

PARALLEL PROGRAMMING

TECHNIQUES AND APPLICATIONS USING
NETWORKED WORKSTATIONS AND

PARALLEL COMPUTERS

2nd Edition

BARRY WILKINSON

University of North Carolina at Charlotte
Western Carolina University

MICHAEL ALLEN

University of North Carolina at Charlotte

Upper Saddle River, NJ 07458

WilkFMff.fm Page i Saturday, February 7, 2004 11:54 AM

Library of Congress CataIoging-in-Publication Data

CIP DATA AVAILABLE.

Vice President and Editorial Director, ECS:

Marcia Horton

Executive Editor:

Kate Hargett

Vice President and Director of Production and Manufacturing, ESM:

David W. Riccardi

Executive Managing Editor:

Vince O’Brien

Managing Editor:

Camille Trentacoste

Production Editor:

John Keegan

Director of Creative Services:

Paul Belfanti

Art Director:

Jayne Conte

Cover Designer:

Kiwi Design

Managing Editor, AV Management and Production:

Patricia Burns

Art Editor:

Gregory Dulles

Manufacturing Manager:

Trudy Pisciotti

Manufacturing Buyer:

Lisa McDowell

Marketing Manager:

Pamela Hersperger

© 2005, 1999 Pearson Education, Inc.
Pearson Prentice Hall
Pearson Education, Inc.
Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without permission in writing
from the publisher.

Pearson Prentice Hall

®

 is a trademark of Pearson Education, Inc.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher
make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this
book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with,
or arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN: 0-13-140563-2

Pearson Education Ltd.,

London

Pearson Education Australia Pty. Ltd.,

 Sydney

Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd.,

Hong Kong

Pearson Education Canada, Inc.,

Toronto

Pearson Educación de Mexico, S.A. de C.V.
Pearson Education—Japan,

Tokyo

Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc.,

Upper Saddle River, New Jersey

WilkFMff.fm Page ii Friday, January 23, 2004 10:51 AM

To my wife, Wendy,
and my daughter, Johanna

Barry Wilkinson

To my wife, Bonnie

Michael Allen

WilkFMff.fm Page iii Friday, January 23, 2004 10:51 AM

iv

WilkFMff.fm Page iv Friday, January 23, 2004 10:51 AM

v

Preface

The purpose of this text is to introduce parallel programming techniques. Parallel program-
ming is programming multiple computers, or computers with multiple internal processors,
to solve a problem at a greater computational speed than is possible with a single computer.
It also offers the opportunity to tackle larger problems, that is, problems with more compu-
tational steps or larger memory requirements, the latter because multiple computers and
multiprocessor systems often have more total memory than a single computer. In this text,
we concentrate upon the use of multiple computers that communicate with one another by
sending messages; hence the term

message-passing

 parallel programming. The computers
we use can be different types (PC, SUN, SGI, etc.) but must be interconnected, and a
software environment must be present for message passing between computers. Suitable
computers (either already in a network or capable of being interconnected) are very widely
available as the basic computing platform for students, so that it is usually not necessary to
acquire a specially designed multiprocessor system. Several software tools are available for
message-passing parallel programming, notably several implementations of MPI, which
are all freely available. Such software can also be used on specially designed multiproces-
sor systems should these systems be available for use. So far as practicable, we discuss
techniques and applications in a system-independent fashion.

Second Edition.

Since the publication of the first edition of this book, the use of
interconnected computers as a high-performance computing platform has become wide-
spread. The term “cluster computing” has come to be used to describe this type of comput-
ing. Often the computers used in a cluster are “commodity” computers, that is, low-cost
personal computers as used in the home and office. Although the focus of this text, using
multiple computers and processors for high-performance computing, has not been changed,
we have revised our introductory chapter, Chapter 1, to take into account the move towards

WilkFMff.fm Page v Friday, January 23, 2004 10:51 AM

vi

Preface

commodity clusters and away from specially designed, self-contained, multiprocessors. In
the first edition, we described both PVM and MPI and provided an appendix for each.
However, only one would normally be used in the classroom. In the second edition, we have
deleted specific details of PVM from the text because MPI is now a widely adopted
standard and provides for much more powerful mechanisms. PVM can still be used if one
wishes, and we still provide support for it on our home page.

Message-passing programming has some disadvantages, notably the need for the
programmer to specify explicitly where and when the message passing should occur in the
program and what to send. Data has to be sent to those computers that require the data
through relatively slow messages. Some have compared this type of programming to
assembly language programming, that is, programming using the internal language of the
computer, a very low-level and tedious way of programming which is not done except
under very specific circumstances. An alternative programming model is the shared
memory model. In the first edition, shared memory programming was covered for
computers with multiple internal processors and a common shared memory. Such shared
memory multiprocessors have now become cost-effective and common, especially dual-
and quad-processor systems. Thread programming was described using Pthreads. Shared
memory programming remains in the second edition and with significant new material
added including performance aspects of shared memory programming and a section on
OpenMP, a thread-based standard for shared memory programming at a higher level than
Pthreads. Any broad-ranging course on practical parallel programming would include
shared memory programming, and having some experience with OpenMP is very desir-
able. A new appendix is added on OpenMP. OpenMP compilers are available at low cost
to educational institutions.

With the focus of using clusters, a major new chapter has been added on shared
memory programming on clusters. The shared memory model can be employed on a cluster
with appropriate distributed shared memory (DSM) software. Distributed shared memory
programming attempts to obtain the advantages of the scalability of clusters and the elegance
of shared memory. Software is freely available to provide the DSM environment, and we
shall also show that students can write their own DSM systems (we have had several done
so). We should point out that there are performance issues with DSM. The performance of
software DSM cannot be expected to be as good as true shared memory programming on a
shared memory multiprocessor. But a large, scalable shared memory multiprocessor is much
more expensive than a commodity cluster.

Other changes made for the second edition are related to programming on clusters.
New material is added in Chapter 6 on partially synchronous computations, which are par-
ticularly important in clusters where synchronization is expensive in time and should be
avoided. We have revised and added to Chapter 10 on sorting to include other sorting algo-
rithms for clusters. We have added to the analysis of the algorithms in the first part of the
book to include the computation/communication ratio because this is important to message-
passing computing. Extra problems have been added. The appendix on parallel computa-
tional models has been removed to maintain a reasonable page count.

The first edition of the text was described as course text primarily for an undergrad-
uate-level parallel programming course. However, we found that some institutions also
used the text as a graduate-level course textbook. We have also used the material for both
senior undergraduate-level and graduate-level courses, and it is suitable for beginning

WilkFMff.fm Page vi Friday, January 23, 2004 10:51 AM

Preface

vii

graduate-level courses. For a graduate-level course, more advanced materials, for example,
DSM implementation and fast Fourier transforms, would be covered and more demanding
programming projects chosen.

Structure of Materials.

As with the first edition, the text is divided into two
parts. Part I now consists of Chapters 1 to 9, and Part II now consists of Chapters 10 to 13.
In Part I, the basic techniques of parallel programming are developed. In Chapter 1, the
concept of parallel computers is now described with more emphasis on clusters. Chapter 2
describes message-passing routines in general and particular software (MPI). Evaluating
the performance of message-passing programs, both theoretically and in practice, is dis-
cussed. Chapter 3 describes the ideal problem for making parallel the embarrassingly
parallel computation where the problem can be divided into independent parts. In fact,
important applications can be parallelized in this fashion. Chapters 4, 5, 6, and 7 describe
various programming strategies (partitioning and divide and conquer, pipelining, synchro-
nous computations, asynchronous computations, and load balancing). These chapters of
Part I cover all the essential aspects of parallel programming with the emphasis on
message-passing and using simple problems to demonstrate techniques. The techniques
themselves, however, can be applied to a wide range of problems. Sample code is usually
given first as sequential code and then as parallel pseudocode. Often, the underlying
algorithm is already parallel in nature and the sequential version has “unnaturally” serial-
ized it using loops. Of course, some algorithms have to be reformulated for efficient parallel
solution, and this reformulation may not be immediately apparent. Chapter 8 describes
shared memory programming and includes Pthreads, an IEEE standard system that is
widely available, and OpenMP. There is also a significant new section on timing and per-
formance issues. The new chapter on distributed shared memory programming has been
placed after the shared memory chapter to complete Part I, and the subsequent chapters
have been renumbered.

Many parallel computing problems have specially developed algorithms, and in Part II
problem-specific algorithms are studied in both non-numeric and numeric domains. For
Part II, some mathematical concepts are needed, such as matrices. Topics covered in Part II
include sorting (Chapter 10), numerical algorithms, matrix multiplication, linear equations,
partial differential equations (Chapter 11), image processing (Chapter 12), and searching
and optimization (Chapter 13). Image processing is particularly suitable for parallelization
and is included as an interesting application with significant potential for projects. The fast
Fourier transform is discussed in the context of image processing. This important transform
is also used in many other areas, including signal processing and voice recognition.

A large selection of “real-life” problems drawn from practical situations is presented
at the end of each chapter. These problems require no specialized mathematical knowledge
and are a unique aspect of this text. They develop skills in the use of parallel programming
techniques rather than simply teaching how to solve specific problems, such as sorting
numbers or multiplying matrices.

Prerequisites.

The prerequisite for studying Part I is a knowledge of sequential
programming, as may be learned from using the C language. The parallel pseudocode in
the text uses C-like assignment statements and control flow statements. However, students
with only a knowledge of Java will have no difficulty in understanding the pseudocode,

WilkFMff.fm Page vii Friday, January 23, 2004 10:51 AM

viii

Preface

because syntax of the statements is similar to that of Java. Part I can be studied immediately
after basic sequential programming has been mastered. Many assignments here can be
attempted without specialized mathematical knowledge. If MPI is used for the assignments,
programs are usually written in C or C++ calling MPI message-passing library routines.
The descriptions of the specific library calls needed are given in Appendix A. It is possible
to use Java, although students with only a knowledge of Java should not have any difficulty
in writing their assignments in C/C++.

In Part II, the sorting chapter assumes that the student has covered sequential sorting
in a data structure or sequential programming course. The numerical algorithms chapter
requires the mathematical background that would be expected of senior computer science
or engineering undergraduates.

Course Structure.

The instructor has some flexibility in the presentation of the
materials. Not everything need be covered. In fact, it is usually not possible to cover the
whole book in a single semester. A selection of topics from Part I would be suitable as an
addition to a normal sequential programming class. We have introduced our first-year
students to parallel programming in this way. In that context, the text is a supplement to a
sequential programming course text. All of Part I and selected parts of Part II together are
suitable as a more advanced undergraduate or beginning graduate-level parallel program-
ming/computing course, and we use the text in that manner.

Home Page.

A Web site has been developed for this book as an aid to students
and instructors. It can be found at www.cs.uncc.edu/par_prog. Included at this site are
extensive Web pages to help students learn how to compile and run parallel programs.
Sample programs are provided for a simple initial assignment to check the software envi-
ronment. The Web site has been completely redesigned during the preparation of the second
edition to include step-by-step instructions for students using navigation buttons. Details of
DSM programming are also provided. The new Instructor’s Manual is available to instruc-
tors, and gives MPI solutions. The original solutions manual gave PVM solutions and is still
available. The solutions manuals are available electronically from the authors. A very
extensive set of slides is available from the home page.

Acknowledgments.

The first edition of this text was the direct outcome of a
National Science Foundation grant awarded to the authors at the University of North
Carolina at Charlotte to introduce parallel programming in the first college year.

1

 Without
the support of the late Dr. M. Mulder, program director at the National Science Foundation,
we would not have been able to pursue the ideas presented in the text. A number of graduate
students worked on the original project. Mr. Uday Kamath produced the original solutions
manual.

We should like to record our thanks to James Robinson, the departmental system
administrator who established our local workstation cluster, without which we would not
have been able to conduct the work. We should also like to thank the many students at UNC
Charlotte who took our classes and helped us refine the material over many years. This

1

National Science Foundation grant “Introducing parallel programming techniques into the freshman cur-
ricula,” ref. DUE 9554975.

WilkFMff.fm Page viii Friday, January 23, 2004 10:51 AM

Preface

ix

included “teleclasses” in which the materials for the first edition were classroom tested in
a unique setting. The teleclasses were broadcast to several North Carolina universities,
including UNC Asheville, UNC Greensboro, UNC Wilmington, and North Carolina State
University, in addition to UNC Charlotte. Professor Mladen Vouk of North Carolina State
University, apart from presenting an expert guest lecture for us, set up an impressive Web
page that included “real audio” of our lectures and “automatically turning” slides. (These
lectures can be viewed from a link from our home page.) Professor John Board of Duke
University and Professor Jan Prins of UNC Chapel Hill also kindly made guest-expert pre-
sentations to classes. A parallel programming course based upon the material in this text
was also given at the Universidad Nacional de San Luis in Argentina by kind invitation of
Professor Raul Gallard.

The National Science Foundation has continued to support our work on cluster com-
puting, and this helped us develop the second edition. A National Science Foundation grant
was awarded to us to develop distributed shared memory tools and educational materials.

2

Chapter 9, on distributed shared memory programming, describes the work. Subsequently,
the National Science Foundation awarded us a grant to conduct a three-day workshop at
UNC Charlotte in July 2001 on teaching cluster computing,

3

 which enabled us to further
refine our materials for this book. We wish to record our appreciation to Dr. Andrew Bernat,
program director at the National Science Foundation, for his continuing support. He
suggested the cluster computing workshop at Charlotte. This workshop was attended by
18 faculty from around the United States. It led to another three-day workshop on teaching
cluster computing at Gujarat University, Ahmedabad, India, in December 2001, this time
by invitation of the IEEE Task Force on Cluster Computing (TFCC), in association with
the IEEE Computer Society, India. The workshop was attended by about 40 faculty. We
are also deeply in the debt to several people involved in the workshop, and especially to
Mr. Rajkumar Buyya, chairman of the IEEE Computer Society Task Force on Cluster
Computing who suggested it. We are also very grateful to Prentice Hall for providing
copies of our textbook to free of charge to everyone who attended the workshops.

We have continued to test the materials with student audiences at UNC Charlotte and
elsewhere (including the University of Massachusetts, Boston, while on leave of absence).
A number of UNC-Charlotte students worked with us on projects during the development
of the second edition. The new Web page for this edition was developed by Omar Lahbabi
and further refined by Sari Ansari, both undergraduate students. The solutions manual in
MPI was done by Thad Drum and Gabriel Medin, also undergraduate students at UNC-
Charlotte.

We would like to express our continuing appreciation to Petra Recter, senior acquisi-
tions editor at Prentice Hall, who supported us throughout the development of the second
edition. Reviewers provided us with very helpful advice, especially one anonymous
reviewer whose strong views made us revisit many aspects of this book, thereby definitely
improving the material.

Finally, we wish to thank the many people who contacted us about the first edition,
providing us with corrections and suggestions. We maintained an on-line errata list which
was useful as the book went through reprints. All the corrections from the first edition have

2

National Science Foundation grant “Parallel Programming on Workstation Clusters,” ref. DUE 995030.

3

National Science Foundation grant supplement for a cluster computing workshop, ref. DUE 0119508.

WilkFMff.fm Page ix Friday, January 23, 2004 10:51 AM

x

Preface

been incorporated into the second edition. An on-line errata list will be maintained again
for the second edition with a link from the home page. We always appreciate being
contacted with comments or corrections. Please send comments and corrections to us at
wilkinson@email.wcu.edu (Barry Wilkinson) or cma@uncc.edu (Michael Allen).

B

ARRY

 W

ILKINSON

M

ICHAEL

 A

LLEN

Western Carolina University University of North Carolina, Charlotte

WilkFMff.fm Page x Friday, January 23, 2004 10:51 AM

xi

About the Authors

Barry Wilkinson is a full professor in the Department of Computer Science at the University
of North Carolina at Charlotte, and also holds a faculty position at Western Carolina Uni-
versity. He previously held faculty positions at Brighton Polytechnic, England (1984–87),
the State University of New York, College at New Paltz (1983–84), University College,
Cardiff, Wales (1976–83), and the University of Aston, England (1973–76). From 1969 to
1970, he worked on process control computer systems at Ferranti Ltd. He is the author of

Computer Peripherals

 (with D. Horrocks, Hodder and Stoughton, 1980, 2nd ed. 1987),

Digital System Design

 (Prentice Hall, 1987, 2nd ed. 1992),

Computer Architecture Design
and Performance

 (Prentice Hall 1991, 2nd ed. 1996), and

The Essence of Digital Design

(Prentice Hall, 1997). In addition to these books, he has published many papers in major
computer journals. He received a B.S. degree in electrical engineering (with first-class
honors) from the University of Salford in 1969, and M.S. and Ph.D. degrees from the Uni-
versity of Manchester (Department of Computer Science), England, in 1971 and 1974,
respectively. He has been a senior member of the IEEE since 1983 and received an IEEE
Computer Society Certificate of Appreciation in 2001 for his work on the IEEE Task Force
on Cluster Computing (TFCC) education program.

Michael Allen is a full professor in the Department of Computer Science at the University
of North Carolina at Charlotte. He previously held faculty positions as an associate and
full professor in the Electrical Engineering Department at the University of North Carolina
at Charlotte (1974–85), and as an instructor and an assistant professor in the Electrical
Engineering Department at the State University of New York at Buffalo (1968–74). From
1985 to 1987, he was on leave from the University of North Carolina at Charlotte while
serving as the president and chairman of DataSpan, Inc. Additional industry experience
includes electronics design and software systems development for Eastman Kodak,
Sylvania Electronics, Bell of Pennsylvania, Wachovia Bank, and numerous other firms. He
received B.S. and M.S. degrees in Electrical Engineering from Carnegie Mellon Univer-
sity in 1964 and 1965, respectively, and a Ph.D. from the State University of New York at
Buffalo in 1968.

WilkFMff.fm Page xi Friday, January 23, 2004 10:51 AM

WilkFMff.fm Page xii Friday, January 23, 2004 10:51 AM

xiii

Contents

Preface v

About the Authors xi

PART I BASIC TECHNIQUES 1

CHAPTER 1 PARALLEL COMPUTERS 3

1.1 The Demand for Computational Speed 3

1.2 Potential for Increased Computational Speed 6

Speedup Factor 6
What Is the Maximum Speedup? 8
Message-Passing Computations 13

1.3 Types of Parallel Computers 13

Shared Memory Multiprocessor System 14
Message-Passing Multicomputer 16
Distributed Shared Memory 24
MIMD and SIMD Classifications 25

1.4 Cluster Computing 26

Interconnected Computers as a Computing Platform 26
Cluster Configurations 32
Setting Up a Dedicated “Beowulf Style” Cluster 36

1.5 Summary 38

Further Reading 38

WilkFMff.fm Page xiii Friday, January 23, 2004 10:51 AM

xiv

Contents

Bibliography 39

Problems 41

CHAPTER 2 MESSAGE-PASSING COMPUTING 42

2.1 Basics of Message-Passing Programming 42

Programming Options 42
Process Creation 43
Message-Passing Routines 46

2.2 Using a Cluster of Computers 51

Software Tools 51
MPI 52
Pseudocode Constructs 60

2.3 Evaluating Parallel Programs 62

Equations for Parallel Execution Time 62
Time Complexity 65
Comments on Asymptotic Analysis 68
Communication Time of Broadcast/Gather 69

2.4 Debugging and Evaluating Parallel Programs Empirically 70

Low-Level Debugging 70
Visualization Tools 71
Debugging Strategies 72
Evaluating Programs 72
Comments on Optimizing Parallel Code 74

2.5 Summary 75

Further Reading 75

Bibliography 76

Problems 77

CHAPTER 3 EMBARRASSINGLY PARALLEL COMPUTATIONS 79

3.1 Ideal Parallel Computation 79

3.2 Embarrassingly Parallel Examples 81

Geometrical Transformations of Images 81
Mandelbrot Set 86
Monte Carlo Methods 93

3.3 Summary 98

Further Reading 99

Bibliography 99

Problems 100

WilkFMff.fm Page xiv Friday, January 23, 2004 10:51 AM

Contents

xv

CHAPTER 4 PARTITIONING AND DIVIDE-AND-CONQUER
STRATEGIES 106

4.1 Partitioning 106

Partitioning Strategies 106
Divide and Conquer 111

M

-ary Divide and Conquer 116

4.2 Partitioning and Divide-and-Conquer Examples 117

Sorting Using Bucket Sort 117
Numerical Integration 122

N

-Body Problem 126

4.3 Summary 131

Further Reading 131

Bibliography 132

Problems 133

CHAPTER 5 PIPELINED COMPUTATIONS 140

5.1 Pipeline Technique 140

5.2 Computing Platform for Pipelined Applications 144

5.3 Pipeline Program Examples 145

Adding Numbers 145
Sorting Numbers 148
Prime Number Generation 152
Solving a System of Linear Equations — Special Case 154

5.4 Summary 157

Further Reading 158

Bibliography 158

Problems 158

CHAPTER 6 SYNCHRONOUS COMPUTATIONS 163

6.1 Synchronization 163

Barrier 163
Counter Implementation 165
Tree Implementation 167
Butterfly Barrier 167
Local Synchronization 169
Deadlock 169

WilkFMff.fm Page xv Friday, January 23, 2004 10:51 AM

xvi

Contents

6.2 Synchronized Computations 170

Data Parallel Computations 170
Synchronous Iteration 173

6.3 Synchronous Iteration Program Examples 174

Solving a System of Linear Equations by Iteration 174
Heat-Distribution Problem 180
Cellular Automata 190

6.4 Partially Synchronous Methods 191

6.5 Summary 193

Further Reading 193

Bibliography 193

Problems 194

CHAPTER 7 LOAD BALANCING AND TERMINATION DETECTION 201

7.1 Load Balancing 201

7.2 Dynamic Load Balancing 203

Centralized Dynamic Load Balancing 204
Decentralized Dynamic Load Balancing 205
Load Balancing Using a Line Structure 207

7.3 Distributed Termination Detection Algorithms 210

Termination Conditions 210
Using Acknowledgment Messages 211
Ring Termination Algorithms 212
Fixed Energy Distributed Termination Algorithm 214

7.4 Program Example 214

Shortest-Path Problem 214
Graph Representation 215
Searching a Graph 217

7.5 Summary 223

Further Reading 223

Bibliography 224

Problems 225

CHAPTER 8 PROGRAMMING WITH SHARED MEMORY 230

8.1 Shared Memory Multiprocessors 230

8.2 Constructs for Specifying Parallelism 232

Creating Concurrent Processes 232
Threads 234

WilkFMff.fm Page xvi Friday, January 23, 2004 10:51 AM

Contents

xvii

8.3 Sharing Data 239

Creating Shared Data 239
Accessing Shared Data 239

8.4 Parallel Programming Languages and Constructs 247

Languages 247
Language Constructs 248
Dependency Analysis 250

8.5 OpenMP 253

8.6 Performance Issues 258

Shared Data Access 258
Shared Memory Synchronization 260
Sequential Consistency 262

8.7 Program Examples 265

UNIX Processes 265
Pthreads Example 268
Java Example 270

8.8 Summary 271

Further Reading 272

Bibliography 272

Problems 273

CHAPTER 9 DISTRIBUTED SHARED MEMORY SYSTEMS
AND PROGRAMMING 279

9.1 Distributed Shared Memory 279

9.2 Implementing Distributed Shared Memory 281

Software DSM Systems 281
Hardware DSM Implementation 282
Managing Shared Data 283
Multiple Reader/Single Writer Policy in a Page-Based System 284

9.3 Achieving Consistent Memory in a DSM System 284

9.4 Distributed Shared Memory Programming Primitives 286

Process Creation 286
Shared Data Creation 287
Shared Data Access 287
Synchronization Accesses 288
Features to Improve Performance 288

9.5 Distributed Shared Memory Programming 290

9.6 Implementing a Simple DSM system 291

User Interface Using Classes and Methods 291
Basic Shared-Variable Implementation 292
Overlapping Data Groups 295

WilkFMff.fm Page xvii Friday, January 23, 2004 10:51 AM

xviii

Contents

9.7 Summary 297

Further Reading 297

Bibliography 297

Problems 298

PART II ALGORITHMS AND APPLICATIONS 301

CHAPTER 10 SORTING ALGORITHMS 303

10.1 General 303

Sorting 303
Potential Speedup 304

10.2 Compare-and-Exchange Sorting Algorithms 304

Compare and Exchange 304
Bubble Sort and Odd-Even Transposition Sort 307
Mergesort 311
Quicksort 313
Odd-Even Mergesort 316
Bitonic Mergesort 317

10.3 Sorting on Specific Networks 320
Two-Dimensional Sorting 321
Quicksort on a Hypercube 323

10.4 Other Sorting Algorithms 327
Rank Sort 327
Counting Sort 330
Radix Sort 331
Sample Sort 333
Implementing Sorting Algorithms on Clusters 333

10.5 Summary 335

Further Reading 335

Bibliography 336

Problems 337

CHAPTER 11 NUMERICAL ALGORITHMS 340

11.1 Matrices — A Review 340
Matrix Addition 340
Matrix Multiplication 341
Matrix-Vector Multiplication 341
Relationship of Matrices to Linear Equations 342

WilkFMff.fm Page xviii Friday, January 23, 2004 10:51 AM

Contents xix

11.2 Implementing Matrix Multiplication 342
Algorithm 342
Direct Implementation 343
Recursive Implementation 346
Mesh Implementation 348
Other Matrix Multiplication Methods 352

11.3 Solving a System of Linear Equations 352
Linear Equations 352
Gaussian Elimination 353
Parallel Implementation 354

11.4 Iterative Methods 356
Jacobi Iteration 357
Faster Convergence Methods 360

11.5 Summary 365

Further Reading 365

Bibliography 365

Problems 366

CHAPTER 12 IMAGE PROCESSING 370

12.1 Low-level Image Processing 370

12.2 Point Processing 372

12.3 Histogram 373

12.4 Smoothing, Sharpening, and Noise Reduction 374
Mean 374
Median 375
Weighted Masks 377

12.5 Edge Detection 379
Gradient and Magnitude 379
Edge-Detection Masks 380

12.6 The Hough Transform 383

12.7 Transformation into the Frequency Domain 387
Fourier Series 387
Fourier Transform 388
Fourier Transforms in Image Processing 389
Parallelizing the Discrete Fourier Transform Algorithm 391
Fast Fourier Transform 395

12.8 Summary 400

Further Reading 401

WilkFMff.fm Page xix Friday, January 23, 2004 10:51 AM

xx Contents

Bibliography 401

Problems 403

CHAPTER 13 SEARCHING AND OPTIMIZATION 406

13.1 Applications and Techniques 406

13.2 Branch-and-Bound Search 407
Sequential Branch and Bound 407
Parallel Branch and Bound 409

13.3 Genetic Algorithms 411
Evolution and Genetic Algorithms 411
Sequential Genetic Algorithms 413
Initial Population 413
Selection Process 415
Offspring Production 416
Variations 418
Termination Conditions 418
Parallel Genetic Algorithms 419

13.4 Successive Refinement 423

13.5 Hill Climbing 424
Banking Application 425
Hill Climbing in a Banking Application 427
Parallelization 428

13.6 Summary 428

Further Reading 428

Bibliography 429

Problems 430

APPENDIX A BASIC MPI ROUTINES 437

APPENDIX B BASIC PTHREAD ROUTINES 444

APPENDIX C OPENMP DIRECTIVES, LIBRARY FUNCTIONS,
AND ENVIRONMENT VARIABLES 449

INDEX 460

WilkFMff.fm Page xx Friday, January 23, 2004 10:51 AM

