
1

A State-Wide Senior Parallel Programming Course

Barry Wilkinson,Senior Member, IEEE, and Michael Allen

Abstract — In this paper, we describe an undergraduate parallel
programming course based upon networked workstations. The
course is offered on the NC-REN (North Carolina Research and
Education Network), a pri vate telecommunications network which
interconnects universities in North Carolina and provides multi-
way, face-to-face video and audio communications. Course materi-
als are described and made available in a new textbook. Topics are
divided into basic techniques and applications. In addition, exten-
sive home page materials are described.

I. INTRODUCTION

Using more than one computer or processor simultaneously to
solve a problem has long been recognized as a way to obtain
greater execution speed [1][2]. There are several ways that mul-
tiple computers or processors can be constructed for this pur-
pose. Parallel programming is programming such
multicomputers or multiprocessors for simultaneous operation,
and parallel processing is the generic term that covers both the
hardware and the software aspects of multicomputer/processor
systems. Most universities and four-year colleges offer parallel
processing courses. Major university centers usually offer a
sequence of parallel processing courses starting at the senior
undergraduate/first year graduate level [3]. Four-year colleges
may offer a single introductory course in the undergraduate cur-
riculum or introduce some of the concepts of parallelism into
existing computer science and engineering courses, such as into
computer architecture or operating system courses [4]. At the
University of North Carolina at Charlotte (UNCC), parallel pro-
cessing was first introduced as a graduate topics course in the
early 1990s to complement existing computer architecture and
programming courses. Subsequently, a senior undergraduate
parallel programming course was offered which concentrated
upon programming aspects of using multiple computers. We
also introduced parallel programming into our Freshman
courses. In a companion paper, we describe our experiences in
bringing parallel processing concepts into the Freshman year,
while here we will describe our work at the senior level.

There are a number of significant differences between the
undergraduate course we describe and courses elsewhere. First,
the course is offered on our state-wide televideo network and
received simultaneously by several North Carolina universities.
This in itself generated some interesting aspects regarding fac-
ulty cooperation and parallel computing equipment at each site.
Second, the course is centered around the use of networked
workstations rather than supercomputers or simple transputers
as done previously [5][6], to take advantage of widely available
and accepted message passing and shared memory software
tools.

A major problem for undergraduate parallel programming
instructors has been the lack of a suitable textbook. Almost all
parallel programming course textbooks assume graduate-level

readers. We solved this problem by writing a 430-page textbook
for our course, the first such textbook concentrating upon under-
graduate parallel programming [7]. We have also provided
extensive web-based materials for both students and instructors.

II. COMPUTING PLATFORM

There are generally five choices of a computing platform for
undergraduate parallel programming courses, namely:

• Multiprocessor simulator/emulator
• Transputer system
• Supercomputer, located at a supercomputer center and

accessed remotely
• High performance multiprocessor system, purchased and

maintained by the institution
• Workstation cluster (sometimes called NOWs, network of

workstations, or COWs, cluster of workstations)

Several multiprocessor simulators/emulators exist. Some-
times, they model a real system and sometimes they represent an
imaginary system. Lester provided a simulator with his book [8]
which enables parallel PASCAL-like programs to be written and
their performance evaluated. We have used Lester’s simulator,
but the base language PASCAL became unattractive when our
programming language courses moved onto C and C++. We did
re-write Lester’s simulator for C-like programs, but in any
event, a real system is much more desirable than a simulator.

Transputers are inexpensive processors designed specifically
for multiprocessor systems. Undergraduate parallel processing
courses based upon transputers have been described in [6] and
[9]. We, like many others, did use transputers in introductory
parallel programming courses in the early 1990s because of the
very lost cost of transputers. Transputer boards are available for
PCs and Sun workstations. We did put together several trans-
puter configurations using PCs and SUN workstations as host
systems. Our experiences with transputers were relatively posi-
tive for some programs, but less so for significant programming
projects. We abandoned our transputers by 1993. Our main rea-
son was that we prefer to teach a widely-used language and pro-
cessor for the greatest benefit of students when they leave the
institution. To use the special feature of transputers, such as
instruction-level parallelism and automatic hardware process
scheduling, requires the programming language occam to be
used. This language is not applicable to any other platform. (It is
possible to write programs in C but this would not take full
advantage of the transputer’s special features.) Our transputer
performance was also lacking compared to the ever improving
PCs.

Senior undergraduate/graduate parallel processing courses
based upon supercomputers have been described in [5]. Using a

Submitted to:IEEE Transactions on Education
August 20th, 1998



2

supercomputer located at a supercomputer center is certainly a
possibility for us as a supercomputer center is located nearby
(North Carolina supercomputer center in Raleigh). However,
there are several reasons for not doing so. The technicalities of
supercomputers may be too much for an introductory under-
graduate course and are a digression from our desire to teach
parallel algorithms. Supercomputers, such as Cray vector com-
puters, often require one to write programs in programming lan-
guages that support vector operations if the best performance is
to be achieved. It requires one to study in detail optimizations
applicable to the specific architecture. Optimizing compilers can
do some of the work, but knowledge of the effects of data layout
is often very important. The techniques are limited to the class
of supercomputer and are not applicable to other types of com-
puter systems.

Supercomputers are very expensive and access must be con-
trolled carefully by the center. Researchers desiring access often
have to write large research proposals to make a case for them to
use the system. These researchers have to show that their prob-
lem will make efficient use of the system (say by measuring the
MFLOPs achieved on sample programs). Supercomputer cen-
ters are not equipped to handle a large number of inexperienced
undergraduate students. Their impact would be very significant
on the ongoing research activities. However, supercomputer
centers can handle a few small well organized graduate classes.

The next option is to purchase our own high performance
multiprocessor system. Major universities may already have
such systems for specific research projects. High performance
multiprocessor systems may be based upon one of several archi-
tectures but the major disadvantage of this approach for most
institutions is cost. For a smaller institutions, it is difficult to jus-
tify the equipment and maintenance costs for a single parallel
processing course. Also, with the rapidly advancing technical
progress towards faster systems, high performance multiproces-
sor systems quickly become obsolete. Later in the paper we will
describe our efforts towards a unique locally shared memory
multiprocessor cluster.

As mentioned earlier, we selected our final possibility, a
workstation cluster. The advantages of workstation clusters for
high performance computing is well documented [11]. Using a
workstation cluster for teaching parallel programming is very
attractive as workstations are readily available in all institutions
and software tools for workstation clusters are now mature and
freely available. Also, easily understood programming tech-
niques can be used and portable programs written.

Initially, using workstations for parallel computing became
interesting because networks of workstations existed for general
purpose computing. Projects in the late 1980s to provide parallel
programming software tools, most notably PVM, made the con-
cept of using workstation clusters for parallel programming via-
ble. Subsequently, the standard message passing library, MPI,
was defined, establishing a workstation cluster as a mainstream
approach to parallel computing. The literature on using net-
works of workstations for parallel computing is now growing as
the importance of such computing platforms emerges. There
have been a significant number of publications on using work-
station clusters on various problems. With the advent of really
powerful and inexpensive workstations and PCs, workstation

clusters have assumed an even more important concept.
Although workstation clusters will not have the performance of
specially designed multiprocessor systems (notably because of
the long latencies within the communication interface), the most
important advantage that workstation clusters offer is ease of
upgradability. This is now a very significant advantage. The per-
formance of processors is increasing at about 50% per year. A
workstation cluster solution to multiprocessor system design
enables computers to be replaced and added to over time with-
out having a major system redesign.

Because of the particular demands of parallel computing, we
have chosen to create a dedicated workstation cluster for parallel
programming rather than use general-purpose networked work-
stations. There are significant difficulties in relying upon a labo-
ratory of workstations that are being used for other purposes. A
particular early problem we had to face was not having remote
login/rsh/rexec privileges on the systems because of administra-
tive decisions. This prevents multiple general-purpose worksta-
tions being enrolled in PVM/MPI. A second problem we had to
face was that the network is not dedicated to parallel program-
ming and indeed the Pentiums could be switched between Win-
dows NT and UNIX without the knowledge of remote users. We
originally put together a cluster of eight existing SUN worksta-
tions just for the parallel programming classes, and are now
planning a replacement cluster (see later).

III. COURSECONTENT

One of the first problems all parallel programming instructors
have is to identify the course contents. The topics have not been
standardized in the same fashion as, say, a data structures course
where there are many textbooks. In parallel programming, there
are very few truly undergraduate textbooks. We also wished to
introduce parallel programming at lower undergraduate levels
and were interested in a graded approach to the material, that is,
to a set of material in which the first or introductory part is suit-
able for lower levels, including the Freshman year [12].

Using workstation clusters for parallel programming leads to
message-passing programming. Our course uses PVM [13] and
MPI [14] for message passing. However, we did not want to
present all the algorithms specifically in PVM or MPI. We
explain PVM/MPI in detail, but throughout we turn to
pseudocode for explaining algorithms. This pseudocode is based
upon C and uses a simplified notation for send/receive routines.
Students can very easily convert the pseudocode to PVM or
MPI, the two systems currently used at UNCC. We provide
analysis of message-passing algorithms and discussion of
latency issues.

We do also expose students to thread-based shared memory
programming using Pthreads [15] although programs are run a
single computer. The Pthreads library is chosen because it is a
IEEE standard with many implementations and the students
learn useful information.

We divided the material into two parts, Part I and Part II. Part
I, “Basic Techniques,” describes basic parallel programming
techniques using simple examples, briefly:

PART I Basic Techniques
• Parallel Computers



3

Types of Parallel Computers
Architectural Features
Potential for Increased Computational Speed

• Message-Passing Computing
Basics of Message-Passing Programming
Programming Options
Process Creation
Message-Passing Routines
Using Workstation Clusters
Software Tools, PVM, MPI
Evaluating Parallel Programs
Parallel Execution Time and Time Complexity
Debugging and Evaluating Parallel Programs

• Embarrassingly Parallel Computations
Embarrassingly Parallel Examples

Geometrical Transformations of Images
Mandelbrot Set
Monte Carlo Methods

• Partitioning and Divide-and-Conquer Strategies
Divide-and-Conquer Examples

Sorting Using Bucket Sort
Numerical Integration
N-Body Problem

• Pipelined Computations
Computing Platform for Pipelined Applications
Pipeline Program Examples

Adding Numbers
Sorting Numbers
Prime Number Generation
Solving a System of Linear Equations

• Synchronous Computations
Barrier and Implementations
Local Synchronization
Deadlock
Synchronized Computations

Data Parallel Computations
Synchronous Iteration

Synchronous Iteration Program Examples
Solving a System of Linear Equations by Iteration
Heat Distribution Problem
Cellular Automata

• Load Balancing and Termination Detection
Dynamic Load Balancing
Distributed Termination Detection Algorithms
Program Example – Shortest Path Problem

• Programming with Shared Memory
Specifying Parallelism
Sharing Data
Language Constructs for Parallelism
Dependency Analysis
Shared Data in Systems with Caches

Program Examples – UNIX, Pthreads, Java

Part II, “Algorithms and Applications,” describes algorithms for
specific application areas, briefly:

PART II Algorithms and Applications
• Sorting Algorithms

Rank Sort
Bubble Sort and Odd-Even Transposition Sort
Two-Dimensional Sorting
Mergesort
Quicksort
Odd-Even Mergesort
Bitonic Mergesort

• Numerical Algorithms
Matrix Addition
Matrix and Matrix-Vector Multiplication
Relationship of Matrices to Linear Equations
Implementing Matrix Multiplication

Direct Implementation
Recursive Implementation
Mesh Implementation

Solving a System of Linear Equations Linear Equations
Gaussian Elimination – Parallel Implementation

Iterative Methods
Jacobi Iteration
Faster Convergence Methods

• Image Processing
Low-Level Image Processing
Smoothing, Sharpening, and Noise Reduction

Mean
Median
Weighted Masks

Edge Detection
Edge Detection Masks

The Hough Transform
Transformation into the Frequency Domain

Discrete Fourier Transform
Fast Fourier Transform

• Searching and Optimization
Branch-and-Bound Search
Genetic Algorithms
Hill Climbing
Example – Banking Application

Part I requires no specialized mathematical knowledge and
could be used at lower levels in the curriculum. Part II does have
some mathematical prerequisites (linear equations, partial dif-
ferent equations, matrices, etc.,) but only what would be
expected of seniors. More details of the material can be found in
[7]. A unique aspect is the concept of real-life problems. In
addition to normal numerical problems, a large number of real-
life problem are provided to apply the techniques given.

The material is decidedly practical in tone, which contrasts
with most graduate level textbooks and courses. Theoretical



4

aspects, such as PRAM and other models (BSP, LogP), are
described but not used in any great extent.

The programming assignments begin with a simple familiar-
ization assignment in which a working parallel program is pro-
vided that simply adds numbers together in parallel. Students set
up their system environment, compile the program and obtain
results. The students also have to modify the program to find the
maximum value. At this stage only one workstation is used, but
multiple workstations are used in subsequent assignments. This
assignment only requires a few hours to do – the students simply
read and follow the instructions on the home page. The concepts
of creating the necessary makefile and other compiling matters
are, of course, very familiar to most senior students.

The second assignment, which is still quite simple, illustrates
an embarrassingly parallel program, the Mandelbrot computa-
tion. For this assignment, a working sequential Mandelbrot pro-
gram is provided which includes X-window code for generating
graphical output – the course does not assume any prior knowl-
edge of graphics. The graphics code is in fact useful for many
subsequent assignments. Students must parallelize the program,
either by static process assignment or with dynamic load balanc-
ing as described in the lectures (the latter receives a higher
grade).

The next assignments are of increasing difficulty and linked to
the lecture materials. These assignments are varied on different
occasions. One has been the astronomicalN-body problem with
graphical output (using graphics code taken from the Mandel-
brot problem). Another assignment has been solving Laplace’s
equation to obtain the heat distribution in a room with a fire-
place. Again, graphical output is required in the form of temper-
ature contours. A follow-on assignment has involved solving the
same problem by direct means (Gaussian elimination). It is use-
ful to show different methods to solve the same problem and the
speed implications of the different methods.

Load balancing is a key aspect of all the assignments, and tim-
ing information must be provided, usually by instrumenting the
code with the time() system call. All assignments have “open-
endedness” in that extra credit can be obtained by additional
work.

IV. TELECLASSFACILITY

North Carolina Research and Education Network

We have given our senior undergraduate parallel programming
course on the NC-REN (North Carolina Research and Education
Network) every year since 1996. NC-REN is a private telecom-
munications network interconnecting 19 university, medical
center, research institution and graduate center sites in North
Carolina. It became operational in 1985 and provides multi-way,
face-to-face video and audio communications. Classroom “tele-
class” facilities exist at each site, such as shown in Fig. 1. Each
student is provided with a microphone, and several video cam-
eras are used so that the instructor and students at each site can
hear and see each other. All lectures were recorded so that stu-
dents could view any lecture again or catch any they missed.

 The course has been received at various times by North Caro-
lina State University, University of North Carolina at Greens-
boro, University of North Carolina at Asheville, and University

of North Carolina at Wilmington, in addition to the University
of North Carolina at Charlotte. The success of this approach
rests upon cooperation and support at each site. One faculty at
each site has been responsible for making available the local
parallel computing facility for their students.

 All sites have networked workstations of various types that
were suitable, but most did not ready access to a shared memory
system. In that regard, Pthreads programs were simply run on a
single processor system.

Guest Speakers

The televideo network offers an excellent way to reach many
students. We have used the opportunity of this facility by invit-
ing expert speakers to given presentations to the class and talk
about some practical aspect of parallel programming. For exam-
ple, in Fall 1996 Professor John Board of Duke University gave
a presentation entitled “Networks of Workstations: The Plod-
ding Workhorses of Parallel Computing” and also outlined mod-
eling DNA. Professor Mladen Vouk of North Carolina State
University gave a presentation on the current state of supercom-
puters and supercomputing conferences. Two graduate students
made presentations of their parallel programming project deal-
ing with parallel genetic algorithms, In Fall 1997, Professor Jan
Prins of the University of North Carolina at Chapel Hill gave a
presentation on Irregular Data Parallel Computations and Pro-
fessor Harry Smith of the University of North Carolina at Wilm-
ington gave a presentation on transputers. These presentations
gave the material in the courses a greater significance.

V. HOME PAGE MATERIALS

With a distance learning environment as described here, it is
essential to provide home page instructional materials that can
be read or downloaded, such as sample programs mentioned,
programs to be used in assignments etc. We have provided a
home page (http://www.cs.uncc.edu/par_prog) as illustrated in
Fig. 2 which includes:

• Online help for compiling PVM and MPI programs
• Chapter-by-chapter notes

Fig. 1 Photo of one UNCC teleclass classroom facility.



5

• Special page for instructors which contains:
Transparencies
Sample programs/assignments
On-line class questionnaire

 In a related activity at North Carolina State University, the
sound of the lectures with images (slides) have been integrated
on a home page there (http://renoir.csc.ncsu.edu/CSC495A).

VI. CURRENT AND FUTURE WORK

In this section, we will outline our on-going work connected
with the parallel programming classes.

A. Improving Communication Latency

The fundament flaw in any workstation cluster is the weakness
of the interconnect technology which is not increasing in perfor-
mance at the same rate as the processors themselves. Fast 100
Mbit/sec Ethernet provides a simple and very inexpensive inter-
connect technology and is widely used for general-purpose
workstation clusters. However, Ethernet suffers from inadequate
communication bandwidth and more importantly, with typical
software, excessive latency for parallel computing.

Improved bandwidth can be achieved by several well-known
ways, for example using high speed switches and communica-
tion interfaces. An emerging possibility is the Gigabit Ethernet
(IEEE 802.3z). These methods incur significant additional costs
and there are cost/performance trade-offs.

Message latency is a vastly more important aspect than raw

bandwidth. Latency is the major factor which can have a delete-
rious effect of performance of such programs. Excessive latency
is often brought about by the layers of software imposed upon
message-passing interfaces. A novel solution that we propose is
using multiple physical interfaces. Given the low cost of com-
modity interfaces, it is now cost-effective to employ multiple
interfaces; it is also possible to employ more than one connec-
tion between computers. This provides for hiding the message
latency by overlapping message transmissions as illustrated in
Fig. 3. However, there are significant software issues to resolve
in this approach, since message-passing software is not designed
for concurrently executed routines. The next section describes a
multiprocessor system which has the potential for simultaneous
operation of multiple interfaces within one system.

B. Locally Shared Memory Cluster

Traditionally, two forms of multiprocessor system have existed,
the shared memory system with a single address space, (whether
the memory is physically distributed or not), and the multicom-
puter consisting of interconnected computers where each pro-
cessor has its own address space. A workstation cluster is in the
second category. Recent advances in system design have led to
multiprocessor PCs. The Pentium II Xeon processor, for exam-
ple, can be used for such systems in a shared memory configura-
tion, with typically 2-8 processors. This has led the possibility
of clustering multiprocessor systems. We call such clusters
locally shared memory systems. Groups of processors share sin-
gle but distinct address spaces. This form of cluster offers some
very interesting programming possibilities which can be
explored in parallel programming classes after message passing
programming (using say MPI) and shared memory program-
ming (say using Pthreads) have been covered.

A cluster of four quad-processor systems is shown in Fig. 4.
With only four systems, it is quite feasible to provide full con-
nectivity between the four 4-processor systems using three-port
interfaces, as illustrated. The locally shared memory cluster
offers the option of message-passing programming, shared
memory programming, and a unique hybrid of using both tech-
niques in a single program.

Fig. 2 Home page

Messages

Source Destination

Time

Communication time

Fig. 3 Overlapping communication



6

VII. CONCLUSIONS

We have described a unique undergraduate parallel program-
ming course which has been given on a televideo network to
several North Carolina Universities. The course incorporates
several new aspects partly because of its use of a televideo net-
work. First, it is necessary for remote sites to have an adequate
parallel computing platform. Networked workstations are ideal
since every university has them. Second, very significant prepa-
ratory materials are necessary and we have produced both a text-
book and web materials. The use of a televideo facility allowed
experts from different sites to participate in the course and give
presentations to undergraduates.

The material for our undergraduate parallel programming
course is mostly based upon networked workstations and is
practical in tone. Programming concepts introduced are centered
around message passing. We also introduced thread-based pro-
gramming into the class with at least one thread-based assign-
ment. It is our view that thread-based programming will become
more prevalent and should figure more prominently in under-
graduate parallel programming courses. Though we use
Pthreads, Java also has interesting possibilities for parallel pro-
gramming.

Finally, we have proposed the use of multiple interconnects to
ameliorate the effect of message latency, and the use of a cluster
of shared memory computers – locally shared memory comput-
ers – a perfect computing platform for both message-passing,
shared memory and a unique combination of both.

VIII. A CKNOWLEDGMENTS

This work has been supported in part by the National Science
Foundation, under grant DUE 9554975. It is a great pleasure to
acknowledge Dr. M Mulder, program director at the National
Science Foundation. We should like to thank the many students
at the University of North Carolina at Charlotte, who helped us
refine the material over the last few years. We owe a debt of
gratitude to many other people including our guest speakers.
Professor Vouk of North Carolina State University set up an
impressive web page which included “real audio” of the lectures
and “automatically-turning” slides.

REFERENCES

[1] S. Gill, “Parallel Programming,”The Computer Journal, vol. 1, April, pp.
2–10, 1958.

[2] J. Holland, “A Universal Computer Capable of Executing an Arbitrary
Number of Sub-programs Simultaneously,” Proc. East Joint Computer
Conference, vol. 16, pp. 108–113, 1959.

[3] R. Miller, “The Status of Parallel Processing Education,” Computer, vol.
27, no. 8, Aug., pp. 40–43, 1994.

[4] C. H. Nevison, “Parallel Computing in the Undergraduate Curriculum,”
Computer, vol. 28, no. 12, Dec., pp. 51–53, 1995

[5] J. A. Youssefi, and K. Zemoudeh, “A Course in Parallel Processing,” IEEE
Trans. Educ., vol. 40, no. 1, Feb., pp. 36–40, 1997.

[6] F. C. Berry, “An Undergraduate Parallel Processing Laboratory,” IEEE
Trans. Educ., vol. 38, no. 4, Nov., pp. 306–311, 1995.

[7] B. Wilkinson and M. Allen,Parallel Programming: Techniques and Appli-
cation Using Networked Workstations and Parallel Computers. Upper
Saddle River, NJ: Prentice Hall, 1998.

[8] B. Lester,The Art of Parallel Programming. Englewood Cliffs, NJ: Pren-
tice Hall, 1993.

[9] T. Hintz, “Introducing Undergraduates to Parallel Processing,” IEEE
Trans. Educ., vol. 36, no. 1, Feb., pp. 210–213, 1993.

[10] J. Avila, “A Bread-First Approach to Parallel Processing for Undergradu-
ates,”Conf. Parallel Computing for Undergraduates, Colgate University,
June 22–24, 1994.

[11] T. E. Anderson, D. E. Culler, D. A. Patterson and the NOW team, “A Case
for NOW (Network of Workstations),”IEEE Micro, vol. 15, no. 1, Feb.,
pp. 54–64, 1995.

[12] M. Allen, B. Wilkinson, and J. Alley, “Parallel Programming for the Mil-
lennium: Integration Throughout the Undergraduate Curriculum,” Second
Forum on Parallel Computing Curricula, co-located withSymposium on
Parallel Algorithms and Architectures ‘97, June 22nd, 1997.

[13] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-
deram,PVM3 User’s Guide and Reference Manual. Oak Ridge National
Laboratory: Tennessee, 1994.

[14] W. Gropp, E. Lusk, and A. Skjellum,Using MPI Portable Parallel Pro-
gramming with the Message-Passing Interface. Cambridge, Massachu-
setts: The MIT Press, 1994.

[15] B. Nichols, D. Buttlar, and J. P. Farrell,Pthreads Programming. Sebasto-
pol, California: O’Reilly & Associates, 1996.

Interface

To
UNCC
Network

Fig. 4 Locally Shared Memory Cluster

Processors
Memory


