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Chapter 12

Image Processing

Application area chosen because it has very good parallelism and

interesting output.
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Low-level Image Processing
Operates directly on stored image to improve/enhance it.

Stored image consists of two-dimensional array of pixels (picture

elements):

Origin (0, 0)

. |l — @ :
Picture element—] p(, j) .
(pixel) b S

Many low-level image-processing operations assume monochrome

images and refer to pixels as having gray level values or intensities.
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Computational Requirements
Suppose a pixmap has 1024~ 1024 pixels and 8-bit pixels.

Storage requirement is 220 bytes (1 Mbytes)

Suppose each pixel must be operated upon just once.
Then 220 operations are needed in the time of one frame.

At 108second/operation (10ns/operation), this would take 10 ms.

In real-time applications, the speed of computation must be at the
frame rate (typically 60—-85 frames/second).

All pixels in the image must be processed in the time of one frame;
that is, in 12-16 ms.

Typically, many high-complexity operations must be performed, not

just one operation.

Slides for Parallel Programming Techniques& ApplicationsUsing Networ ked Workstations& Parallel Computers2nded., by B. Wilkinson & M. Allen, & 2004 Pearson Education Inc. All rightsreserved.



slides12-4

Point Processing
Operations that produce output based upon value of a single pixel.
Thresholding

Pixels with values above predetermined threshold value kept and
others below threshold reduced to 0. Given a pixel, x;, operation on

each pixel is

if (x; < threshold) x; = 0; else x; = 1;
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Contrast Stretching

Range of gray level values extended to make details more visible.
Given pixel of value x; within range x; and x;,, the contrast stretched

to the range xy to x; by multiplying x; by
H~*L0
X: = (X: —X) -+ X
| | | g—xh—_xl—g L

Gray Level Reduction

Number of bits used to represent the gray level reduced. Simple
method would be to truncate the lesser significant bits.
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Histogram

Shows the number of pixels in the image at each gray level:

Number
of pixels

0 Gray level 255

Slides for Parallel Programming Techniques& ApplicationsUsing Networ ked Workstations& Parallel Computers2nded., by B. Wilkinson & M. Allen, & 2004 Pearson Education Inc. All rightsreserved.



slides12-7

Sequential code

for(i = 0; i < height_max; x++)
for(j =0; j < wdth_max; y++)
hist[p[i][j]] = hist[p[i][j]] + 1;

where the pixels are contained in the array pi11;7 and nist(x will hold

the number of pixels having the kth gray level.

Similar to adding numbers to an accumulating sum and similar

parallel solutions can be used for computing histograms.
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Smoothing, Sharpening, and Noise Reduction

Smoothing suppresses large fluctuations in intensity over the image

area and can be achieved by reducing the high-frequency content.

Sharpening accentuates the transitions, enhancing the detail, and

can be achieved by two ways.

Noise reduction suppresses a noise signal present in the image.
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Often requires a local operation with access to a group of pixels

around the pixel to be updated. A common group sizeis 3~ 3:
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Mean

A simple smoothing technique is to take the mean or average of a

group of pixels as the new value of the central pixel.

Given a 3~ 3 group, the computation is

o = XO+X1+X2+X3+X4+X5+X6+X7+X8
4 = g

where x ' is the new value for x,.
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Sequential Code

Nine steps to compute the average for each pixel, or 9n for n pixels.

A sequential time complexity of O(n).
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Parallel Code

Number of steps can be reduced by separating the computation into

four data transfer steps in lock-step data-parallel fashion.

T N | HEER)
- | - Y Y Y v Ik L
. N vy |y |
Step 1 Step 2 Step 3 Step 4
Each pixel Each pixel Each pixel adds Each pixel adds
adds pixel adds pixel from pixel from above pixel from below

from left right
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Parallel Mean Data Accumulation

L i - -
Xo * X1 Xo*tX1+X2
L — - -
X3 + X4 X3tXatXg
L — - -
Xg + X7 Xg+X7+Xg
(a) Step 1 (b) Step 2
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XotX1+Xp XotX1+Xp
| | | A A
X3| ¥ v Xg| ¥ \ | \
XoFX1+Xo Xo+X+Xo
Xa XXz X3+X4+Xsg
| | L [X6™X71Xs A
v v Xg| ¥ | | \
X6+X7+X8 X6+X7+X8
(c) Step 3 (d) Step 4

slides12-14

Slides for Parallel Programming Techniques& ApplicationsUsing Networ ked Workstations& Parallel Computers2nded., by B. Wilkinson & M. Allen, & 2004 Pearson Education Inc. All rightsreserved.




slides12-15

Median
Sequential Code

Median can be found by ordering pixel values from smallest to
largest and choosing center pixel value (assuming an odd number of pixels).

With a 3~ 3 group, suppose values in ascending order are yq, Y1,
Y2, Y3, Y4, Y5, Y6, Y7, @nd yg. The median is y,.

Suggests that all the values must first be sorted, and then fifth
element taken.

Using bubble sort, in which the lesser values found first in order,
sorting could, in fact, be terminated after fifth lowest value obtained.

Number of stepsgiven by 8 + 7+ 6 + 5 + 4 = 30 steps, or 30n for n
pixels.

Slides for Parallel Programming Techniques& ApplicationsUsing Networ ked Workstations& Parallel Computers2nded., by B. Wilkinson & M. Allen, & 2004 Pearson Education Inc. All rightsreserved.



slides12-16

Parallel Code
An Approximate Sorting Algorithm

First, a compare-and-exchange operationperformed on each of the
rows, requiring three steps. For the ith row, we have

Pij- 1« Bij

Pij « Pij+1

Pij-1«< Bij
where « means “compare and exchange if left gray level greater
than right gray level”. Then done on columns:

Pi-1j«< Pij
Pij « Pi+yj
PBi-1j«< Pij

Value in p;; taken to be fifth largest pixel value. Does not always
select fifth largest value. Reasonable approximation. Six steps.
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Approximate median algorithm requiring six
steps
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Weighted Masks

The mean method could be described by a weighted 3~ 3 mask.
Suppose the weights are wg, Wy, Wy, W3, Wy, Wg, Wg, W7, and wg,

and pixel values are xg, X1, X, X3, X4, X5, Xg, X7, and Xg.

The new center pixel value, x4', IS given by

y WOXO + W1X1 + W2X2 + W3X3 + W4X4 + W5X5 + W6X6 + W7X7 + W8X8
4 - k

Scale factor, 1/k, set to maintain correct grayscale balance.

Often, k is given by wg + wy + wy + wWg + Wy + Wg + Wg + W+.
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Using a3~ 3 Weighted Mask

Mask Pixels Result
Wo | Wy | W Xo | X1 | X2
Wi | wy | ws | A | x3| x4 | %5 | = X4’
Wg | W7 | Wg Xg | X7 | Xg

The summation of products, wix;, from two functions w and x is the

(discrete) cross-correlation of f with w (written as f A w).
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Mask to compute mean 11111

X4—X0—X1—X2—X3—X5—X6—X7—X8 k: 9 1 l 1
X4 = 9 1] 11
A noise reduction mask 1111
k=16 1 8 1

. 8x4+x0+x1+x2+x3+x5+x6+x7+x8
X4 = 16 1 1 1
High-pass sharpening filter mask -1]-1-1
- 8x4—x0—x1—x2—x3—x5—x6—x7—x8 k=9 -1 8 | -1

Xy = 3
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Edge Detection

Highlighting edges of object where an edge is a significant change

in gray level intensity.

Gradient and Magnitude

With a one-dimension gray level function, f(x), first derivative, if/Xx,

measures the gradient..

Edge recognized by a positive-going or negative-going spike at a

transition.
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Edge Detection using Differentiation

Intensity transition

First derivative

Second derivative 4
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Image Function

A two-dimensional discretized gray level function, f(x,y).
Gradient (magnitude)

G = [oIfo? , alfe®
exg  efyg
Gradient Direction

&l o
f(x,y) = tan Te
¢l
efxo
where f is the angle with respect to the y-axis.
Gradient can be approximated to

it
Ty
for reduced computational effort

lf
x

Nf » +
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Gray Level Gradient and Direction

Image

Constant
intensity

Gradient
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Edge Detection of Image Function

Image is a discrete two-dimensional function.

Derivative approximated by differences:

qf/9x is difference in x-direction

/9y is difference in y-direction
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Edge Detection Masks

Might consider computing the approximate gradient using Xs and X3

(to get 1f/fix) and x; and x; (to get ff/1y); i.e.,

qf

x5 7%3
it
ﬂ_y»x7‘X1

so that

NF » X —x1| + ’x5 —x3’
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Two masks needed, one to obtain x; - X4 and one to obtain Xg - Xs.

The absolute values of results of each mask added together.

0(-1]|0 0} 0] O
Oy 0|O -1, 0|1
0O} 1]0 0} 0] O
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Prewitt Operator

The approximate gradient obtained from

by (%6—X0) * =) + (xg =)

qf

£x » (x2—x0) + (x5—x3) + (x8—x6)

Then
Nf » x6—xo+x7—x1+x8—x2| +|x2—xo+x5—x3+x8—x6

which requires using the two 3~ 3 masks.
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Prewitt operator

-1(-1]-1 -1 0] 1
0Oy 0|O -1 0|1
1|1 1)1 -1 0] 1
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Sobel Operator

Derivatives are approximated to
i
ﬂ_y» (x6 + 2x7 + x8) —(xO + 2x1 + x2)

qf
ﬂ—x»(x2 + 2x5 + x8) —(x0 + 2x3 + X6)

Operators implementing first derivatives will tend to enhance noise.

However, the Sobel operator also has a smoothing action.
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Sobel Operator

-1(-2]-1 -1 0] 1
Oy 0|O -2 0| 2
1121 -1 0] 1
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Edge Detection with Sobel Operator

(a) Original image (Annabel) (b) Effect of Sobel operator
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Laplace Operator

The Laplace second-order derivative is defined as

N2f = i +ﬂzf
<2 2
ix Ty

approximated to
o
N-f = 4x4—(x1+x3+x5+x7)

which can be obtained with the single mask:

0|-1]0
-1 4| -1
0|-1]0
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Pixels used in Laplace operator

Upper pixel

X3 Xy Y Xg
A
Left pixel Right pixel

X7’

Lower pixel
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Effect of Laplace operator
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Hough Transform

Purpose is to find the parameters of equations of lines that most

likely fit sets of pixels in an image.

A line is described by the equation
y=ax+b

where the parameters, a and b, uniquely describe the particular line,

a the slope and b the intercept on the y-axis.

A search for those lines with the most pixels mapped onto them

would be computationally prohibitively expensive [ o(n3)].
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Suppose the equation of the line is rearranged as:
b=-xa+y

Every point that lies on a specific line in the x-y space will map into

same point in the a-b space (parameter space).

4 y=ax+b by "\\\b/:'xla+Y1
(x1,y1) b=-xa+y i
“@ab)
Pixel in image A
X a
(@) (x, y) plane (b) Parameter space
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Finding the Most Likely Lines

In the mapping process, discrete values will be used to a coarse
prescribed precision and the computation is rounded to the nearest
possible a-b coordinates.

The mapping process is done for every point in the x-y space.

A record is kept of those a-b points that have been obtained by
incrementing the corresponding accumulator.

Each accumulator will have the number of pixels that map into a
single point in the parameter space.

The points in the parameter space with locally maximum numbers
of pixels are chosen as lines.
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Unfortunately, this method will fail for vertical lines (i.e., with the
slope, a, infinite and with the y intercept, b, infinite) and with lines

that approach this extreme.

To avoid the problem, line equation rearranged to polar coordinates:
r=xcosqg+ysing

where r is the perpendicular distance to the origin in the original (X,
y) coordinate system and q is the angle between r and the x-axis. q

very conveniently the gradient angle of line (with respect to x-axis).
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y=ax+bh
r=xcosq+ysinq

f—" (. @)

q
NN R .
X q
(a) (x, y) plane (b) (r, ) plane
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Implementation

Assume origin at the top left corner.
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The parameter space divided into small rectangular regions. One
accumulator for each region.

Accumulators of those regions that a pixel maps into incremented.
Process done for all pixels in image.

If all values of q were tried (i.e., incrementing q through all its
values), computational effort would be given by the number of
discrete values of g, say k intervals. With n pixels the complexity is
O(kn).

Computational effort can be reduced significantly by limiting range
of lines for individual pixels using some criteria. A single value of g
could be selected based upon the gradient of the line.
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Accumulators, acc|r][q], for Hough Transform

Accumulator
_

1

15
10
5
0
0°10°20°30°
q
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Sequential Code

Sequential code could be of the form

for (x = 0; X < xmax; X++) /* for each pixel */
for (y = 0; y < ymax; y++) {
sobel (&, &y, dx, dy); /* find x and y gradients */
magni t ude = grad_nag(dx, dy); /* find magnitude if needed */
i f (magnitude > threshold) {
theta = grad_dir(dx, dy); [* atan2() fn */

theta = theta quanti ze(theta);

r = x * cos(theta) +y * sin(theta);

r = r_quantize(r);

acc[r][theta] ++; /* increment accunul ator */
append(r, theta, X, y); /* append point to line */
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Parallel Code

Since the computation for each accumulator is independent of the
other accumulations, it could be performed simultaneously,

although each requires read access to the whole image.

Left as an exercise.
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Transformation into the Frequency Domain
Fourier Transform

Many applications in science and engineering. In image processing,
Fourier transform used for image enhancement, restoration, and

compression.

Image is a two-dimensional discretized function, f(x, y), but first

start with one-dimensional case.

For completeness, let us first review results of Fourier series and

Fourier transform concepts from first principles.
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Fourier Series

The Fourier series is a summation of sine and cosine terms:
¥

= 2 ) Rpjto . qnpjtoo
X(t) 70+'a é%.JCOSx _FFJﬂ+bJsm\ 'FFJ%
j=1

T is the period (1/T = f, where f is a frequency).

By some mathematical manipulation:

¥ 2pij t
x(t) = § Xje
j=-¥

where X; is the jth Fourier coefficient in a complex form andi = J/-1.
(Fourier coefficients can also be computed from specific integrals.)
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Fourier Transform

Continuous Functions

The previous summation developed into an integral:

¥

x(t) = § 2p|f

)y K(T)e

where X(f) is a continuous function of frequency.

The function X(f) can be obtained from

_Zp'ftdt

x(t)e

X(f) = &,

X(f) is the spectrum of x(t), or the Fourier transform of x(t).

The original function, x(t), can obtained from X(f) using the first

integral given, which is the inverse Fourier transform..
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Discrete Functions

For functions having a set of N discrete values. Replace integral

with summation, leading to the discrete Fourier transform (DFT):

a8k
No_l _2pl%g
a Xje
=0

Xk=

Zl =

and inverse discrete Fourier transform given by

N—1 2piZko

€9
.= a Xe N
: |
J=0
for 0 £ k £ N - 1. The N (real) input values, Xg, X1, X2, ..., XN- 1,

produce N (complex) transform values, Xg, X1, Xo, ..., XN-1-
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Fourier Transforms in Image Processing
A two-dimensional Fourier transform is
_oni/l 4+ kmo
. N-1M-1 2pl§N+Vg
m~ @ & Xj®
j=0k=0
whereO£jEN-1andOEKEM- 1.

Assume image is square, where N = M.
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Equation can be rearranged into
_9niBMO| _»niglo
_ N-1 N-1 2pléng ZDI%Q,
]=0lk=0

Inner summation a one-dimensional DFT operating on N points of a
row to produce a transformed row. Outer summation a one-
dimensional DFT operating on N points of a column.
Can be divided into two sequential phases, one operating on rows
of elements and one operating on columns:

_oni#lo
-1 2pighy
Xim = a Xin® N

Slides for Parallel Programming Techniques& ApplicationsUsing Networ ked Workstations& Parallel Computers2nded., by B. Wilkinson & M. Allen, & 2004 Pearson Education Inc. All rightsreserved.



slides12-52

Two-Dimensional DFT

k Transform Transform
rows columns
] I

Xjk Xim Xim
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Applications
Frequency filtering can be described by the convolution operation:

h(j, k) = 9(i, k) * £(j, k)
where g(j, k) describes weighted mask (filter) and f(j, k) the image.

The Fourier transform of a product of functions is given by the
convolution of the transforms of the individual functions.

Hence, convolution of two functions obtained by taking the Fourier
transforms of each function, multiplying the transforms

H(j, k) = G(, k) * F(, k)

(element by element multiplication), where F(j, k) is the Fourier
transform of f(j, k) and G(j, k) is the Fourier transform of g(}, k), and
then taking the inverse transform to return result into spatial
domain.
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Convolution using Fourier Transforms

Image Transform
fik Convolution R Multiply trlgr\llsefrosrem
hj,k H(, k) = h(, k)
gj.k 90, k) =1 GG, k)
Filter/image
(a) Direct convolution (b) Using Fourier transform
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Parallelizing the Discrete Fourier Transform

Starting from

_opi@kd
N-1 —2piZ3
Xk = a Xe N

|
1=0
and using the notation w = e”2P/N,
N-1 :
Xp= a X; WJk
j=0

w terms called twiddle factors. Each input multiplied by twiddle

factor.

Inverse transform can be obtained by replacing w with w 1
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Sequential Code

for (k = 0; k <N k++) { /* for every point */
X[ k] = 0;
for (j =0; j <N j++) /* conpute summation */
XOKI = X[kl +w ™o x[j];
}

X[ k] is kth transformed point, x[ k] is kth input, w = ¢ 2PI/N

Summation requires complex number arithmetic. Can be rewritten:

for (k =0; k <N k++) {
X[ k] = 0;
a = 1,
for (j =0, ] <N j+4) {
X[kl = X[k] +a* x[j];
a=ar* w
}
}

where a is a temporary variable.
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Elementary Master-Slave Implementation

One slave process of N slave processes assigned to produce one
transformed value; i.e., kth slave process produces X[ k]. Parallel
time complexity with N (slave) processes is O(N).

Master process

X[0] X[1] X[n-1]
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Pipeline Implementation
Unfolding the inner loop for X[ k], we have

X[ k] = 0;

a = 1,

X[kl = X[k] + a * x[0];
a=a}?@ V\V;

X k] = X[k] + a * x[1];
a=a}?@ V\V;

X k] = X[k] + a* x[2];
a=a}?@ V\V;

X[kl = X[k] + a* x[3];
a=a}?@ V\V;

Each pair of statements
X[kl = X[k] + a* x[0];
a=a?* w,;

could be performed by a separate pipeline stage.
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One stage of a pipeline implementation of DFT
algorithm

x[i]

Process | Values for

next iteration

X[K] —
(+ Y XK
- j —/

> a’ X[

y
E
~
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Discrete Fourier transform with a pipeline

X[O] X[1] X[2] X[3] X[N-1]
l l l l i Output sequence
0 - X[Kk]|—= > > > — —[0],X[1],X[2], X[3]...
1 —> a > > » > — — — -—»
Wk—> Wk > > > > —>
Po P1 P> P3 PN-1
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Timing diagram

X[OIX[1]X[2]X[3]X[4] X[5] X[6]

N

PN-1
PNn-2
Pipeline 7
stages .
P)
Py
Po
Time

Slides for Parallel Programming Techniques& ApplicationsUsing Networ ked Workstations& Parallel Computers2nded., by B. Wilkinson & M. Allen, & 2004 Pearson Education Inc. All rightsreserved.



slides12-62

DFT as a Matrix-Vector Product

The kth element of discrete Fourier transform given by

Xy = xowo + xlw1 + X2W2 + x3w3 + .. XN- 1WN'1

Whole transform can be described by a matrix-vector product:

X, 1 1 1 1 1 X,
X4 1 w w2 W wh ! X,
X, 1w w’ w® oo WA Xo
Xg | 2 1|1 w® w® w? o WY X3
X 1w wK wko wiNTDk Xk
Xy 4] 1 wN L 2N BN-DN-DIN-D)] Xy |

(Note w® = 1.) Hence, parallel methods for matrix-vector product as
described in Ch. 10 can be used for discrete Fourier transform.
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Fast Fourier Transform

Method of obtaining discrete Fourier transform with a time

complexity of O(N log N) instead of O(N?).

Let us start with the discrete Fourier transform equation:

where w = e 2PN,

Slides for Parallel Programming Techniques& ApplicationsUsing Networ ked Workstations& Parallel Computers2nded., by B. Wilkinson & M. Allen, & 2004 Pearson Education Inc. All rightsreserved.



slides12-64

Each summation an N/2 discrete Fourier transform operating on N/2

even points and N/2 odd points, respectively.

_1 k
Ak = Q[Xevenﬂ’v xodd}

for k =0, 1, ... N - 1, where Xgyen IS the N/2-point DFT of the
numbers with even indices, Xg, X2, X4, ... , and Xyqq IS the N/2-point

DFT of the numbers with odd indices, X4, X3, Xs, ... .
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Now, suppose k is limited to 0, 1, ... N/2 - 1, the first N/2 values of

the total N values. Complete sequence divided into two parts:

_1 k
Xk = E[Xeven+w Xodd}

and

1 k
><odd} B E[xeven_w Xodd]

since wX™N2 = _wk where 0 £ k < N/2. Hence, we could compute X

1 k+ N

Xk+ N = E[xeven tw

and Xy.n/2 using two N/2-point transforms:
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Decomposition of N-point DFT into two N/2-point
DFTs
Input sequence Transform
X0
X1 X
X2 N/2 pt |7even /7™
X3 DFT + Xk
N/2 pt _ X
k+N/2
" DFT L Wku
XN-1 odd k=0,1,...N/2
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Each of the N/2-point DFTs can be decomposed into two N/4-point
DFTs and the decomposition could be continued until single points

are to be transformed.

A 1-point DFT is simply the value of the point.
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Computation often depicted in the form:

’ /9><‘? i
==
Xo + ()

g+
X X
w N

C

X3 C’J

Four-point discrete Fourier transform
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Sequential Code

Sequential time complexity is essentially O(N log N) since there are
log N steps and each step requires a computation proportional to N,

where there are N numbers.

The algorithm can be implemented recursively or iteratively.
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Paralgizing the FF1_ATgor ithim

Binary Exchange Algorithm

X e e M e X,
N e O S5 x,
. SN /<G 5

AN/ S RK KA o

) C

)
\ x
NG00
“

<
DX
L

C
C
C
C
x

Sixteen-point FFT computational flow
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Mapping processors onto 16-point FFT computation  seeses

Process

l ;ow

p/r Inputs Outputs
0000 X ) () Q) Xo

Po

P1

NI N P <A .
0110 xg \AA,//
1000 xg : ;} CA :: CA :: CA :\A\J\éi () Q)
oo LIRS 7 /7> > .
o, LLIRONINK X .
1011xy;

RS O
110075 @ () X12
111145 () () () X15
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Transpose Algorithm

If processors organized as 2-dimensional array, communications
first takes place between processors in each column, and then in
each row:

FFT using transpose algorithm — first two steps.

o
ﬁ( T

H

w

T & O
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During the first two steps, all communication within a processor.
Duringlast two steps, the communication between processors.
Between the first two steps and the last two steps, the array
elements transposed.

® B © O

NONCNE
BNONCNS;
BYGNGNSlL
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After transpose, last two steps proceed but now involve
communication only within the processors. Only communication
between processors is to transpose array.

FFT using transpose algorithm — last two steps
Po P> P3

ORoONO
SACHCRSL:
ORoONO
@) &
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