ Parallel_end; /I end of parallel
time2 = clock(); // record time stamp

printf("Workpool results");

print_array(C); /I print final result
printf("Elapsed_time =\t%If (seconds)\n", (double)(time2 - timel)/CLOCKS_PER_SEC);

14

SZ_Finalize();

return O;

}

Sample output (Note number of processes does not have to be the same as number of elements

rj;} ParallelProg-32 Clone [Running] - Oracle VM VirtualBox

Termina! File Edit View Search Terminal Help B e

0E abw@abw-VirtualBox: ~/SuzakuTest/Workpool
mpicc -o matrix_mult_workpool matrix_mult_workpool.c suzaku.o
abw@abw-VirtualBox:~/SuzakuTest/Workpool$ mpiexec -n 9 ./matrix_mult_workpool
Array A
1.00 4.00 7.00
2.00 5.00 8.00
3.00 .00 9.00
Array
1.00 .00 3.00
4.00 5.00 6.00
7.00 8.00 9.00
Multiplication sequentially
66.00 78.00 90.00
78.00 93.00 108.00
90.00 108.00 126.00
Workpool results
66.00 78.00 90.00
78.00 93.00 108.00
90.00 108.00 126.00
Elapsed_time = 0.005536 (seconds)
abw@abw-VirtualBox:~/SuzakuTest/Workpool$

7:13PM 1%

& @ 0| @ *right Ctrl

15

