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Preface

 

The purpose of this text is to introduce parallel programming techniques. Parallel program-
ming is programming multiple computers, or computers with multiple internal processors,
to solve a problem at a greater computational speed than is possible with a single computer.
It also offers the opportunity to tackle larger problems, that is, problems with more compu-
tational steps or larger memory requirements, the latter because multiple computers and
multiprocessor systems often have more total memory than a single computer. In this text,
we concentrate upon the use of multiple computers that communicate with one another by
sending messages; hence the term 

 

message-passing

 

 parallel programming. The computers
we use can be different types (PC, SUN, SGI, etc.) but must be interconnected, and a
software environment must be present for message passing between computers. Suitable
computers (either already in a network or capable of being interconnected) are very widely
available as the basic computing platform for students, so that it is usually not necessary to
acquire a specially designed multiprocessor system. Several software tools are available for
message-passing parallel programming, notably several implementations of MPI, which
are all freely available. Such software can also be used on specially designed multiproces-
sor systems should these systems be available for use. So far as practicable, we discuss
techniques and applications in a system-independent fashion.

 

Second Edition.

 

Since the publication of the first edition of this book, the use of
interconnected computers as a high-performance computing platform has become wide-
spread. The term “cluster computing” has come to be used to describe this type of comput-
ing. Often the computers used in a cluster are “commodity” computers, that is, low-cost
personal computers as used in the home and office. Although the focus of this text, using
multiple computers and processors for high-performance computing, has not been changed,
we have revised our introductory chapter, Chapter 1, to take into account the move towards
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commodity clusters and away from specially designed, self-contained, multiprocessors. In
the first edition, we described both PVM and MPI and provided an appendix for each.
However, only one would normally be used in the classroom. In the second edition, we have
deleted specific details of PVM from the text because MPI is now a widely adopted
standard and provides for much more powerful mechanisms. PVM can still be used if one
wishes, and we still provide support for it on our home page. 

Message-passing programming has some disadvantages, notably the need for the
programmer to specify explicitly where and when the message passing should occur in the
program and what to send. Data has to be sent to those computers that require the data
through relatively slow messages. Some have compared this type of programming to
assembly language programming, that is, programming using the internal language of the
computer, a very low-level and tedious way of programming which is not done except
under very specific circumstances. An alternative programming model is the shared
memory model. In the first edition, shared memory programming was covered for
computers with multiple internal processors and a common shared memory. Such shared
memory multiprocessors have now become cost-effective and common, especially dual-
and quad-processor systems. Thread programming was described using Pthreads. Shared
memory programming remains in the second edition and with significant new material
added including performance aspects of shared memory programming and a section on
OpenMP, a thread-based standard for shared memory programming at a higher level than
Pthreads. Any broad-ranging course on practical parallel programming would include
shared memory programming, and having some experience with OpenMP is very desir-
able. A new appendix is added on OpenMP. OpenMP compilers are available at low cost
to educational institutions.

With the focus of using clusters, a major new chapter has been added on shared
memory programming on clusters. The shared memory model can be employed on a cluster
with appropriate distributed shared memory (DSM) software. Distributed shared memory
programming attempts to obtain the advantages of the scalability of clusters and the elegance
of shared memory. Software is freely available to provide the DSM environment, and we
shall also show that students can write their own DSM systems (we have had several done
so). We should point out that there are performance issues with DSM. The performance of
software DSM cannot be expected to be as good as true shared memory programming on a
shared memory multiprocessor. But a large, scalable shared memory multiprocessor is much
more expensive than a commodity cluster.

Other changes made for the second edition are related to programming on clusters.
New material is added in Chapter 6 on partially synchronous computations, which are par-
ticularly important in clusters where synchronization is expensive in time and should be
avoided. We have revised and added to Chapter 10 on sorting to include other sorting algo-
rithms for clusters. We have added to the analysis of the algorithms in the first part of the
book to include the computation/communication ratio because this is important to message-
passing computing. Extra problems have been added. The appendix on parallel computa-
tional models has been removed to maintain a reasonable page count.

The first edition of the text was described as course text primarily for an undergrad-
uate-level parallel programming course. However, we found that some institutions also
used the text as a graduate-level course textbook. We have also used the material for both
senior undergraduate-level and graduate-level courses, and it is suitable for beginning
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graduate-level courses. For a graduate-level course, more advanced materials, for example,
DSM implementation and fast Fourier transforms, would be covered and more demanding
programming projects chosen.

 

Structure of Materials.

 

As with the first edition, the text is divided into two
parts. Part I now consists of Chapters 1 to 9, and Part II now consists of Chapters 10 to 13.
In Part I, the basic techniques of parallel programming are developed. In Chapter 1, the
concept of parallel computers is now described with more emphasis on clusters. Chapter 2
describes message-passing routines in general and particular software (MPI). Evaluating
the performance of message-passing programs, both theoretically and in practice, is dis-
cussed. Chapter 3 describes the ideal problem for making parallel the embarrassingly
parallel computation where the problem can be divided into independent parts. In fact,
important applications can be parallelized in this fashion. Chapters 4, 5, 6, and 7 describe
various programming strategies (partitioning and divide and conquer, pipelining, synchro-
nous computations, asynchronous computations, and load balancing). These chapters of
Part I cover all the essential aspects of parallel programming with the emphasis on
message-passing and using simple problems to demonstrate techniques. The techniques
themselves, however, can be applied to a wide range of problems. Sample code is usually
given first as sequential code and then as parallel pseudocode. Often, the underlying
algorithm is already parallel in nature and the sequential version has “unnaturally” serial-
ized it using loops. Of course, some algorithms have to be reformulated for efficient parallel
solution, and this reformulation may not be immediately apparent. Chapter 8 describes
shared memory programming and includes Pthreads, an IEEE standard system that is
widely available, and OpenMP. There is also a significant new section on timing and per-
formance issues. The new chapter on distributed shared memory programming has been
placed after the shared memory chapter to complete Part I, and the subsequent chapters
have been renumbered.

Many parallel computing problems have specially developed algorithms, and in Part II
problem-specific algorithms are studied in both non-numeric and numeric domains. For
Part II, some mathematical concepts are needed, such as matrices. Topics covered in Part II
include sorting (Chapter 10), numerical algorithms, matrix multiplication, linear equations,
partial differential equations (Chapter 11), image processing (Chapter 12), and searching
and optimization (Chapter 13). Image processing is particularly suitable for parallelization
and is included as an interesting application with significant potential for projects. The fast
Fourier transform is discussed in the context of image processing. This important transform
is also used in many other areas, including signal processing and voice recognition.

A large selection of “real-life” problems drawn from practical situations is presented
at the end of each chapter. These problems require no specialized mathematical knowledge
and are a unique aspect of this text. They develop skills in the use of parallel programming
techniques rather than simply teaching how to solve specific problems, such as sorting
numbers or multiplying matrices.

 

Prerequisites.

 

The prerequisite for studying Part I is a knowledge of sequential
programming, as may be learned from using the C language. The parallel pseudocode in
the text uses C-like assignment statements and control flow statements. However, students
with only a knowledge of Java will have no difficulty in understanding the pseudocode,
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because syntax of the statements is similar to that of Java. Part I can be studied immediately
after basic sequential programming has been mastered. Many assignments here can be
attempted without specialized mathematical knowledge. If MPI is used for the assignments,
programs are usually written in C or C++ calling MPI message-passing library routines.
The descriptions of the specific library calls needed are given in Appendix A. It is possible
to use Java, although students with only a knowledge of Java should not have any difficulty
in writing their assignments in C/C++.

In Part II, the sorting chapter assumes that the student has covered sequential sorting
in a data structure or sequential programming course. The numerical algorithms chapter
requires the mathematical background that would be expected of senior computer science
or engineering undergraduates.

 

Course Structure.

 

The instructor has some flexibility in the presentation of the
materials. Not everything need be covered. In fact, it is usually not possible to cover the
whole book in a single semester. A selection of topics from Part I would be suitable as an
addition to a normal sequential programming class. We have introduced our first-year
students to parallel programming in this way. In that context, the text is a supplement to a
sequential programming course text. All of Part I and selected parts of Part II together are
suitable as a more advanced undergraduate or beginning graduate-level parallel program-
ming/computing course, and we use the text in that manner.

 

Home Page.

 

A Web site has been developed for this book as an aid to students
and instructors. It can be found at www.cs.uncc.edu/par_prog. Included at this site are
extensive Web pages to help students learn how to compile and run parallel programs.
Sample programs are provided for a simple initial assignment to check the software envi-
ronment. The Web site has been completely redesigned during the preparation of the second
edition to include step-by-step instructions for students using navigation buttons. Details of
DSM programming are also provided. The new Instructor’s Manual is available to instruc-
tors, and gives MPI solutions. The original solutions manual gave PVM solutions and is still
available. The solutions manuals are available electronically from the authors. A very
extensive set of slides is available from the home page.
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