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Abstract. We show that it is consistent to have a non-trivial
embedding of N∗ into itself even if all autohomeomorphisms of N∗

are trivial.

1. Introduction

In this paper we are interested in the existence of non-trivial copies
of N∗ in βN. A subspace K ⊂ N∗ is said to be a trivial copy if there
is an embedding of βN into βN which sends the remainder N∗ onto K.
A point U of N∗ is said to be a tie-point if there are closed sets A,B
covering N∗ satisfying that A \B ∩ B \ A is the single point U . We
shall use A BCU B to denote when this is the case, and say that A,B is
a tie-point pair with base U . In the exceptional case that there is an
autohomeomorphism of N∗ sending A onto B (and B onto A), we say
in [2] that U is a symmetric tie-point. Obviously A and B are regular
closed subsets of N∗. It is of some interest to also be able to determine
if either or both of A and B would be copies of N∗; it is easily shown,
in any case, that neither is a trivial copy. It is not known if N∗ contains
a non-trivial copy of N∗, but Farah has shown that PFA implies that
it has no regular closed non-trivial copies. We should mention the
well-known fact that the continuum hypothesis implies that non-trivial
copies of N∗ abound.

A homomorphism ψ from P(N)/ fin into P(N)/ fin is said to be triv-
ial, if there is function h with domain and range subsets of N which
induces ψ in the sense that ψ(a) =∗ h−1[a] for all a ⊂ N. Two ul-
trafilters on N are said to be RK-equivalent (Rudin-Keisler) if there
is a trivial automorphism sending one to the other. We intend to
deal with surjective homomorphisms only and so may assume that h
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2 A. DOW

is one-to-one. It will be more convenient then to work with the in-
verse map and to expand the domain of h to all of N by sending the
additional points to 0; hence ψ(a) =∗ h[a] \ {0}. Of course the ker-
nel of ψ, ker(ψ), will consist of all sets which are almost contained
in h−1(0). More generally, if a ∈ P(N) and ψ � P(a)/ fin is trivial,
then we let ha denote any function into N ∪ {0} with domain a which
induces ψ as above. We let triv(ψ) denote the ideal of sets on which
ψ is trivial; observe that ker(ψ) ⊂ triv(ψ). If g is a homeomorphism
from N∗ onto K ⊂ βN, then there is a corresponding homomorphism,
ψg from P(N)/ fin onto P(N)/ fin defined by ψg(a) is the equivalence
class of b if b∗ = g−1(a∗ ∩ K). Of course g is said to be a trivial
(auto)homeomorphism if ψg is a trivial automorphism. We will say
that g is trivial at a point x ∈ N∗ if some member of triv(φg) is in the
ultrafilter corresponding to x.

Velickovic introduced a poset, which we will denote P2, which intro-
duces a symmetric tie-point (and a non-trivial automorphism). Several
variations of P2 are possible and we continue the study of the properties
of N∗ that hold in the model(s) obtained when forcing with P2 (and
its variants) over a model of PFA (see [14, 10, 12, 2]). It is known to
follow from PFA that there are no tie-points (see remark [1, p.1662])
and we will prove a stronger statement in the second section.

Farah [5] defines the important notion of an ideal of P(N) being ccc
over fin to mean that any uncountable almost disjoint family of subsets
of N will intersect the ideal. By Stone duality, we define a closed
subset K of N∗ to be ccc over fin if there is no uncountable family of
pairwise disjoint clopen subsets of N∗ each meeting K in a non-empty
set. Farah [5] proves that PFA implies that for each homomorphism ψ
from P(N)/ fin onto P(N)/ fin, triv(ψ) is ccc over fin. We show that
this remains true in forcing extensions by the posets mentioned above.

2. Preliminariesmaintheorems

For ideals I,J on P(N) we use I ⊥ J to denote that I ∩ J =
fin. Ideals I and J are separated if there is an a ⊂ N which mod
finite contains every member of I and is mod finite disjoint from every
member of J . Let I ⊕ J denote the ideal generated by I ∪ J . For
C ⊂ N, I�C is the ideal {a∩C : a ∈ I}⊕ fin. The notation I⊥ denotes
the ideal {b ⊂ N : (∀a ∈ I) b∩a ∈ fin}. Of course I⊕I⊥ is a dense ideal
(every infinite set contains an infinite member). For a set A ⊂ N∗, we
let IA denote the ideal {a ⊂ N : a∗ ⊂ A}. Observe that A being regular
closed is equivalent to I⊥A being equal to {b ⊂ N : b∗ ∩A = ∅} = IN∗\A.
The boundary of a regular closed set A, denoted ∂A, is ccc over fin
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precisely when IA ⊕ I⊥A is ccc over fin. Indeed, an ultrafilter U ∈ ∂A
if and only if U ∩ (IA ⊕ I⊥A ) is empty. Let us also recall that an ideal
I is a P -ideal if every countable subset of I has a mod finite upper
bound in I, and similarly, I is a Pω2-ideal if every <ω2-sized subset of
I has a mod finite upper bound in I. In this notation we may define
an (ω2, ω2)-gap to be an unseparated pair I,J where each is an ℵ2-
generated Pω2-ideal. In a similar way, a pair I,J is an (ω1, ω2)-gap if
I is an ℵ1-generated P -ideal and J is an ℵ2-generated Pω2-ideal.

Following Farah ([5, p144-5]) (reporting on results of Todorcevic) we
will make use of the notion of a Luzin gap which makes the unsepa-
ratedness of the orthogonal ideals upward absolute for ω1-preserving
extensions. Indeed, a pair I,J is a Luzin gap if I ⊥ J and there is
a pair of maps fI , fJ sending ω1 into I and J respectively, such that
for all α, β ∈ ω1 we have

fI(α) ∩ fJ (β) 6= ∅ if and only if α 6= β .

So long as ω1 is preserved, I and J remain unseparated ([5, 5.2.3]).
Let us note that we should actually be saying that I,J contains a
Luzin gap but the distinction does not seem important. It follows that
neither I nor J can be a Pω2-ideal if I,J is a Luzin gap.

Define I,J to be countably separated if there is a family {Cn : n ∈
ω} ⊂ P(N) such that for all I ∈ I and J ∈ J , there is an n such that
I ⊂∗ Cn and Cn ∩ J =∗ ∅. A close reading of the proof of [5, 5.2.4]
establishes the following (see also [8, Lemma 2] for a similar result that
inspired this work).

Proposition 2.1. If I ⊥ J are not countably separated, then there is luzin
a proper poset which forces I,J to be a Luzin gap.

It is immediate that if I and J are unseparated P -ideals then they
are not countably separated. As we will need it later, this is a good
place to record the following strengthening of Proposition 2.1 (using
an idea from [5, 3.85]).

Proposition 2.2. If I ⊥ J are not countably separated, then there is strongluzin
a proper poset which introduces an uncountable almost disjoint family
C of subsets of N such that for each C ∈ C, I�C ,J�C contains a Luzin
gap.

Proof. Start with the poset 2<ω1 which is countably closed and forces
CH to hold. In the extension, let {yα : α ∈ ω1} be an enumeration of
P(N) and inductively choose disjoint aα ∈ I and bα ∈ J so that for
all β < α, yβ does not mod finite separate {aα, bα}. Notice that we
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now have that for any uncountable Λ0,Λ1 ⊂ ω1, the sets
⋃
α∈Λ0

aα and⋃
β∈Λ1

bβ have infinite intersection.

We define a poset Q where q ∈ Q implies q =
(
Lq, ψq, 〈Cq

γ : γ ∈ Lq〉
)

for some Lq ∈ [ω1]<ω, ψq ∈ L
Lq
q , and sequence, 〈Cq

γ : γ ∈ Lq〉 of
finite sets of integers. We also require that for α, β ∈ Lq with γ =
ψq(α) = ψq(β), then aα ∩ bβ must meet Cq

γ . We define p < q if the
obvious inclusions hold, and we also require that for γ, δ ∈ Lq, we have
Cp
γ ∩ C

p
δ = Cq

γ ∩ C
q
δ .

It is easy to see that if Q is ccc and if G ⊂ Q is generic, then the
family C = {Cγ : γ ∈ ω1} will form an almost disjoint family, where
Cγ =

⋃
{Cp

γ : p ∈ G, γ ∈ Lp}. A simple density argument will also show
that Γγ = {α : (∃p ∈ G) α, γ ∈ Lp and ψp(α) = γ} will be uncountable.
In addition, the family {aα : α ∈ Γγ} � Cγ, {bα : α ∈ Γγ} � Cγ will be
a Luzin gap.

The proof is completed by showing that Q is ccc. Suppose that
{qξ : ξ ∈ ω1} ⊂ Q. We may assume that there is a set L ∈ [ω1]<ω and
an integer m such that for ξ 6= ζ, Lqξ ∩Lqζ = L and |Lqξ | = |Lqζ | = m.
Furthermore we may assume that there is some sequence 〈C ′γ : γ ∈ L〉
satisfying that for all ξ, 〈Cqξ

γ : γ ∈ L〉 = 〈C ′γ : γ ∈ L〉.
The final reduction we make is to assume that the conditions are

pairwise isomorphic. More specifically, for each ξ, let {αξi : i < m} be
the order preserving enumeration of Lqξ . We assume that there is a
k ∈ ω such that for each ξ < ζ and each i, j < m,

(1) C
qξ
γ ⊂ k for each γ ∈ Lqξ ,

(2) αξi ∈ L if and only if αζi ∈ L
(3) aαξi

∩ k = aαζi
∩ k,

(4) bαξi
∩ k = bαζi

∩ k,

(5) ψqξ(α
ξ
i ) = αξj if and only if ψqζ(α

ζ
i ) = αζj

Claim: if I, J are uncountable subsets of ω1, k′ > k and i < m,
then there are n′ > n > k′ and uncountable I ′ ⊂ I, J ′ ⊂ J such that
n ∈ aαξi ∩ bαζi and n′ ∈ bαξi ∩ aαζi for all ξ ∈ I ′ and ζ ∈ J ′.

We first choose n in the infinite intersection of
⋃
{aαξi : ξ ∈ I} with⋃

{bαζi : ζ ∈ J}. By shrinking I and J we may now assume that

n ∈ aαξi ∩ bαζi for all ξ ∈ I and ζ ∈ J . Apply this idea again to choose

n′ > n together with I ′ ⊂ I and J ′ ⊂ J so that n′ ∈ bαξi ∩ aαζi for all

ξ ∈ I ′ and ζ ∈ J ′. Now set I0 = J0 = ω1. We may recursively choose a
sequence of pairs of uncountable sets Ii, Ji for i ≤ m and an increasing
sequence, {ni : i < 2m} ⊂ ω \ k by applying the above Claim so that
n2i ∈ aαξi ∩ bαζi and n2i+1 ∈ bαξi ∩ aαζi for all ξ ∈ Im and ζ ∈ Jm.
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Fix any ξ ∈ Im and ζ ∈ Jm. We define a condition p which is below
qξ and qζ . Let Lp = Lqξ ∪Lqζ and ψp = ψqξ ∪ψqζ . For each γ ∈ Lqξ , we

define Cp
γ to be C

qξ
γ ∪ Cqζ

γ ∪ {n2i, n2i+1 : i < m and ψqξ(α
ξ
i ) = γ}. For

each γ ∈ Lqζ \ L, we define Cp
γ to be Cqζ .

It is routine to check that for γ, δ ∈ Lqξ , Cp
γ ∩ C

p
δ = C

qξ
γ ∩ Cqζ

δ . It
is even easier to see this for γ, δ ∈ Lqζ . Finally, to show that p is a
member of Q, we suppose that ψp(α) = ψp(β) = γ for distinct α, β and
{α, β, γ} ⊂ Lp. We must show that each of aα∩bβ∩Cp

γ and bα∩aβ∩Cp
γ

are non-empty. Since each of qξ and qζ satisfy the conditions to be in
Q, we may assume that α ∈ Lqξ \ L and β ∈ Lqζ \ L. There is a pair

of integers, i, j < m such that α ∈ {αξi , α
ζ
i } and β ∈ {αζj , α

ζ
j}. Again,

if i is distinct from j, then by the isomorphism condition we already
have that aα ∩ bβ and bα ∩ aβ will hit C ′γ. Of course if i = j, then the
choices of n2i and n2i+1 have been added to Cp

γ as required. �

Similar to Luzin gaps are uncountable pairwise incompatible families
of partial functions on N. Such a family will not have a common mod
finite extension. The following result is a trivial consequence of a result
of Todorcevic (see also [5, 2.2.1]).

Proposition 2.3. If {hα : α ∈ ω1} is a family of partial functions functiongaps
on N with mod finite increasing domains, and if there is no common
mod finite extension, then there is a proper poset which introduces an
uncountable pairwise incompatible subfamily.

Now we define the partial order P2 [14]

Definition 2.4. The partial order P2 is defined to consist of all 1-to-1 poset
functions f where

(1) dom(f) = range(f) ⊂ N,
(2) for all i ∈ dom(f) and n ∈ ω, f(i) ∈ [2n, 2n+1) if and only if

i ∈ [2n, 2n+1)
(3) lim supn→ω|[2n, 2n+1) \ dom(f)| = ω growth
(4) for all i ∈ dom(f), i = f 2(i) 6= f(i).

The ordering on P2 is ⊆∗.

Similar to P2, we define two additional posets (see [10, 2] for others)
denoted P0 and P1. Let P1 denote the poset consisting of partial func-
tions f with dom(f) ⊂ N satisfying condition (3) and having range
{0, 1} = 2. The poset P0 consists of those f ∈ P1 satisfying the ad-
ditional condition that for all n ∈ ω, f−1(1) ∩ [2n, 2n+1) has size at
most 1, and if it is non-empty, then [2n, 2n+1) ⊂ dom(f). Each poset
is ordered by p < q if p ⊃∗ q.
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Each of these posets introduces a new generic ultrafilter U which is
a tie-point: A BCU B. Let G denote a P-generic filter. It is shown in
[14], that the collection U = {N \ dom(f) : f ∈ G} is an ultrafilter. In
the cases of P being one of P0 and P1, IA would be {f−1(1) : f ∈ G},
while, for P2, IA = {{i ∈ dom(f) : i < f(i)} : f ∈ G}. This is
discussed in [2]. One of our main motivations is to discover if A or B
can be homeomorphic to N∗ as this information can be quite useful in
applications (again, see [2]).

If PFA holds, then each of P0,P1,P2 is ℵ1-closed and ℵ2-distributive
(see [12, p.4226]). In this paper we will restrict our study to forcing
with these posets individually, but the reader is referred to [12] for
the method to generalize to countable support infinite products. In
particular, the result that triv(F ) is ccc over fin for all homomorphisms
F on P(N)/ fin should hold in these more general models.

Theorem 2.5. If G is P0-generic and A BCU B are as above, then A isp0nstar
homeomorphic to N∗.

Proof. Let ψ ∈ NN be defined so that ψ([2n, 2n+1)) = {n} for all n,
and let ψ∗ denote the canonical extension with domain and range N∗.
In fact, for each free ultrafilter W , the preimage of W under ψ∗ is the
set of ultrafilters extending {ψ−1[W ] : W ∈ W}. Recall that A is the
closure of the set

⋃
{(f−1(1))

∗
: f ∈ G}. We will simply show that

ψ∗ � A is one-to-one. Let V = {b ⊂ N : ψ−1(b) ∈ U}. By the definition
of P0, it follows that, for each f ∈ G, ψ∗ � (f−1(1))

∗
is one-to-one and

that ψ (f−1(1)) /∈ V . It follows easily that the preimage of any point
of N∗ \ {V} contains a single point in A. Now suppose that W 6= U is
in the preimage of V . Since U is generated by {N \ dom(f) : f ∈ G},
we may choose an f ∈ G with dom(f) ∈ W . Since ψ (f−1(1)) /∈ V , we
have that f−1(0) ∈ W . But now, f−1(0) is disjoint from each member
of IA, which shows that W /∈ A. �

The rest of the paper is devoted to proving the following theorems.
We indicate where to find the proofs at the end of each statement.

Theorem 2.6. In the extension obtained by forcing over a model of
PFA by any of P0, P1, or P2, if Φ is a homomorphism from P(N)/ fincccfin
onto P(N)/ fin, then triv(Φ) is a ccc over fin ideal. (see 4.14)

Theorem 2.7. In the extension obtained by forcing over a model of
PFA by P0, the following statements hold:P0stuff

(1) all automorphisms on P(N)/ fin are trivial, (see 6.1)
(2) there are non-trivial regular closed copies of N∗, (see 2.5)
(3) all regular closed copies of N∗ have finite boundaries, (see 6.2)P03
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(4) the intersection of two regular closed copies of N∗ will also beP04
regular closed (see 6.3)

(5) all tie-points are RK-equivalent, (follows from statement 1) P05

Theorem 2.8. In the extension obtained by forcing over a model of
PFA by P1, the following statements hold: P1stuff

(1) there are non-trivial automorphisms and non-trivial regular closed
copies of N∗, (see 5.7) P11

(2) all regular closed copies of N∗ have finite boundaries, (see 6.2) P12
(3) there are two regular closed copies of N∗ that intersect in a single P13

point, (see 5.7)
(4) each automorphism on P(N)/ fin is trivial at the tie-point U , P14

(see 5.3)
(5) there is an automorphism on P(N)/ fin which is not trivial at a P15

tie-point, (see 5.7)
(6) automorphisms on P(N)/ fin preserve RK-orbits. (see 2.9) P16

The final result about the forcing P1 introduces the idea of something
that might be called a nearly trivial automorphism. Statement 6 of
Theorem 2.8 follows immediately from this theorem. The following
theorem is proven in two parts: Theorem 6.1 and Proposition 5.3.

Theorem 2.9. In the extension obtained by forcing over a model of nearlytrivial
PFA by P1, for each autohomeomorphism φ of N∗, there is a trivial
autohomeomorphism h̄ of N∗ and a regular closed set A ⊂ N∗, such
that φ and h̄ agree on A and φ is trivial at every point not in A.

For the remainder of this section let P denote any one of the posets
P0,P1,P2. It is easily shown that P is σ-directed closed. The following
partial order was introduced in [10] as a great tool to uncover the forcing
preservation properties of P, such as the fact that P is ℵ2-distributive
(and so introduces no new ω1-sequences of subsets of N).

Definition 2.10. Let F denote any filter on P. Define P(F) to be the
partial order consisting of all q ∈ P such that there is some p ∈ F which
is almost equal to it. The ordering on P(F) is p ≤ q if p ⊇ q.

The forcing P(F) introduces a new total function f which extends
mod finite every member of F. Although f will not be a member of
P it is only because its domain does not satisfy the growth condition
(3) in the definition of P. There is a simple σ-centered poset S which
will force an appropriate set I ⊂ N which mod finite contains all the
domains of members of F and satisfies that p = f � I is a member of P
which is below each member of F (see [10, 2.1]).
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A strategic choice of the filter F will ensure that P(F) is ccc, but
remarkably even more is true. Again we are lifting results from [10,
2.6] and [12, proof of Thm. 3.1]. A poset is said to be ωω-bounding if
every new function in ωω is bounded by some ground model function.
Let κ = 2|P|, let κ<ω1 denote the standard collapse which introduces a
function from ω1 onto κ, and let H be κ<ω1-generic. In the extension
V [H], CH holds and no new countable sets have been added; P remains
countably closed, and so there is a maximal filter F ⊂ P which is V -
generic for P (in this extension F only needs to meet ℵ1 many dense
sets). For the remainder of the paper F refers to such a filter (or, when
needed, a κ<ω1-name of such a filter).

Lemma 2.11 ([12]). In the forcing extension, V [H], by κ<ω1, there is
a maximal filter F on P which is P-generic over V and for which P(F)
is ccc, ωω-bounding, and preserves that R ∩ V is not meager.

Almost all of the work we have to do is to establish additional preser-
vation results for the poset(s) P(F). Once these are established, we are
able to apply the standard PFA type methodology as demonstrated in
[10, 12].

We will also need several results from [2]. The following is a strength-
ening of [2, 2.5] in that we introduce gaps into the picture. For partial
functions p and s with domains contained in N, we let st p denote the
function s ∪ (p � dom(p) \ dom(s)).

Lemma 2.12. Let ḣ be a P(F)-name of a function in NN. Also suppose
that I ⊂ P(N) and I⊥ are P -ideals. Then there are I ∈ I, C ∈ I⊥,preserve1
an increasing sequence n0 < n1 < n2 < · · · of integers and a condition
p ∈ F such that, for each k, there is a single mk with [nk, nk+1) \
dom(f) ⊂ [2mk , 2mk+1) and such that either

(1) no extension of p forces a value on the function ḣ � I or
(2) for each i ∈ [nk, nk+1) \ C and each q < p such that q forces atwo.preserve1

value on ḣ(i), p ∪ (q � [nk, nk+1)) also forces a value on ḣ(i).

Proof. A fusion sequence for P(F) is a descending sequence {pk : k ∈ ω}
of conditions together with an increasing sequence {nk : k ∈ ω} of
integers satisfying that for each k, there is an mk such that [2mk , 2mk+1)
contains more than k elements of [nk, nk+1)\dom(pk) and pk+1 � nk+1 ⊂
pk. Given such a sequence, it follow that the union,

⋃
k pk is a condition

in P(F) (see [10, 2.4] or [12, 3.4]). Given q, p ∈ P(F) and integer m, let
q <m p denote the relation that q � m ⊂ p and q ⊃ p. For an integer i
and q ∈ P(F), let q‖ḣ(i) abbreviate the statement that q forces a value

on ḣ(i).
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Given any p0 ∈ F, let M be a countable elementary submodel of a
sufficiently large H(θ) with ḣ, p0,P(F) and I in M . Fix any I ∈ I such
that each element of I ∩M is mod finite contained in I and C ∈ I⊥
such that each element of I⊥ ∩M is mod finite contained in C.

Construct a fusion sequence pk ∈M , nk by first ensuring that there
is an mk with nk < 2mk and [2mk , 2mk+1) \ dom(pk) has more than k
elements. Let n̄k = 2mk+1 and, without loss of generality, assume that
dom(pk) ⊃ [nk, 2

mk). We then choose pk+1 <n̄k pk to satisfy several
conditions which we accomplish through a finite recursion of choosing a
descending sequence of <n̄k-extensions of pk. We consider each partial
function s with dom(s) ⊂ n̄k such that s t pk is in P(F). For each
such s and each condition p, we define the set a(s, k, p) to be the set

{i : (∃q <n̄k s t p) (∀q′ <n̄k q) q
′ 6 ‖ ḣ(i)}. We may arrange that either

a(s, k, pk+1) is I⊥ or for all <n̄k-extension q of pk+1, a(s, k, q) is not in
I⊥. Secondly, if a(s, k, pk+1) is in I⊥, then the finite set a(s, k, pk+1)\C
is contained in nk+1. Next, if a(s, k, pk+1) is not in I⊥, then ensure that
there is some i ∈ [n̄k, nk+1) ∩ I such that no <n̄k-extension of s t pk+1

forces a value on ḣ(i). Finally, arrange that for each i < nk+1 and s as

above, if s t pk+1 has a <nk+1
-extension forcing a value on ḣ(i), then

s t pk+1 already does so.
Let p̄ =

⋃
k pk be the condition that results. Assume that q < p̄ and

q forces a value on ḣ � I. By extending q we may assume that there is
an infinite set K ⊂ N such that [nk, nk+1) ⊂ dom(q) for all k ∈ K. Of
course this means that N \K is also infinite. We show that condition
(2) holds by letting p be q. If k is any value less than or equal to the
minimum of N \ K we already have that condition (2) holds for all
i ∈ [nk, nk+1).

Fix any k′ and i ∈ [nk′ , nk′+1). If q′ is any extension of q which forces

a value on ḣ(i), we may assume that [nk′ , nk′+1) ⊂ dom(q′) and then
with the condition (q′ � [nk′ , nk′+1)) t q we would have that k′ ∈ K.
Therefore to prove that condition (2) holds it suffices to prove that it
holds for all k′ ∈ K for which there is some k /∈ K below k′. Let k < k′

be the largest value not in K strictly below k′. Set s = q � nk+1 and
consider a(s, k, pk+1). Since q is a <n̄k extension of stpk+1 which forces

a value on each member of ḣ � [n̄k, nk+1)∩ I, we have that a(s, k, pk+1)
must be in I⊥. But then we have that a(s, k, pk+1) \ C ⊂ nk+1, hence
our chosen i is not in a(s, k, pk+1). This then means that there is a

<n̄k-extension q′ of q which forces a value on ḣ(i), so fix such a q′. But
now, q � nk′+1 will equal q′ � nk′+1 because the entire interval [n̄k, nk′+1]
is contained in dom(q). Thus q′ <n̄k′

s t pk′+1 and so s t pk′+1 is also
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forcing a value on ḣ(i). Since q < s t pk′+1, we have shown that q is

forcing a value on ḣ(i).
Thus, we have proven that for each p0, there is such an p as required

below it; by the genericity, there is such an p in F. �

Lemma 2.13. In the model obtained by forcing with P over a modelsmallgaps
of PFA, there are no (ω1, ω2)-gaps.

Proof. Assume otherwise and let I,J be such a gap. Since P is ℵ2-
distributive, we may assume that I is in the ground model. The ex-
tension by P preserves MA(ω1), hence I⊥ is a P -ideal. Fix a sequence

of P-names {ḃγ : γ ∈ ω2} forced to be increasing mod finite and cofinal
in J . Let H be κ<ω1-generic and let F ⊂ P be V -generic as discussed
above. We now work in the forcing extension V [H] and, since ωV2 is
collapsed, we avoid confusion by letting λ denote this ordinal in the
extension. Let B be the P -ideal generated by {valF(ḃγ) : γ < λ}. Since
F is V -generic and κ<ω1-closed, it follows that I,B are unseparated and
both are P -ideals.

We next prove that they remain unseparated after forcing with P(F).

Assume that ḣ is the P(F)-name of a function which is mod finite equal
to 0 on each member of I. Apply Lemma 2.12 to select the condition
p, {nk : k ∈ ω}, I ∈ I, and C ∈ I⊥ as described. Since p does have

an extension forcing value on ḣ � I, we have that Case (2) holds. For
each k, let Ik be the set of i ∈ [nk, nk+1) \ C such that some q < p

forces that ḣ(i) = 0. By the assumption on ḣ,
⋃
k Ik must mod finite

contains every member of I. Therefore, there is some b ∈ B and an
infinite set K such that b ∩ Ik is not empty for each k ∈ K. We may
also assume that K has infinite complement. For each k ∈ K, choose
any ik ∈ b ∩ Ik and select qk < p such that qk 
 ḣ(ik) = 0. Then

p ∪
⋃
k∈K qk � [nk, nk+1) is a condition which forces that ḣ � b takes on

value 0 infinitely often.
Now in the extension by forcing with P(F) we know that I,B form

a gap which is not countably separated (because at least one is a P -
ideal). Thus we can let Q denote the proper poset supplied by Lemma
2.1, and as before, let S denote the σ-centered poset which supplies a P
lower bound for F. Returning to V , fix names {xα : α ∈ ω1} = X ⊂ 2N,
functions pI , pJ . Meet ω1-dense sets to get that I,J contain a Luzin
gap. �

3. Regular closed sets with small boundaries

Proposition 3.1. PFA implies that if a regular closed subset of N∗ has
non-empty boundary, then this boundary is not ccc over fin.
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Proof. Let A be a regular closed set with non-empty boundary. Sup-
pose first that IA and I⊥A are P -ideals. Apply PFA to the proper poset
provided by Proposition 2.2 to deduce that the boundary is not ccc
over fin. Now suppose, by symmetry, that IA is not a P -ideal and fix
an increasing chain {an : n ∈ ω} ⊂ IA to witness. If we now assume
that ∂A is ccc over fin and use that {an : n ∈ ω}⊥ is a P -ideal, we
may actually assume that ∂A is contained in the boundary of

⋃
n a
∗
n.

Therefore, for each b ∈ {an : n ∈ ω}⊥, there is a partition b0 ∪ b1 of b
such that b0 ∈ IA and b1 ∈ I⊥A . Because of the assumption on ∂A, the
resulting families {b0 : b ∈ {an : n ∈ ω}⊥} and {b1 : b ∈ {an : n ∈ ω}⊥}
form P -ideals; in fact they apparently form an (ω2, ω2)-gap which of
course is inconsistent with PFA. Alternatively, just apply the same ar-
gument as above to these unseparated P -ideals to deduce that ∂A is
not ccc over fin. �

Theorem 3.2. In a model obtained by forcing with P over a model of smallboundary
PFA, if A is a regular closed subset whose boundary is ccc over fin,
then each of IA and I⊥A are Pω2-ideals.

Proof. Let A be a regular closed set with non-empty boundary. Again
suppose first that IA and I⊥A are P -ideals. Proceed as in Lemma 2.13.

Otherwise, if IA is not a P -ideal, again fix {an : n ∈ ω} ⊂ IA to
witness. There is some b ∈ {an : n ∈ ω}⊥ so that ∂A\b∗ is contained in
the boundary of

⋃
n∈ω a

∗
n; so for simplicity we may assume that b = ∅.

Let I = IA ∩ {an : n ∈ ω}⊥ and J = I⊥A ∩ {an : n ∈ ω}⊥. Let H be
κω1-generic as above, hence I and J remain as unseparated P -ideals
such that, in addition, I ⊕J is unseparated from {an : n ∈ ω}. Let G
be P(F)-generic and pass to the extension V [H][G]. Again proceed as
in Lemma 2.13 to conclude that ∂A fails to be ccc over fin. �

4. σ-Borel liftings and ccc over fin four

A lifting of a map Φ from P(N)/ fin to itself is any function F from
P(N) into P(N) which satisfies that F (a)/ fin = Φ(a/ fin) for all a ∈
P(N). For each ` ∈ N and s ⊂ `, let [s; `] = {x ⊂ N : x ∩ ` = s}. This
defines the standard Polish topology on P(N). For a subset a ⊂ N, let
[s; `; a] = [s; `] ∩ P(a).

We will need the following important and well-known theorem of [14]
as presented in [12]

Proposition 4.1. (Velickovic) If F : P(N) → P(N) is a lifting of a
mod finite automorphism and there exist Borel functions {ψn : n ∈ ω}
and a comeagre set Z ⊂ P(N) such that for every a ∈ Z there is n ∈ ω velctble
such that ψn(a) =∗ F (a) then F is trivial.
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In fact, we will need a strengthening to homomorphisms; which is
probably folklore, but we do not have a reference. We should note how-
ever that Farah [5, p93] shows that this will not hold for homorphisms
in general.

Lemma 4.2. If F : P(N)→ P(N) is a lifting of a homomorphism from
P(N)/ fin onto P(N)/ fin and there exist Borel functions {ψn : n ∈ ω}
and a comeagre set Z ⊂ P(N) such that for every a ∈ Z there is n ∈ ωhomomctble
such that ψn(a) =∗ F (a) then F is trivial.

Proof. Following [14], we first note that we may assume that each ψn
is continous and show that triv(F ) can not (under these assumptions)
be a maximal ideal. For each a ∈ triv(F ), fix a function ha from a into
{0} ∪ F (a) so that h−1

a (0) ∈ ker(F ), ha is 1-to-1 on dom(ha) \ h−1
a (0),

and ha(x) =∗ F (x) for all x ⊂ a. For each n,m ∈ ω, let Da
n,m = {x ⊂

a : ha(x) \m = ψn(x) \m}. By the Baire category theorem, there is
basic clopen set [s; `; a] such that Da

n,m ⊃ [s; `; a]. Let Tn,m,s,` = {a :
Da
n,m ⊃ [s; `; a] 6= ∅}. If some T = Tn,m,s,` is ⊂∗-cofinal in triv(F ), then

define h =
⋃
a∈T ha � a \ `. Since each ha is 1-to-1 on dom(ha) \h−1

a (0),
it follows that ha � a ∩ b = hb � a ∩ b for a, b ∈ T (just calculate
ha(s ∪ {i})). Since T is cofinal in triv(F ) and F is onto P(N)/ fin, it
follows that {j : |h−1(j)| 6= 1} is finite; and that h−1({j : |h−1(j)| > 1})
is in the kernel of F . Redefine h so that all values in this member of
ker(F ) and all values of the finite set N \ dom(h) are sent to 0. We
check that h is a lifting of F (which is a contradiction). For any x ⊂ N,
a finite change to x will ensure that x ∈ [s; `]. We may assume that
x ∈ triv(F ) and so choose some a ∈ T so that x ⊂∗ a. Thus we have
F (x) =∗ F (x∩ a) =∗ ha(x∩ a) =∗ h(x∩ a) =∗ h(x). Now we also have
that F (N \ x) =∗ h(N \ x) =∗ {0} ∪ N \ h(x).

Now we may select {an : n ∈ ω} disjoint from triv(F ) so as to be
a partition of N. If Z is any dense Gδ subset of P(N), then adding a
Cohen real will not introduce a Borel lifting for F � Z ∩ V . This is a
simple Baire category argument using the fact that the Cohen poset is
countable; we leave the details to the reader.

We will use the poset C = {[s; `] : ` ∈ N; s ⊂ `} ordered by ⊂ as
a device in this proof. For a (generic) filter H on C let gH be the set⋃
{s : (∃`)[s; `] ∈ H}. The continous function on P(a0) defined by

ψ0(x ∪ gH \ a0) ∩ F (a0) is therefore not a lifting of F � V ∩ P(a0), and
so we may choose x0 ⊂ a0 and some condition [s0; `0] ∈ C which forces
that ψ0(x0 ∪ gH \ a0) ∩ F (a0) is not mod finite equal to F (x0). There
is a countable family D0 of dense open subsets of C so that any filter
H 3 p0 on 2<ω meeting each of these will ensure that ψ0(x0 ∪ gH \
a0)∩F (a0) is not mod finite equal to F (x0). In fact, by the continuity
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assumption on ψ0, we may let {D0(m) : m ∈ ω} enumerate D0 in such
a way that for [s0; `0] ⊃ [s; `] ∈ D0(m), if y ∈ [s; `] is any point, then
ψ0(x0 ∪ y \ a0)∆F (x0) has cardinality at least m. Moreover, notice
that if y ∈ [s \ a0; `], then we still have that ψ0(x0 ∪ y \ a0)∆F (x0)
has cardinality at least m, since there will be some y′ ∈ [s; `] with
y′\a0 = y\a0. For each m, let U0(m) =

⋃
{[s; `;N\a0] : [s; `] ∈ D0(m)}

(i.e. a dense open subset of P(N \ a0)). So if we let Z1 =
⋂
m U0(m) be

the dense Gδ of P(N \ a0) then ψ0(x0 ∪ y \ a0)∆F (x0) is infinite for all
y ∈ Z1. Also it follows easily that the generic gH has the property that
Z1(gH) = {x ⊂ a1 : x ∪ (gH \ a1) ∈ Z1} contains a dense Gδ in P(a1).

Choose a condition [s1; `1] < [s0; `0] which is in the first member of
D0(1) and repeating the previous step, for which there is an x1 ⊂ a1

such that [s1; `1] forces that x1 ∈ Z1(gH) and ψ1(x0∪x1∪gH\(a0∪a1))∩
F (a1) is not mod finite equal to F (x1). Let D1 be the countably many
dense sets in C needed to force these properties of x1 and analogously
define the family {U1(m) : m ∈ ω} of dense open subsets of P(N \
(a0 ∪ a1)) and their intersection Z2 a Gδ dense in P(N \ (a0 ∪ a1)). In
particular, we will have the enumeration {D1(m) : m ∈ ω} of D1 so
that for each y ∈ [s; `] ∈ D1(m), x1 ∪ (y \ (a0 ∪ a1)) ∈ U0(m).

After so defining xn ⊂ an for each n ∈ ω, we check that, for each
k ∈ ω, F (

⋃
n xn) ∩ F (ak) 6=∗ F (xk). This of course contradicts that F

is a homomorphism. To see this, one shows, by induction on m > k,
that

⋃
k<n xn is a member of Uk(m). It then follows that yk =

⋃
k<n xn

is in Zk, which in turn ensures that ψk(x0 ∪ · · ·xk ∪ yk) ∩ F (ak) is not
almost equal to F (xk). �

We continue the analysis of P-names from V in the forcing extension
V [H] using a V -generic filter F ⊂ P. In particular, fix Φ̇ a P-name
which is forced by 1 to be a lifting of a homomorphism from P(N)/ fin
onto P(N)/ fin. Let F denote valF(Φ̇). Of course it follows that F is a
lifting of a homomorphism from P(N)/ fin onto P(N)/ fin.

For a set C ⊂ P(N) and a function F on P(N), let us say that F � C
is σ-Borel if there is sequence {ψn : n ∈ ω} of Borel functions on P(N)
such that for each b ∈ C, there is an n such that F (b) =∗ ψn(b).

One of the main results which we can extract from [12] is the follow-
ing.

Lemma 4.3. F � (V ∩ P(N)) is σ-Borel in the extension obtained by sigmaBorel
forcing with P(F).

Since it is not explicitly stated in [12], we will, for completeness, just
sketch the main ideas from [12, Theorem 3.1] (see also [10, Theorem
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2.2]). As usual, we pass to the extension V [H] and then let G be P(F)-
generic. Recall that G has introduced a total function fG which mod
finite extends every member of F. We let I denote the ideal generated
by those sets b ∈ V ∩ P(N) for which F � V ∩ P(b) is σ-Borel. If
this ideal is not a dense ideal, then we could assume that it is the
ideal fin. Following Shelah’s original proof that it is consistent that
all automorphisms are trivial, we inductively select an almost disjoint
family {aα : α ∈ ω1} together with sets xα ⊂ aα so as to build a
ccc poset Q = Q({xα; aα : α ∈ ω1}) which introduces a set X ⊂ N
satisfying that X ∩ aα =∗ xα for all α, while at the same time ensuring
that in the extension by Q, for each Y ⊂ N, there is a β such that
Y ∩ F (aα) 6=∗ F (xα) for all α > β. If we succeed, then we observe
that {F (aα) \F (xα) : α ∈ ω1} and {F (xα) : α ∈ ω1} are not countably
separated and so we select the proper poset R guaranteed to exist by
Lemma 2.1. Finally, we let S denote the σ-centered poset which will
force a suitable I so that fG � I will be a lower bound in P for each
f ∈ F. Meeting ω1-many dense subsets of (κ<ω1) ∗P(F) ∗Q ∗R∗S will
produce a condition p ∈ P and a set X which satisfies that if we set
X ∩aα = xα for all α ∈ ω1, then p forces that {F (aα)\F (xα) : α ∈ ω1}
and {F (xα) : α ∈ ω1} form a Luzin gap, and so there is no suitable
value for F (X).

The conclusion then is that the construction of Q must at some
stage fail. At each stage of this construction, Q({xβ; aβ : β < α})
is a countable poset and under a suitable enumeration we consider a
countable Ẏα - a “prediction” of a Q-name of a subset of N. Fix any aα
which is almost disjoint from each aβ. An important technical detail
arises here in that our choice of xα ⊂ aα must be made so as to ensure
a specific countable family of dense subsets of Q({xβ; aβ : β < α})
remain pre-dense in the partial order Q({xβ; aβ : β ≤ α}). We omit
this detail but point out that this is where it is used that P(F) is ωω-
bounding and preserves that the ground model reals are not meager.
This ensures that there is a sufficiently rich supply of choices for xα
for this and the next requirement. The next step is to connect the
expectation that, for each β < α, the valuation of Ẏβ intersected with
F (aα) should not mod finite equal F (xα). Each q ∈ Q({xβ : aβ :
β < α}) defines a Borel map sending x ∈ P(aα)∩V to the valuation of
Ẏβ∩F (aα) that “would result” if q were in the generic, and x was taken
to be xα. Thus, if xα can not be chosen to continue the induction, it
is because aα is in I. Since this induction must indeed stop, we of
course have that I is dense. Moreover, I must be ccc over fin for the
same reason (otherwise we could simply choose in advance the family
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{aα : α ∈ ω1} from I+). It is shown in [12] that it must be a P -ideal.
The final step to show that I is actually P(N) is similar. The case
here is that {ψn : n ∈ ω} is a countable family of Borel functions such
that for all x ⊂ a ∈ I, there is an n such that ψn(x) ∩ F (a) =∗ F (x).
Using that I is a P -ideal we can find b ∈ I mod fin containing all
aβ (β < α) and a partition E0 ∪ E1 of N \ b so that any subset aα
of either E0 or E1 would fulfill the preserving countably many dense
sets requirement. However, we are now committed to choosing aα ∈ I
as well. Assume that E0 /∈ I. Each ψn may again be assumed to be
continuous and so we may select an increasing sequence {kn : n ∈ ω}
of integers such that for each ` < n and each s ⊂ kn and t ⊂ [kn, kn+1),
ψ(x) � kn = ψ(y) � kn for all x, y ∈ [s ∪ t; kn+1]. Since P(F) is ωω-
bounding this sequence may be selected to be a member of V . Expand
the family of continuous functions to include ψsn,m(x) ≡ ψ(s ∪ x \ km)
for all n and s ⊂ km and all m. Choose any x ⊂ E0 so that for
all such n,m, s, ψsn,m(x) ∩ F (E0) 6=∗ F (x). By finding a subsequence
of the kn’s we can assume that they also satisfy that for each n and
s ⊂ kn, and y ∈ [s∪ (x∩ [kn, kn+1)); kn+1], ψn(y)∩F (E0)∆F (x) meets
[kn, kn+1). Since I is ccc over fin, there should be a J ⊂ N so that
xα = x∩

⋃
n∈J [kn, kn+1) and aα = E0 ∩

⋃
n∈J [kn, kn+1) works. We need

to also enlarge aα so that F (aα) ⊃
⋃
n∈J [kn, kn+1) as well (which may

require shrinking J so as to maintain that aα ∈ I). Thus we now have
that ψn(x∩

⋃
n∈J [kn, kn+1))∩F (aα)∆F (x) ⊃ (F (x)∆ψn(x))∩[km, km+1)

which is not empty for all n < m ∈ J .

Next we need to use a key Lemma from [2].

Lemma 4.4. There is an increasing sequence {nk : k ∈ ω} ⊂ ω such mainlemma
that triv(F ) contains all a ⊂ N for which there is an r ∈ F, such that
a ⊂

⋃
{[nk, nk+1) : [nk, nk+1) ⊂ dom(r)}.

We are now ready to complete the proof that each homomorphism
from P(N)/ fin onto P(N)/ fin is trivial on every member of an ideal
which is ccc over fin. We proceed by contradiction. We may fix an
almost disjoint family {aα : α ∈ ω1} ⊂ [N]ω which are not in the trivial
ideal. Using that P is ℵ2-distributive we may assume that we have a
number of properties forced to hold for the function F . In particular
we have that aα /∈ triv(F ) for each α ∈ ω1. Since b > ω1 in the final
model, we can assume that we have two sequences {Aα : α ∈ ω1}
and {Bα : α ∈ ω1} satisfying that Aα mod finite separates the family
{aβ : β < α} and {aβ : β ≥ α}, and Bα = F (Aα) does the same
for the families {F (aβ) : β < α} and {F (aβ) : β ≥ α}. Fix a family,
{Wα : α ∈ ω1}, of ultrafilters on N so that aα ∈ Wα and F is not trivial
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on any member of Wα (dual to triv(F � P(aα))). We next show that
we can arrange it so that aα∪F (aα) is almost disjoint from aβ ∪F (aβ)
for α 6= β. We assume without mention in the argument below that
we are always choosing aα ∈ Wα.

First assume that for uncountably many α (and therefore for all)
there is some γα < ω1 such that Aγα ∈ F (Wα). We may choose γα to be
minimal. If there are uncountably many α such that γα is some fixed γ,
then we can pass to this subcollection and shrink aα (for α > γ) so that
such that F (aα) is almost contained in Aγ. If there is an uncountable
set I such that the sequence {γα : α ∈ I} is unbounded, then we can
assume that for each α in I, there is a δα < γα such that γβ < δα for
all β ∈ I ∩ α. In this case, we pass to the uncountable set I and we
assume that F (aα) ⊂∗ Aγα \ Aδα .

The final case is that each F (Wα) is not in Aγ for each γ < ω1. We
may assume then that F (aα) is disjoint from Aα. If, for uncountably
many α there is again a γα < ω1 such that Bγα ∈ Wα, then we proceed
just as above (e.g. choose aα ⊂ Bγα \ Bδα). So, instead, we must have
that for each α and γ, Bγ is not in Wα. Shrink each aα so that aα is
disjoint from Bα. Now if β < α, then aα∩F (aβ) is finite since they are
separated by Bα. Also aβ ∩ F (aα) is finite because they are separated
by Aα.

For convenience let F (aα) ∪ {0} be denoted as bα. Fix any p ∈ F
which forces that the final homomorphism has all of the above proper-
ties of F . Let {nk : k ∈ ω} be the sequence guaranteed by Lemma 4.4
and let r ∈ F be the condition constructed in that proof. Notice that
for each q ∈ F, we have a function hq with domain aq =

⋃
{[nk, nk+1) :

[nk, nk+1) ⊂ dom(q)} which witnesses that aq ∈ triv(F ) (with hq being
one-to-one on aq \ h−1

q (0)). Therefore the family {hq : q ∈ F} is a
σ-directed (mod finite) family of functions which has no extension. On
the other hand, once we force with P(F) (followed by any proper poset
of our choice) there must be a further proper extension in which it does
have an extension. By Proposition 2.3, we have that if P(F) itself does
not introduce a common extension, then there is a proper poset which
will make the family indestructibly non-extendable. Thus we assume
that ḣ is a P(F)-name of a function on N which extends each such hq.

Lemma 4.5. The family {dom(hq) : q ∈ F} generates a dense ideal in
V [H].

Proof. The finite-to-one map sending [nk, nk+1) to k is easily seen to
send the family {aq : q ∈ F} to a maximal ideal, and it is also the
preimage of this maximal ideal. The forcing P(F) is ωω-bounding and
so does not diagonalize the dual ultrafilter. �
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Since ḣ is forced to mod finite extend each hq, it follows easily from
Lemma 2.12 that we may assume that it is also forced to have the
property that ḣ−1(i) is finite for each i ∈ N. Since P(F) is ωω-bounding,
we may therefore assume that the chosen sequence of nk’s has the
property listed next. For later use, we refer to this as ḣ being locally
decided .

Lemma 4.6. The increasing sequence n0 < n1 < · · · of integers may preserve2
also be assumed to satisfy that for each k ∈ N and for each i ∈ [nk, nk+1)

and each q < p such that q forces a value on ḣ(i), p ∪ (q � [nk, nk+1))

also forces a value on ḣ(i) and that value is in {0} ∪ [nk−1, nk+2).

Proof. Perform a standard fusion (see [10, 2.4] or [12, 3.4]) pk, nk by
picking Lk ⊂ [nk+1, nk+2) (absorbed into dom(pk+1)) so that for each
partial function s on nk which extends pk � nk, if there is some integer
i ≥ nk+1 for which no nk-preserving extension of s t pk forces a value
on ḣ(i), then there is such an integer in Lk. Let p̄ be the fusion and

note that either p̄ forces that ḣ � dom(hp̄) is not in V , or it forces that
our sequence of nk’s does the job. �

Furthermore, we can suppose that there is a q0 ∈ F such that for
each k, there is a single mk such that [2mk , 2mk+1) properly contains
[nk, nk+1) \ dom(q0). By further grouping and by extending the condi-
tion q0 we can assume that for all k and j ∈ [nk, nk+1), if q0 does not

force a value on ḣ(j), then q0 does force that ḣ(j) ∈ {0} ∪ [nk, nk+1).
For each k, let Hk = [nk, nk+1) \ dom(q0) = [2mk , 2mk+1) \ dom(q0). Fi-
nally, let Hk = HP

k denote the set of functions s with domain contained
in Hk for which there is a q ≤ q0 with s = q � Hk. Recall that for
the posets P0 and P1 the conditions are functions into 2, while for the
poset P2, the conditions q extending q0 are permutations which send
each Hk into itself. Therefore, with P being any of the three posets
considered in this paper, Hk is a finite set of functions with domain
and range contained in 2∪Hk. For the remainder of the section we may
assume that each condition we choose in P(F) is below this q0. For a ḣ
satisfying this lemma, we will say that it has the selection property .

Lemma 4.7. If Y = {yk : k ∈ ω} is such that yk ∈ [nk, nk+1) for each grabY

k, then for each q ∈ F, there is a p < q such that p decides ḣ � Y .

Proof. Let K be the set of k such that q does not already force a value
on ḣ(yk) and let Y ′ = {yk : k ∈ K}. Now choose q′ < q in F so that q′

forces a value on F (Y ′). For each k ∈ K, choose jk ∈ F (Y ′)∩ [nk, nk+1)
if it is non-empty, otherwise set jk = 0. Assume that the set K ′, those
k ∈ K such that q′ does not force ḣ(yk) = jk, is infinite. It then follows
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from Lemma 4.6 that there is a condition p < q′ for which there are
infinitely many k ∈ K ′ such that yk ∈ dom(hp) and p 
 ḣ(yk) 6= jk. But
now we have that p forces that F (Y ′ ∩ dom(hp)) =∗ hp(Y

′ ∩ dom(hp))

is not almost equal to ḣ(Y ′ ∩ dom(hp)), since for each k ∈ K ′ with

yk ∈ dom(hp), jk ∈ F (Y ′) ∩ F (dom(hp)) \ ḣ(Y ′ ∩ dom(hp)). �

Definition 4.8. For each condition q ∈ P(F), and each i ∈ N, let

Orbq(i) = {j : (∃p < q) p 
P(F) “ḣ(i) = j”}. Also let S(k, q) = {s ∈
Hk : q � Hk ⊂ s}.
Corollary 4.9. Our condition q0 also satisfies that for each i ∈ N andbounding
q < q0, if Orbq(i) has more than one element, there is a k such that
{i} ∪Orbq(i) ⊂ {0} ∪ [nk, nk+1).

Lemma 4.10. For each α ∈ ω1 and q ∈ P(F), there are rα < q in P(F)

and Wα ⊂ aα such that rα 
P(F) “Wα ∈ Wα and ḣ[Wα] ⊂ bα”

Proof. Otherwise we can choose a fusion sequence {rk : k ∈ ω}, an
increasing sequence of integers `k and values yk ∈ aα∩ [n`k , n`k+1), and

conditions sk ∈ Hk such that sk t rk 
P(F) “ḣ(yk) /∈ bα”. There is an
infinite set L ⊂ ω and an r such that Y = {yk : k ∈ L} ⊂ dom(hr) and

r is below sk t rk for all k ∈ L. Since r forces that ḣ extends hr, we
have our contradiction since hr[Y ] ⊂∗ Ḟ (aα) = bα while r 
 “ḣ[Y ]∩bα”
is empty. �

Lemma 4.11. For each integer L and each condition q, there is aaalpha
condition p < q and a set I ∈ [ω1]L such that p < rα for each α ∈ I.

Proof. This is simply because P(F) is ccc. �

Lemma 4.12. For each α ∈ ω1, there is an integer `α such that forbalpha
each k and each sk ∈ S(k, rα), if |Hk \dom(sk)| > `α, then sk t rα does

not decide ḣ � Wα ∩ [nk, nk+1).

Proof. If such an integer `α did not exist, then we could find an infinite
K ⊂ ω and a sequence 〈sk : k ∈ ω〉 ∈ Πk∈ωS(k, r) with {|Hk\dom(sk)| :
k ∈ K} diverging to infinity, and such that sk t r decides ḣ � Wα ∩
[nk, nk+1) for each k. But then of course, q =

⋃
k∈K sk t rα would force

that ḣ � Wα = hα for some hα ∈ V . It follows easily that there is some
q′ < q and some infinite W ⊂ Wα such that q′ 
P “Ḟ (W )∩hα[W ] = ∅”.
By further extending q′ we can assume that W ⊂ dom(hq′). This
contradicts that hq′ [W ] is supposed to be forced by q′ to be (mod

finite) equal to both ḣ[W ] and Ḟ (W ). �

By passing to an uncountable subcollection we may suppose that
there is some ¯̀ such that `α = ¯̀ for all α. Now define S ′(k, q) = {s ∈
S(k, q) : |Hk \ dom(s)| > ¯̀}.
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Lemma 4.13. There is a condition r and an infinite set K such that orbits
{|Hk \ dom(r)| : k ∈ K} diverges to infinity, and, for each k ∈ K, we
can select {is : s ∈ S ′(k, r)} ⊂ [nk, nk+1) such that for distinct s, s′ in

S ′(k, r), st r does not decide ḣ(is), and Orbr(is)∩Orbr(is′) is empty.

Proof. Fix any integer ` and let L be bigger than (` + 2)`+2. It is
sufficient to find a single k = k` and a condition r < q0 so that |Hk \
dom(r)| ≥ ` with the properties as required, since by the locally decided

property of ḣ we can then ensure that r has this property for all `.
Apply Lemma 4.11 to find an r which is below rα for each α ∈ I

for some I ⊂ ω1 of cardinality at least L. For each α ∈ I, we can
assume that dom(hr) contains [nk, nk+1) for each k such that r decides

ḣ � Wα∩ [nk, nk+1). Since aα∪F (aα) is almost disjoint from aβ∪F (aβ)

for α 6= β, there is an m such that [Wα∪Ḟ (Wα)]∩[Wβ∪Ḟ (Wβ)] ⊂ m for
each α 6= β ∈ I. Let K = {k > m : |Hk \ dom(r)| > `}. It follows from
Lemma 4.12, that for each α ∈ I, k ∈ K, and s ∈ S ′(k, r), there is an

i ∈ Wα ∩ [nk, nk+1) for which st r does not decide ḣ(i). Therefore, we
can select any k ∈ K and sk ∈ S(k, r) with ` ≤ |Hk \ dom(sk)| < `+ 2
and fix any injection from S ′(k, sk ∪ r) into I (i.e. {αs : s ∈ S ′(k, sk ∪
r)}). For each s ∈ S ′(k, sktr), there is an is ∈ Wαs∩[nk, nk+1) such that

s t r does not decide ḣ(is). Since r forces that {is, ḣ(is)} ⊂ aαs ∪ bαs
and for s′ 6= s, r forces that is′ , ḣ(is′) /∈ aαs ∪ bαs , we have satisfied
the requirement that is /∈ Orbr(is′) (the hard part was making them
distinct). �

Theorem 4.14. The trivial ideal, triv(F ), is ccc over fin. cccproof

Proof. Let r and the sequence X(r) = {{is : s ∈ S ′(k, r)} : k ∈ K}
be as constructed in Lemma 4.13. Since {|Hk \ dom(r)| : k ∈ K}
diverges to infinity, we may assume that dom(r) ⊃ [nk, nk+1) for each
k /∈ K. Choose p < r so that p forces a value Y on F (X(r)). We
reach a contradiction. Choose any infinite K ′ ⊂ K such that each
of {|Hk \ dom(p)| : k ∈ K ′} and {|Hk \ dom(p)| : k ∈ K \ K ′} are
unbounded. For each k ∈ K ′, let sk = p � Hk. By Lemma 4.13 and
Lemma 4.6, sk t p does not decide ḣ(isk). Choose s0

k, s
1
k extending sk

such that, for some z0
k < z1

k, s
0
k t p 
 ḣ(isk) = z0

k and s1
k t p 
 ḣ(isk) =

z1
k. Observe that

⋃
k∈K′ s

1
k t p forces that {z1

k : k ∈ K ′} is equal to

ḣ[{isk : k ∈ K ′}] ∩
⋃
k∈K′ [nk, nk+1), and so, is almost contained in Y .

Let q be any condition extending
⋃
k∈K′ s

0
ktp such that Hk ⊂ dom(q)

for all k ∈ K ′. It follows that q forces that Y ∩
⋃
k∈K′ [nk, nk+1) is almost

equal to hq[{is : (∃k ∈ K ′) s ∈ S ′(k, r)}]. However, since hq(isk) = z0
k

for each k ∈ K ′ and, by the disjoint orbits assumption, we have that
{z1

k : k ∈ K ′} must be almost disjoint from Y – a contradiction. �
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5. Near liftingsfive

In this section we examine some more combinatorics on P(F) names

of functions on N. Assume that ḟ is a P(F)-name of a function on

N for which there is a condition q0 forcing that ḟ is locally decided
and satisfies the selection property (i.e. ḟ satisfies the conclusions of
Lemma 4.6 and Lemma 4.7) with the same notation used above. Say
that a condition q is standard, if for each ` > 0, there are at most
finitely many k such that Hk \ dom(q) has cardinality `. The standard
conditions are dense below q0 in P. For a standard condition q, let
K(q) denote those k such that Hk \ dom(q) is not empty. It follows
then that {|Hk \ dom(q)| : k ∈ K(q)} diverges to infinity.

Proposition 5.1. If P is P0 and p0 is a condition such that no ex-p0trivial
tension of p0 decides ḟ(t) for all values of t, then there is an exten-
sion p < p0 such that for all i ∈ N \ dom(p), there is a value ti
so that for some distinct pair ui, vi, p ∪ {(i, 0)} 
 ḟ(ti) = ui and

p ∪ {(i, 1)} 
 ḟ(ti) = vi.

Proof. We proceed by a simple recursion. By induction on `, suppose
we have chosen p` together with a family {i(k, j) : j < `} ⊂ Hk \
dom(p`) for all k ∈ K(p`). We assume that for each j < ` and k ∈
K(p`), there is a value tk,j so that pj+1 ∪ {(i(k, j′), 0) : j′ ≤ j} and
pj+1∪{(i(k, j′), 0) : j′ < j}∪{(i(k, j), 1)} force distinct values, uk,j, vk,j,

on ḟ(tk,j). As usual in such a fusion, we assume that pj+1 � nmj ⊂ pj
so that we will have that

⋃
` p` is a condition. Now we may choose

a sequence 〈tk,` : k ∈ K〉 (for some infinite K ⊂ K(p`)) such that,
for each k ∈ K, tk,` ∈ [nk, nk+1) and p` ∪ {(i(k, j), 0) : j < `} does

not force a value on ḟ(tk,`). For each k ∈ K, there are two values
ı̄k0, ı̄

k
1 from Hk \ (dom(p`) ∪ {i(k, j) : j < `}), such that p`∪{(̄ık0, 1)} and

p` ∪ {(̄ık1, 1)} force distinct values, vk0 , v
k
1 , on ḟ(tk,`). Choose p̄`+1 < p`

such that for all k ∈ K(p̄`+1) ⊂ K, {i(k, j) : j < `} is disjoint from

dom(p̄`+1) and p̄`+1∪{(i(k, j), 0) : j < `} forces a value, uk,`, on ḟ(tk,`).
Suppose, without loss of generality, that vk1 6= uk,` and let ik,` = ı̄k1. It
follows that ik,` ∈ dom(p̄`+1) and so define p`+1 to be the condition we
get by removing ik,` from the domain of p̄`+1 for all k ∈ K = K(p`+1).

When the recursion is finished, we choose any increasing sequence
{k` : ` ∈ ω} so that k` ∈ K(p`+1), and p < p0 any condition so that
K(p) = {k` : ` ∈ ω}, and Sk` \ dom(p) = {i(k`, j) : j < `}. Of course
this implies that p is constantly 0 on each Sk`∩dom(p). For each k = k`
and j < `, we have that p∪{(i(k, j), 1)} forces the value vk,j on ḟ(tk,j)
because of Lemma 4.6. And similarly, since p`+1 � Hk ⊂ p, we have
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that p ∪ {(i(k, j′), 0) : j′ ≤ j} forces that ḟ(tk,j) = uk,j. Because of
this, we have that if q < p is such that k ∈ K(q) and q forces a value

on ḟ(tk,j), then this value has to be uk,j. We finish the construction
by another more routine recursion. For each k ∈ K(p), let jk,0 denote
the largest value so that i(k, jk,0) /∈ dom(p). By Lemma 4.7, there is a

condition p1 < p so that p1 forces a value on ḟ � {tk,jk,0 : k ∈ K(p)}.
Again, as discussed above, we have that p1 forces that ḟ(tk,jk,0) = uk,jk,0
for each k ∈ K(p1). There is an infinite set K1 ⊂ K(p1) such that there
is a largest jk,1 < jk,0 such that i(k, jk,1) /∈ dom(p1). Find a condition

p2 < p1 which forces a value on ḟ � {tk,jk,1 : k ∈ K1. Continue this
induction. Again there is a sequence {k` : ` ∈ ω} such that jk,` was
successfully chosen for k = k`+1. We extend p to a condition p′ so that
K(p′) = {k` : ` ∈ ω} and Sk` \dom(p′) is equal to {i(k`, jk`,m) : m < `}.
We still have that p′∪{(i, 1)} 
 ḟ(tk,i) = vk,i for each i ∈ Hk \dom(p′),

but we can now show that p′ ∪ {(i, 0)} forces that ḟ(tk,i) = uk,i. The
simplest way to do this is to consider any i′ ∈ Hk \dom(p′) with i′ 6= i.
If i′ < i, then the condition p′ ∪ {(i′, 1)} is compatible with pm+1 � Hk

where m is chosen so that i = i(k, jk,m). On the other hand if i′ > i,
then p′ ∪ {(i′, 1)} is compatible with p ∪ {(i(k, j), 0) : j ≤ jk,m}. Since

each of these force that ḟ(tk,i) = uk,i, we have that p′ ∪ {(i, 0)} forces

that ḟ(tk,i) = uk,i. �

For the rest of this section we work with the case that P = P1.

Definition 5.2. Say that p̄ forces that f̄ is a near lifting of ḟ if there nearlifting
is some m̄ such that for all k ∈ K(p̄) and t ∈ [nk, nk+1), if q < p̄ is such

that q 
 ḟ(t) 6= f̄(t), then |Hk \ dom(q)| has cardinality less than m̄.

Proposition 5.3. If P is P1, ḣ is a lifting of an autohomeomorphism
ϕ on N∗ and if p̄ forces that ḣ has a near lifting f̄ , then p̄ forces (over
P1) that h̄ witnesses that ϕ is nearly trivial as stated in Theorem 2.9. really29
In addition, some member of the special ultrafilter U is in triv(φ).

Proof. Let G be a generic filter for P1 and suppose that ϕ is an au-
tohomeomorphism on N∗. Let F be a lifting for ϕ, and let ḣ be the
P1(F)-name of the lifting for F as per the results in section 4. Now
suppose that p̄, m̄, h̄ be as in the definition 5.2 with p̄ ∈ G. We simply
define the ideal IA to be the family {{t : hp(t) = h̄(t)} : p ∈ G}.
Then A is the closure of the open set

⋃
{I∗ : I ∈ IA}. Certainly A is

regular closed, and, since each p ∈ G forces that hp is a lifting of F on
dom(hp), it follows that F � A is equal to (h̄)∗ � A where (h̄)∗ is the
trivial automorphism induced by h̄. If Y ⊂ N is forced by some p ∈ G
to not be in triv(F ), then it follows immediately from Lemma 4.7 and
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the definition of h̄ being a near lifting, that Y has an infinite subset in
IA.

Now we produce a condition p ∈ G which forces that ḣ is trivial on
the set N\dom(p). For a condition p and k ∈ K(p), let {i(p, k, j) : j <
`p,k} denote the increasing enumeration of Hk \dom(p). For each ` and
ρ ∈ 2`, let pρ denote the condition extending p defined by assigning
pρ(i(p, k, j)) = ρ(j) for each k ∈ K(p) and j < min{`, `k}. Let p0 = p̄
and apply Lemma 4.7, to select a condition p1 < p0 so that for all
k ∈ K(p0), i(p1, k, 0) = i(p0, k, 0) and for each ρ ∈ 21 (i.e. the two

functions {(0, 0)} and {(0, 1)}) pρ1 forces a value on ḣ(i(p0, k, 0)) for
all k ∈ K(p0). It follows that for all but finitely many k ∈ K(p1),

p1 forces that ḣ(i(p1, k, 0)) = h̄(i(p1, k, 0). By extending p1, we may
assume this is the case for all k ∈ K(p1). Choose an integer n̄1 large
enough so that for all k in K(p1) ∩ n̄1 is not empty, and that `p1,k is
larger than 1 for all n̄1 < k ∈ K(p1) is non-empty and by extending,
assume that `p1,k = 1 for exactly one k ∈ K(p1) with nk+1 < n̄1.
Choose an extension p2, which agrees with p1 up n̄1 and satisfies that
for all k ∈ K(p1) \ n̄1, i(p2, k, 1) = i(p1, k, 1) and for all ρ ∈ 22, pρ2
forces a value on ḣ(i(p1, k, 1)) for all k ∈ K(p1). Again there is a value
n̄2 large enough so that for all k ∈ K(p2) above n̄2, `p2,k > 2 and p2

forces that ḣ(i(p2, k, 1)) = h̄(i(p2, k, 1)). Additionally we may assume
that there is just one element k in K(p2) ∩ n̄2 \ n̄1 and that `p2,k = 2
and nk+1 < n̄2. The condition p that is constructed by this infinite
recursion will force that ḣ(i(p, k, `)) = h̄(i(p, k, `)) for all k ∈ K(p) and
` < `p,k. �

The next lemma might be thought of as producing a sequence of
values at which the condition will flip the value of ḟ while preserv-
ing the growth requirement on |Hk \ dom(p)|. It is almost exactly a

reformulation of ḟ not having a near lifting so we omit the proof.

Lemma 5.4. If p forces that ḟ does not have a near lifting, and if Pnonear
is P0 or P1, then there is a condition p̄ < p and a sequence {ik, tk : k ∈
K(p̄)} such that, for each k ∈ K(p̄), ik ∈ Hk \ dom(p̄), p̄ ∪ {(ik, 0)}
and p̄∪{(ik, 1)} force distinct values on ḟ(tk). We may further assume
that Hk ∩ ik ⊂ dom(p̄) for all k ∈ K(p̄).

Then this leads to the first major step towards the main result of
this section.

Lemma 5.5. If p forces that ḟ does not have a near lifting, then thereallflipping
is a condition p̄ < p and a sequence 〈T (i) : i /∈ dom(p̄)〉 of pairwise
disjoint finite sets such that for k ∈ K(dom(p̄)) and each i ∈ Hk \
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dom(p̄) and each function ρ from Hk ∩ i into 2 such that ρ ∪ p̄ is a
condition, ρ ∪ p̄ ∪ {(i, 0)} and ρ ∪ p̄ ∪ {(i, 1)} force distinct values on

ḟ � T (i).

Proof. We proceed by a sequence of Claims. We continue with the
notation from Proposition 5.3.

Claim 5.5.1. For each p, ` and ψ ∈ 2`, there is a condition p̄ < p c1
satisfying

(1) for each k ∈ K(p̄), {i(p, k, j) : j < `} = {i(p̄, k, j) : j < `},
(2) for each k ∈ K(p̄) and j ∈ [`, `p̄,k) and for each ψ ⊂ ρ ∈

2j such that ρ � [`, j) is constantly 0, there is a t such that c1.2
p̄ρ∪{(i(p̄, k, j), 0)} and p̄ρ∪{(i(p̄, k, j), 1)} force distinct values

on ḟ(t),
(3) for each k ∈ K(p̄) and j ∈ [`, `p̄,k) and some t specified as in

condition 2, we also have that for all ρ ∈ 2j+1, p̄ρ forces a value
on ḟ(t).

The proof of Claim 5.5.1 is by a simple fusion with repeated applica-
tions of the assumption that no condition forces that ḟ is nearly trivial
and Lemma 5.4. The third condition is made to hold at each step by
repeated applications of Lemma 4.7.

Next, by a similar recursion we can consider each ψ ∈ 2` in turn so
as to prove the next claim.

Claim 5.5.2. For each p, ` there is a condition p̄ < p satisfying c2

(1) for each k ∈ K(p̄), {i(p, k, j) : j < `} = {i(p̄, k, j) : j < `},
(2) for each k ∈ K(p̄) and j ∈ [`, `p̄,k) and for each ρ ∈ 2j such that

ρ � [`, j) is constantly 0, there is a t such that p̄ρ∪{(i(p̄, k, j), 0)}
and p̄ρ ∪ {(i(p̄, k, j), 1)} force different values on ḟ(t).

(3) for each k ∈ K(p̄) and j ∈ [`, `p̄,k) and some t specified as in
condition 2, we also have that for all ρ ∈ 2j+1, p̄ρ forces a value
on ḟ(t).

Proof of Claim 5.5.2. This involves a doubly indexed induction. Let
{ρm : m < 2`} be any enumeration of 2`. We assume, by induction
on m, that for any condition p < pm−1, there is a condition pm < p so
that for all ρ ∈ {ρ0, . . . , ρm−1} and all ` < `pm,k (k ∈ K(pm)), there is
a t so that pρm ∪ {(i(pm, k, j), 0) : j ≤ `} and pρm ∪ {(i(pm, k, j), 0) : j <

`} ∪ {(i(pm, k, `), 1)} force distinct values on ḟ(t). Then, to produce
pm+1, we assume, by induction on `, that for each p < pm we can
have, in addition, that for each j < ` < `pm,k (k ∈ K(pm)), there

is some t such that for all ψ ∈ 2j+1, pψm forces a value on ḟ(t), and,
for ρ = ρm, the two conditions pρm+1 ∪ {(i(pm, k, j), 0) : j ≤ `} and
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pρm+1 ∪ {(i(pm, k, j), 0) : j < `} ∪ {(i(pm, k, `), 1)} force distinct values

on ḟ(t). Assume that pm is such a condition. Apply Lemma 5.4 to
the condition p′ < pρmm where p′(i(pm, k, j)) = 0 for all j < ` and
k ∈ K(pm), to select an infinite K ⊂ K(p′) and a sequence {ik : k ∈ K}
disjoint from dom(p′) so that, for each k ∈ K, there is a tk such that

p′ ∪ {(ik, 0)} and p′ ∪ {(ik, 1)} force distinct values on ḟ(tk). Let p̃
denote the condition so that,

(1) for all k ∈ K = K(p̃), {i(p̃, k, j) : j < `} = {i(pm, k, j) : j < `},
(2) for all k ∈ K(p′), i(p̃, k, `) = ik
(3) for all k ∈ K(p′), p̃ � ({i(pm, k, j) : ` < j < `pm,k} ∩ ik) is con-

stantly 0, and p̃ � Hk \ ik ⊂ p′.

Extend p̃ (by a length 2`+1 recursion using Lemma 4.7) to a condition
still satisfying the above three criteria, but which in addition satisfies
that for each ψ ∈ 2`+1 and each k ∈ K(p̃), (p̃)ψ forces a value on ḟ(tk).
It is routine to verify that this p̃ satisfies that for each j ≤ `, and each
ρ ∈ {ρ0, . . . , ρm}, there is a t such that (p̃)ρ ∪ {(i(p̃, k, j′), 0) : j′ ≤ j}
and (p̃)ρ∪{(i(p̃, k, j′), 0) : j′ < j}∪{(i(p̃, k, `), 1)} force distinct values

on ḟ(t), while at the same time, for each ψ ∈ 2`+1, (p̃)ψ forces a value

on this ḟ(t). By the inductive hypothesis there is an extension q (with
{i(q, k, j) : j ≤ `} = {i(p̃, k, j) : j ≤ `} for all k ∈ K(q)) which also
satisfies that for each k ∈ K(q), ρ ∈ {ρ0, . . . , ρm−1}, and ¯̀ < `q,k,

there is a t so that, qψ forces a value on ḟ(t) for all ψ ∈ 2
¯̀+1 and qρ ∪

{(i(q, k, j), 0) : j ≤ ¯̀} and qρ ∪ {(i(q, k, j), 1) : j < ¯̀} ∪ {(i(q, k, ¯̀), 1)}
force distinct values on ḟ(t). Now, with a simple fusion, it should be
clear that we can produce pm+1 as required. �

Finally it should be clear that repeated applications of Claim 5.5.2
and a fusion argument will produce a condition as in the next Claim.

Claim 5.5.3. There is a condition p̄ such that for each k ∈ K(p̄),c3
each ` < `p̄,k, and each ρ ∈ 2`, there is a t such that each of p̄ρ ∪
{(i(p̄, k, `), 0)} and p̄ρ ∪ {(i(p̄, k, `), 1)} force distinct values on ḟ(t),

and such that for each ψ ∈ 2`+1, p̄ψ forces a value on ḟ(t).

Now with p̄ chosen as in Claim 5.5.3, the selection of the sequence
〈T (i) : i /∈ dom(p̄)〉 is straightforward. For each k ∈ K(p̄) and ` < `p̄,k,
choose a t(p̄, k, ρ) to be any t fulfilling the conclusion of the claim.
Set T (i(p̄, k, `)) to be the set {t(p̄, k, ρ) : ρ ∈ 2`}. It remains only
to show that if i 6= j are both in ω \ dom(p̄), then T (i) and T (j) are

disjoint. Since we are assuming that Lemma 4.6 holds for ḟ , we may fix
a k ∈ K(p̄) and a pair ` < `′ such that i = i(p̄, k, `) and j = i(p̄, k, `′).
Fix any t ∈ T (j) and choose ρ ∈ 2`

′
such that t = t(p̄, k, ρ). It follows
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then that ψ = ρ � `+ 1 is such that p̄ψ does not force a value on ḟ(t)
which shows that t can not be in T (i). �

Define gnd(ḟ) to be the ideal of sets Y such that ḟ � Y is from V .
For the next, one of the main results of the section, we will need to
assume that gnd(ḟ) is ccc over fin.

Lemma 5.6. If p̄ and the sequence 〈T (i) : i /∈ dom(p̄)〉 are as in

Lemma 5.5, and if p̄ forces that gnd(ḟ) is ccc over fin, then there is nearmain
a condition p < p̄ and a sequence 〈ti : i /∈ dom(p)〉 such that for each

i /∈ dom(p), p ∪ {(i, 1)} and p ∪ {(i, 1)} force distinct values on ḟ(ti).

Proof. The proof of Lemma 5.5 was oriented with an induction through
increasing values of i /∈ dom(p̄). This proof will now need to be in
reverse. To facilitate this notationally, we will now let, for a condition
q ≤ p̄, {̄ı(q, k, `) : ` < `q,k} be a descending enumeration of Hk \dom(q)
for k ∈ K(q). Similarly, for each ` and ρ ∈ 2`, we let q↓ρ denote the
condition q ∪

⋃
k∈K(q){(̄ı(q, k, j), ρ(j)) : j < min(`, `q,k)}.

Claim 5.6.1. If p ≤ p̄ and e is 0 or 1, then there exists a q < p and a usescccoverfin
sequence 〈ik : k ∈ K(q)〉 such that, ik ∈ Hk\dom(p), q(ik) = e, q forces

a value on ḟ �
⋃
k∈K(q) T (ik), and the sequence {|Hk∩ ik \dom(p̄)| : k ∈

K(q)} diverges to infinity.

Proof of Claim 5.6.1. If P is P0 and e is 1, then there is nothing to prove
since the assumption that q(ik) = 1 automatically ensures that q forces

a value on ḟ � T (ik). Otherwise, we may first extend p to the condition
p′ obtained by setting p′(̄ı(p, k, j)) = e for all j < `p,k/2. Now we use

the fact that p forces that gnd(ḟ) is ccc over fin to assert that there is
a selection 〈ik : k ∈ K(p′)〉 with ik ∈ {̄i(p, k, j) : j < `p,k/2} and an

extension q < p′ satisfying that q forces a value on ḟ �
⋃
{T (ik) : k ∈

K(p′)}. This is simply because there is an uncountable almost disjoint
family of such selections and the family of T (i) are pairwise disjoint
and finite. �

By a standard fusion argument using Claim 5.6.1, we may assume
first that we have constructed a condition p0 satisfying that for each
` and the constantly 0 element ρ of 2`, p↓ρ0 forces a value on ḟ �
T (̄ı(p0, k, `)) for each k ∈ K(p0) with ` < `p0,k. Then repeat the con-
struction to find p1 < p0 so that this holds for ρ being the constantly
1 function in 2` for all `.

Now we show that we can choose the sequence 〈ti : i /∈ dom(p)〉 as
required. Fix any k ∈ K(p) and i ∈ Hk \ dom(p). There are `, `0 and
`1 such that i = i(p̄, k, `) = ı̄(p0, k, `0) = ı̄(p1, k, `1). Choose any ρ ∈ 2`
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such that p1 � Hk is compatible with p̄ρ. By construction, there is a
ti ∈ T (i) and distinct ui, vi such that p̄ρ ∪ {(i, 0} 
 ḟ(ti) = ui and

p̄ρ ∪ {(i, 1)} 
 ḟ(ti) = vi. We show that p0 ∪ {(i, 0)} 
 ḟ(ti) = ui
and p1 ∪ {(i, 1)} 
 ḟ(ti) = vi. From this it follows of course that

p1 ∪ {(i, 0)} also forces that ḟ(ti) = ui which finishes the proof. We
show this by showing that if ψ is any other member of 2` such that p̄ψ

is compatible with p1 � Hk, then p̄ψ must also force that ḟ(ti) = ui,
since we then have that all extensions extend to a condition that forces
that ḟ(ti) = ui. Let χ ∈ 2`0 be the constantly 0 function, and recall

that pχ0

0 forces a value on ḟ � T (i). Now each of p̄ψ � Hk and p̄ρ � Hk

are compatible with the pχ0 and each force a value on ḟ(ti). Therefore
they must force the same value. The argument for p1 ∪ {(i, 1)} is the
same. �

The final result in this section is the proof of statements 1, 3, and 5
of Theorem 2.8.

Theorem 5.7. In the model obtained by forcing with the poset P1 overramsey
a model of PFA, there is a non-trivial autohomeomorphism ϕ of N∗
and two regular closed copies A,B of N∗ and a tie-point W such that

(1) ϕ[A] = B and ϕ[B] = A, and A ∩B = {W},
(2) W is the only point on the boundary of each of A and B,
(3) ϕ is the identity on N∗ \ (A ∪B),
(4) the identity function is a near lifting of ϕ in the sense developed

above.

Proof. We will define a strange sequence, {ṫm : m ∈ ω}, of P1-names of
pairs. These will code liftings of the maps between A and B (each will
“pick” a point from the pair) and the mappings of each onto N∗ (each
member from the m-th pair being sent to m). When these are viewed
as P1(F)-names as above, they will have the empty function as a near
lifting. The difficult part of the construction is to ensure that A and
B meet in a single ultrafilter.

For each m ∈ ω and each function σ ∈ 2[2m,2m+1), we will choose
a pair aσ ⊂ [2m, 2m+1). The definition of ṫm will simply be that a
condition p ∈ P1 such that [2m, 2m+1) ⊂ dom(p), will force that ṫm is
equal to ap�[2m,2m+1). Analogous to the definition of K(p) above, let
M(p) denote the set {m ∈ ω : [2m, 2m+1) 6⊂ dom(p)} for each p ∈ P1.
Without mention, we will assume that we work with the dense set
of conditions which satisfy that {|[2m, 2m+1) \ dom(p)| : m ∈ M(p)}
diverges to infinity.

For each p ∈ P1, let T (p) = {tm : m /∈ M(p) and p 
 tm = ṫm},
A(p) = {min(tm) : tm ∈ T (p)} and B(p) = {max(tm) : tm ∈ T (p)}. If
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G is a generic filter on P1, then we will set A to be the closure of the
open set

⋃
{A(p)∗ : p ∈ G} and B to be the closure of the open set⋃

{B(p)∗ : p ∈ G}.
For each p ∈ P1, let W (p) equal

⋃
m∈M(p){aσ : σ ∪ p ∈ P1}. Now

define the filterW to be the filter generated by the family {W (p) : p ∈
G}. If we define these names so that W is forced to be an ultrafilter,
then it is quite routine to check that W is the only boundary point of
each of A and B and that the map sending N∗ onto N∗ obtained by
extending the map sending each interval [2m, 2m+1) to {m} will restrict
to a homeomorphism on each of A and B. It may help to recall that
P1 does not add any new countable sets.

Now we set about showing that there is such a sequence of names.
We will define, for m ∈ ω and σ ∈ 2[2m,2m+1), the value of aσ based only
on the cardinality of σ−1(1). In fact some Ramsey theory says this will
effectively be the case anyway. To make these choices we now intoduce
the idea of an `-structure for ` ∈ ω.

The 0-structure will be the empty set. We let L0 = 2 and n0 = 6 =
L0 + LL0

0 . We next define a family of pairs {a〈i〉 : i < n0}:

a〈0〉 = {0, 1}, a〈1〉 = {2, 3}, a〈2〉 = {0, 2},
a〈3〉 = {0, 3}, a〈4〉 = {1, 2}, a〈5〉 = {1, 3}

This assignment satisfies that for each set Y such that Y ∩ a〈i〉 is not
empty for each i < L0, there is a j < n0 such that Y ⊃ a〈j〉. This is
the process by which we will ensure that the above defined W is an
ultrafilter.

By recursion on `, we define L` = 2n0 n1 · · ·n`−1, n` = L`+LL`` , and
our `-structure based on the cartesian product N` = n` × n`−1 × · · · ×
n1 × n0. It is awkward, but ultimately more convenient, to have this
product in descending order. For each j < `, also letN`,j = n`×· · ·×nj.

An `-structure is a family 〈{ax : x ∈ N`}, {Yρ : ρ ∈
⋃
j<`N`,j}〉

satisfying

(1) for each x ∈ N`, ax is a pair of integers
(2) for each ρ ∈

⋃
j<`N`,j, Yρ is the union of all ax with x ∈ N`

and ρ ⊂ x,
(3) for each j < ` − 1 and ρ ∈ N`,j, the family 〈{ax : ρ ⊂ x ∈
N`}, {Yψ : ρ ⊂ ψ ∈

⋃
i<`N`,i}〉 is an (` − j)-structure (with a

confusing prefix of ρ on each index),
(4) the family {Y〈m〉 : m < L`} are pairwise disjoint and Y∅ is the

union,
(5) for each Y ⊂ Y∅ such that Y ∩ Y〈m〉 6= ∅ for each m < L`, there

is a k < n` such that Y ⊃ Y〈k〉.
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The construction is quite straightforward. Let {āx : x ∈ N`−1} be
the pairs from an `−1-structure. The definition of L` ensures that it
exceeds the cardinality of, Ȳ∅, the union of these pairs. Let {Y〈m〉 : m <
L`} be a pairwise disjoint family of sets of integers each of the same
cardinality as Ȳ∅. Similarly, let {Y〈k〉 : m ≤ k < n`} be a family of
sets, each of cardinality |Ȳ∅|, so that the last inductive assumption is
satisfied. For each k < n`, fix a bijection, fk, between Ȳ∅ and Y〈k〉 and
define ak_x̄ = fk[āx̄] for each x̄ ∈ N`−1.

For each `, let c` denote the order-preserving mapping from N` with
the natural lexicographic ordering into an initial segment of [0, L`+1).
It is important to observe that for each ρ ∈

⋃
j<`N`,j, the set [ρ] =

{x ∈ N` : ρ ⊂ x} is an interval in the lexicographic ordering, and so,
c`([ρ]) is an interval in [0, L`+1). We may also assume that we have, for
each `, a fixed `-structure so that the set Y `

∅ = Y∅ from this structure
is an initial segment of integers.

For each integer m, choose ` = `m maximal so that L`m+1 ≤ 2m

(hence the interval [2m, 2m+1) will support an `-structure). For each

σ ∈ 2[2m,2m+1) such that there is an x ∈ N` with c`(x) = |σ−1(1)|,
define aσ to be the pair obtained by adding 2m to each member of
ax. It follows that aσ ⊂ [2m, 2m+1). If there is no such x ∈ N`, let
aσ = {2m, 2m+1}.

Define the condition p0 ∈ P1 by the prescription that for all m and
` = `m, p0 � [2m, 2m+1) is the partial function which is 0 on the segment

[2m + |Y `
∅ |, 2m+1). This ensures that for all σ ∈ 2[2m,2m+1) which extend

p0 � [2m, 2m+1), there will be an x ∈ N` such that c`(x) = |σ−1(1)|.
To finish the proof, we prove that p0 forces that W is an ultrafilter.

That is, if q < p0 and Y ⊂ N, then there is a p < q such that Y either
contains, or is disjoint from, W (p).

We may assume that the sequence {km = |[2m, 2m+1)\dom(q)| : m ∈
M(q)} diverges to infinity. For each m ∈M(q), let qm = q � [2m, 2m+1).
Also, for m ∈ M(q), let im be the largest integer so that nim < km/3.
By thinning out further (using any extension of q), we can also assume
that {im : m ∈ M(q)} diverges to infinity. It then follows that for
each m ∈ M(q) there is a ρm ∈ N`m,im such that the interval c`m [ρm]
is contained in [|q−1

m (1)|, |q−1
m (1)| + km). By inductive hypotheses (3)

and (5) in the definition of an `m-structure, there is an extension ψm
of ρm with ψm ∈ N`m,im+1 such that Y either contains, or is disjoint

from, Wm = 2m + Y `m
ψm

(i.e. Wm =
⋃
{aσ : σ ∈ 2[2m,2m+1) and |σ−1(1)| ∈

c`m [ψm]}). By symmetry, we may assume that there is an infinite K ⊂
M(q) such that Y contains Wm for all m ∈ K. Let p < q be any
condition such that p−1(0) = q−1(0) (no more 0’s are added) and for
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eachm ∈ K, the minimum element of c`m [ψm] is the number of values in
[2m, 2m+1) which are sent to 1 by p. Notice that for m ∈ K, |[2m, 2m+1)\
dom(p)| > nim+2 and so we may assume that M(p) = K. In other
words, p will satisfy that W (p) =

⋃
m∈M(p)Wm. This shows that p

forces that Y contains a member of W . �

6. all homeomorphisms can be trivial

In this section we now assume that P is either P0 or P1. In each
result, when we are discussing any P-name of an automorphism on
P(N)/ fin, we will assume without mention that the properties of F , ḣ
and the sequences {nk,mk : k ∈ ω} established in sections 4 and 5 are
valid below some condition q0. In particular, that [2mk , 2mk+1) contains
Hk = [nk, nk+1) \ dom(q0) for all k ∈ K(q0).

Now we are ready to prove the main theorems from Section 2. We
start with restating and proving item 1 of Theorem 2.7 and Theorem
2.9.

Theorem 6.1. In the extension obtained by forcing over a model of
PFA by P0 all automorphisms on P(N)/ fin are trivial. In the extension repeatnoauto
obtained by forcing over a model of PFA by P1, all automorphisms on
P(N) are nearly trivial.

Proof. In this result, F is a lifting of an automorphism, hence we may
assume that ḣ is forced to be 1-to-1. In the case that P is P0 we refer to
Lemma 5.1. In the case that P is P1 we refer to Lemma 5.6. Thus we
have a condition p satisfying that for each i /∈ dom(p) there is a ti such
that there are distinct values ui, vi that p ∪ {(i, 0)} and p ∪ {(i, 1)},
respectively, force on ḣ(ti). Choose a condition q < p and a set Y so
that q forces that F (Y ) = {ui : i /∈ dom(p)}. Let L0 = {i /∈ dom(q) :
ti /∈ Y }. If L0 is infinite, then we have a contradiction by choosing any
infinite subset L′ of L0 so that L′ ∩ Hk has at most one element for
each k, and considering the condition q′ = q∪{(i, 0) : i ∈ L′}. We now
have that q′ forces that F ({ti : i ∈ L′}) =∗ hq′({ti : i ∈ L′}) will be
almost contained in F (Y ) while {ti : i ∈ L′} is disjoint from Y .

Now suppose that L0 is finite. If {vi : i /∈ dom(q)} \F (Y ) is infinite,
then we choose an infinite L′ so that L′ ∩ Hk is empty for infinitely
many k ∈ K(q) and so that {vi : i ∈ L′} is disjoint from F (Y ). Again
the extension q′ = q∪{(i, 1) : i ∈ L′} will force that F ({ti : i ∈ L′}) =∗

hq′({ti : i ∈ L′}), but this contradicts that it is supposed to be mod
finite contained in F (Y ).

The final case then is that there is an infinite sequence L′ ⊂ K(q)
such that K(q) \ L′ is still infinite and there is a sequence of pairs
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{ik, i′k : k ∈ L′} such that ik, ik are distinct members of Hk \ dom(q)
and vik = ui′k for each k ∈ L′. Now we have that the extension q′ =

q ∪ {(ik, 1), (i′k, 0) : k ∈ L′} will force that ḣ is not 1-to-1. �

This next result gives the proof of items 3 and 2 of Theorem 2.7 and
2.8.

Theorem 6.2. In the forcing extensions obtained by forcing over aboundaries
model of PFA with either P0 or P1, all regular closed copies of N∗ have
finite boundaries.

Proof. Let A be a regular closed copy of N∗ and let F denote the
homomorphism onto P(N)/ fin witnessing that A is homeomorphic to
N∗. Let us note that for any set I ∈ triv(F ), I∗ does not meet the

boundary of A. By the results of section 4, there is a P(F)-name ḣ,

and a sequence {nk : k ∈ ω}, and some condition p which forces that ḣ

is a lifting of F . Also, we may assume that p forces that ḣ is forced to
be 1-to-1 among values that are sent to a positive integer. If P = P0 we
apply Proposition 5.1, and if P = P1 and no extension of p forces that
ḣ has a near lifting (Definition 5.2), we apply the sequence of results
culminating in Lemma 5.6 so as to find a condition p0 < p so that for
all i /∈ dom(p0) there is a ti such that p0 ∪ {(i, 0)} and p0 ∪ {(i, 1)}
forces ḣ(ti) is ui 6= vi respectively. If i 6= j, then p0 ∪ {(i, 0), (j, 0)}
and p0 ∪ {(i, 0), (j, 1)} force the same value on ḣ(ti) which shows that
ti 6= tj. A simple argument shows that if ui > 0, we can also choose a t0i
and (if necessary extend p0) so that p0 ∪ {(i, 1)} forces that ḣ(t0i ) = ui
and p0 ∪ {(i, 0)} forces a value on ḣ(t0i ). By reversing ti and t0i we
may now assume that, for all i /∈ dom(p0), vi > 0 and, if ui > 0, then

p0 ∪ {(i, 1)} forces that ḣ(t0i ) = ui. We also note that for distinct i, j

not in dom(p0), p0 ∪{(i, 1), (j, 0)} forces that ḣ(ti) = vi and ḣ(tj) = uj
which shows that vi 6= uj by the 1-to-1 condition on ḣ.

We will next argue that for all k ∈ K(p0), we may arrange that the
family {vi : i ∈ Hk \ dom(p0)} is a singleton which we denote v0

k. It is
interesting to note then that this is impossible if P is P1, because there
will be extensions of p0 which force a violation to the 1-to-1 condition
on ḣ since we can arrange more than one ti is sent to the same v0

k.

Thus, if P = P1, we only have the case when ḣ is forced to have a
near lifting. In the case that P is P0, we note a critical property for
p0, {v0

k : k ∈ K(p0)} is that for each q < p0 and each k ∈ K(q), there is

no t such that q 
 ḣ(t) = v0
k (since some extension can otherwise force

a violation of the 1-to-1 property of ḣ).
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By a simple thinning out process, we can arrange that if we can-
not arrange that each {vi : i ∈ Hk \ dom(p0)} is a singleton, then
we can assume that, for each k ∈ K(p0), the elements in {vi : i ∈
Hk \ dom(p0)} are pairwise distinct. But now choose a condition
q0 < p0 which forces values on F ({ti : i /∈ dom(p0)}). Fix any in-
finite set K ′ ⊂ K(q0) such that K(q0) \ K ′ is also infinite. Since
q0 ∪ {(ik, 1) : k ∈ K ′} forces that {vik : k ∈ K ′} ⊂∗ F ({ti : i /∈
dom(p0)}), it follows that q0 forces that {vik : k ∈ K ′} is almost con-
tained in F ({ti : i /∈ dom(p0)}. However, if we choose any other
ı̄k ∈ Hk \ dom(q0) for each k ∈ K ′, then the condition q′ < q0 which
sends, for each k ∈ K ′, ı̄k to 1 and the remainder of Hk \ dom(q0) to
0, then q′ forces that F ({ti : i ∈

⋃
k∈K′ Hk \ dom(p0)}) is almost equal

to
⋃
k∈K′ ({v̄ık} ∪ {ui : ı̄k 6= i ∈ Hk \ dom(p0)}). Of course we also have

that p0 forces that F ({ti : i ∈
⋃
k∈K′ Hk \ dom(p0)}) is almost equal to

F ({ti : i /∈ dom(p0)}) ∩
⋃
k∈K′ [nk, nk+1) because of the properties as-

sumed to hold for ḣ. This means then that {vik : k ∈ K ′} is supposed to
be mod finite contained in

⋃
k∈K′ ({v̄ık} ∪ {ui : ı̄k 6= i ∈ Hk \ dom(p0)}).

We know that it is actually disjoint because vik is not equal to any uj.
Now that we have the sequence {v0

k : k ∈ K(p0)} as above, we choose
a condition p1 < p0 and a set Y0 such that p1 forces that F (Y0) is almost
equal {v0

k : k ∈ K(p0)}. We will show below that Y0 is not in triv(F )
and hits the boundary in exactly one point. However, if p1 does not
force that N \ Y0 is in triv(F ), then, working with ḣ � N \ Y0, we may
assume that there is a sequence of {t1i : i /∈ dom(p1)} ⊂ N \ Y0 and
non-zero values {v1

k : k ∈ K(p1)} so that for each k ∈ K(p1), and

i ∈ Hk \ dom(p1), p1 ∪ {(i, 1)} 
 ḣ(t1i ) = v1
k.

Choose p2 < p1 and Y1 ⊂ N \ Y0, so that p2 forces that F (Y1) is
almost equal {v1

k : k ∈ K(p1)}, and again ask if p2 forces that the
complement of Y0 ∪ Y1 is in triv(F ). We will argue that this process
must stop at some finite stage ` and at each stage we “captured” exactly
one point on the boundary. If the process continues to infinity, then
after a simple fusion, we have a condition p and an increasing sequence
{`k : k ∈ K(p)} so that for each k ∈ K(p) and ` < `k we have the
pairwise distinct elements {v`k : ` < `k} so that for each q < p each

k ∈ K(q) and each ` < `k, there is no value t such that q 
 ḣ(t) = v`k.
From this we can choose an almost disjoint family {Yα : α ∈ ω1} so
that, for some condition q < p, q forces that F (Yα) will contain some
vk,` for infinitely many k ∈ K(p). This is a contradiction if we show
that no such Yα is in triv(F ). Assume that Y is any set such that
there is a condition q < p such that q forces the value F (Y ) satisfying
that for each k ∈ K(q), F (Y ) ∩ {v`k : ` < `k} is a singleton. We can
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additionally assume that each such intersection is actually a singleton,
vk. We finish this portion of the proof by proving that Y is not in
triv(F ) and that Y ∗ meets the boundary of A in a singleton (because
then the induction stopped at some finite stage, and at each stage we
captured just one point of the boundary). To do so, we show that if
we choose any set Y ′ ⊂ Y , then exactly one of Y ′ and Y \Y ′ meets the
boundary of A (and the other is in triv(F )).

Choose a condition q′ < q which forces the values {vk : k ∈ L0} and
{vk : k ∈ L1} on F (Y ′) and F (Y \ Y ′) respectively. It follows that
L0 ∪ L1 = K(q) and L0 ∩ L1 is empty. By further extending q′ we
may assume that L1 ∩ K(q′) is empty. It follows easily that q′ forces
that F ((Y \ Y ′) \ dom(hq′)) is finite, and that (Y \ Y ′)∩ dom(hq′) is in
triv(F ).

Since q′ forces that F (Y ′) is infinite, it follows that Y ∗ ∩ A is not

empty. Since q′ already forces the values on ḣ � (Y ′ ∩ dom(hq′)) we
know that q′ forces that F (Y ′ \ dom(hq′)) is almost equal to {vk : k ∈
K(q′)}. Let K ′ be the infinite set of k ∈ K(q′) such that we can choose
yk ∈ Y ′ ∩ [nk, nk+1). By extending q′ we may assume that K = K(q′).

Apply Lemma 4.7, to choose q̃ < q′ so that q̃ forces a value uk on ḣ(yk)

for each k ∈ K. Since ḣ is forced to be a lifting, it follows that for
almost all k ∈ K, this value uk ∈ {0, vk}. Thus for all k ∈ K(q̃), we
have that uk = 0, and we have shown that {yk : k ∈ K(q̃)} is forced to
be in the kernel of F , and so its closure misses A.

Now we work the case when P is P1 and some condition p0 forces
that h̄ is a near lifting of ḣ. Let m̄ be the integer which witnesses
the property that p0 forces that h̄ is a near lifting of ḣ. Let T0 =
{t ∈ N : h̄(t) = 0} and suppose that p1 < p0 forces a value J on
F (T0), and let T1 = N \ T0. If J is finite, then h̄(T1) =∗ N. For each

k ∈ K(p1), let T1(k) = {t ∈ [nk, nk+1) : p 6
 ḣ(t) = h̄(t)}. Recall that

our assumptions on ḣ guarantee that p1 forces that ḣ[T1(k)]∩ḣ[T1(k′)] ⊂
{0} for k 6= k′. Also we have that h̄ is 1-to-1 and so p1 forces that,

as sets, ḣ[T1(k)] = h̄[T1(k)] for almost all k. Thus, p1 forces that for

almost all k, 0 /∈ ḣ[T1(k)]. Of course, this shows that A is simply the
set T ∗1 , and so has empty boundary.

Now we assume that J is infinite. By choosing an extension of p1 we
may suppose that Jk = J ∩ [nk, nk+1) is not empty for all k ∈ K(p1).
Assume that Y is any infinite subset of J which meets Jk for each
k ∈ K(p1). Choose q < p1 and T ⊂ T0 such that q 
 F (T ) =∗ Y . Fix
any t ∈ T such that there is a k ∈ K(q) with |Hk \ dom(q)| > m̄ and
t ∈ [nk, nk+1). It follows that there is some extension of q which forces

that h̄(t) = ḣ(t) = 0. For this reason, no extension of q forces that T ∗
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is contained in A. On the other hand, since F (T ) =∗ Y , it follows that
T ∗ does meet A. In fact, this shows that T is not in triv(F ). Therefore
the sequence {Jk : k ∈ K(p1)} must have a finite bound on the sizes,
since otherwise there would be an uncountable almost disjoint family
of sets none of which are in triv(F ). To finish the proof, we must show
that the set T selected above is such that T ∗ meets the boundary in
exactly one point (and so there is a finite cover of the boundary by
clopen sets, each meeting the boundary in a singleton). This proceeds
exactly as in the previous case and so the details can be skipped. �

Next we restate and prove item 4 of Theorem 2.7

Theorem 6.3. In the extension obtained by forcing over a model of
PFA by P0, if A and B are regular closed copies of N∗, then A ∩ B is P04proof
regular closed.

Proof. If A ∩B is not regular closed, then there is clopen set W of N∗
which meets A ∩ B in a non-empty nowhere dense set. Since A ∩W
and B∩W will also be copies of N∗, it suffices to show that if A and B
meet, then A ∩ B has interior. By Theorem 6.2, we may assume that
A and B each have exactly one point, W , on their boundary (which
they must share).

Let F0 and F1 be the liftings of the homomorphisms onto P(N)/ fin

corresponding to the closed sets A and B respectively. Let ḣ0 and ḣ1

be the P(F)-names of the liftings for F0 and F1 respectively.
As in Theorem 6.2, there is a condition p0 and a sequence {v0

k : k ∈
K(p0)} satisfying that for each k ∈ K(p0) and i ∈ Hk \ dom(p0), there

is a ti such that p0∪{(i, 0)} 
 ḣ0(ti) = 0 and p0∪{(i, 1)} 
 ḣ0(ti) = v0
k.

Now we notice that p0 forces that F ({ti : i /∈ dom(p0)}) =∗ {v0
k : k ∈

K(p0)} since p0 forces that ḣ0 is a lifting of F .
It then further follows that for each p1 < p0, {ti : i /∈ dom(p1)} is

not in triv(F ) and so is a member of the ultrafilter W .

Since the same holds for ḣ1, we may assume that there is a p1 < p0

and a sequence {v1
k : k ∈ K(p1)} so that again that for each k ∈ K(p1)

and i ∈ Hk \ dom(p1), there is a t1i ∈ {tj : j /∈ dom(p0)} such that

p1 ∪ {(i, 0)} 
 ḣ1(t1i ) = 0 and p1 ∪ {(i, 1)} 
 ḣ1(t1i ) = v1
k.

Notice that {t1i : i /∈ dom(q)} ∩ {ti : i /∈ dom(q)} is infinite for all
q < p1 since q forces the intersection is in the ultrafilter W . It follows
easily from this fact that there is an infinite set of i ∈ dom(p1) such
that t1i = ti. Now we can extend p1 to a condition q which forces that

ḣ0(ti) > 0 and ḣ1(ti) > 0 for all i in an infinite set I. This then shows
that {ti : i ∈ I}∗ ⊂ A ∩B as required. �

Next we prove item 5 of Theorem 2.7.
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Theorem 6.4. In the extension obtained by forcing over a model of
PFA by P0, all tie-points are RK-equivalent to the new point U .

Proof. Assume now that C BCW D is a tie-point and that Let {cα : α ∈
ω2} and {dα : α ∈ ω2} be the P0-names for the generators (increasing
mod finite) for IC and ID respectively as per Lemma 3.2. Let H be
κ<ω1-generic and let F ⊂ P be as discussed earlier. To avoid confusion,
again let λ denote the ordinal in the extension V [H] corresponding
to ωV2 . We again have that the interpretations by the filter F of the
names C,D etc. form a tie-point in V [H]. Following the standard

approach it suffices to show that no P(F)-name ḟ ∈ 2N will satisfy that

cα ⊂∗ ḟ−1(0) and dα ⊂∗ ḟ−1(1) for all α ∈ λ. Otherwise we can use
Lemma 2.1 to show that would have to IC and ID contain a Luzin gap.

Well now, then it is easy to see that there is a condition p and
sequence {nk : k ∈ ω} so that ḟ satisfies each of the conditions 4.6,

4.7, and that gnd(ḟ) is ccc over fin (since every set not in triv(ḟ) is a
member of W . Apply Lemma 5.1 to obtain p0 < p and the sequence
{ti : i /∈ dom(p0)} so that for each i /∈ dom(p0), there is a pair ui 6= vi
such that p0 ∪ {(i, 0)} 
 ḟ(ti) = ui and p0 ∪ {(i, 1)} 
 ḟ(ti) = vi.

It follows easily now that the mapping sending each i /∈ dom(p0) to
ti will send the ultrafilter U to the ultrafilter W . �
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