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Abstract. We show from a weak set-theoretic hypothesis that there is an

Efimov space.

1. Introduction

A topological space is an Efimov space if it is infinite, compact and contains
no infinite converging sequence and no homeomorphic copy of βω. It is a long-
standing problem in set-theoretic topology to determine if there is an Efimov space.
A Boolean algebra will be called Efimov if its Stone space of ultrafilters is an Efimov
space. A compact space X contains a homeomorphic copy of βω if and only if it
has a closed subspace which maps onto the product space 2c. For the Stone space
of a Boolean algebra B this is equivalent to containing an independent family of
cardinality c.

Efimov spaces are known to exist in various models of set-theory, for example,
the continuum hypothesis implies they exist (see [3, 4]). It is not known if they
exist in ZFC, and, as was asked in [4], it was not even known if their existence was
consistent with Martin’s Axiom and the failure of CH. We prove that the hypothesis
b = c is sufficient to imply their existence. Of course b is the minimum cardinal
such that there is a mod finite unbounded family of functions from ωω of that
cardinality.

We construct a very special kind of Efimov Boolean algebra, one that is minimally
generated (see [6]). The paper by Koszmider [7, 2.7] introduces a special kind of
minimally generated Boolean algebra that are called T-algebras. We introduce an
alternative description as a game strategy through a device that we find useful
that we call coherently minimally generated Boolean algebras. These give rise
to superatomic Boolean algebras, and we begin by recalling several basic notions.
Complete coverage of superatomic Boolean algebras can be found in [6]. Minimal
Boolean algebras are introduced in [5] and the genesis of the notion of coherently
minimally generated Boolean algebras (and T-algebras) is from [5, 7]. We limit our
discussion to some basics chosen to make the paper more self-contained.

Let B be a Boolean algebra. The Stone space, S(B), is the space consisting of
all ultrafilters on B with the topology generated by the clopen sets {b∗ : b ∈ B}
where b∗ = {u ∈ S(B) : b ∈ u} for b ∈ B. If A is a subalgebra of B, then S(B)
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canonically maps onto S(A) by sending u ∈ S(B) to u ∩ A ∈ S(A). If X is a non-
empty subspace of S(B), then there is a natural homomorphism ϕX on B induced
by X where, for a, b ∈ B, ϕX(a) = ϕX(b) if and only if a∗ ∩X = b∗ ∩X.

Definition 1.1. A Boolean algebra is superatomic if every homomorphic image is
atomic.

Proposition 1.2. If a Boolean algebra B is superatomic then every subspace of
S(B) has a dense set of isolated points.

Proof. Assume that B is superatomic and that X is a subspace of S(B). To show
that X has a dense set of isolated points, we choose any b ∈ B such that b∗ ∩X is
non-empty and show that it contains an isolated point of X. Note that ϕX(b) 6= 0.
Choose a ∈ B so that ϕX(a) ≤ ϕX(b) is an atom in the homomorphic image of B.
Since ϕX(a) is an atom it is immediate that a∗ ∩X is a single point of X. �

2. Coherently minimally generated Boolean algebras

B is a minimal extension of A if A is a proper subalgebra of B and has no proper
strictly larger extension. If B is a minimal extension of A, then for all b ∈ B \ A
and all a ∈ A, exactly one of b∩ a and b \ a is a member of A. To see this, suppose
that b ∈ B \A and a ∈ A. If b \ a /∈ A, then B is equal to 〈A, b \ a〉. Thus, there is
a c ∈ A such that b = (b \ a)∪ (c∩ a). This of course implies that b∩ a = c∩ a ∈ A.
It follows then that there is a unique ultrafilter uA on A which does not generate
an ultrafilter on B, and that a ∈ uA if and only if for each b ∈ B \ A, b \ a ∈ A.
The definition of minimal extension does not preclude the case when B = 〈A, b〉
and b is an atom of B (hence b ∩ a = 0 for all a ∈ A \ uA), but our constructions
will avoid this case.

A minimally generated Boolean algebra will mean that we have an ordinal λ
and a Boolean algebra Bλ with a sequence of generators {aα : α ∈ λ} such that
for each α < λ, Bα+1 = 〈Bα, aα〉 is a minimal extension of Bα, where Bα is the
Boolean algebra generated by {aβ : β < α}. The notation uα will denote the filter
on Bα witnessing that Bα+1 is the minimal extension of Bα by aα. This can all
be defined abstractly, but in this paper we will assume that we are simply dealing
with subalgebras of P(ω). We will henceforth assume without mention that for
each n ∈ ω, an = ω \ n and, therefore that Bω is the Boolean subalgebra of finite
and cofinite sets and uω is the cofinite filter.

We will say that a minimally generated Boolean algebra is coherently minimally
generated by the sequence 〈aα : α ∈ λ〉 if for all α, uα is the filter in Bα generated
by the set {aβ : β < α}. This is equivalent to the condition of having uβ = uα∩Bβ
for all β < α < λ. In the case of a coherently minimally generated Bλ, it makes
sense to talk about the ultrafilter uλ on Bλ.

Definition 2.1. If Bλ is coherently minimally generated by the sequence {aα : α ∈
λ}, then, for β < α, let xβ denote the filter on Bα generated by uβ ∪ {ω \ aβ}.

Proposition 2.2. If Bλ is coherently minimally generated by the sequence {aα :
α ∈ λ}, then for each β < α < λ, aα \ aβ is a member of the algebra Bβ, and xβ is
an ultrafilter on Bλ.

Proof. Fix β < λ and prove by induction on α that aα \ aβ is a member of Bβ . Fix
any α < λ and assume that aγ \ aβ ∈ Bβ for all γ < α. It follows that for each
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b ∈ Bα, b \ aβ is a member of Bα. Since Bα+1 is minimal over Bα and uα is the
ultrafilter witnessing this, since aβ ∈ uα, we have that b = aα \ aβ is a member of
Bα, and so b \ aβ = b is also a member of Bβ .

The fact that xβ is an ultrafilter on Bλ now follows directly. The fact that Bβ+1

is minimal over Bβ ensures that xβ is an ultrafilter on Bβ+1. For each β < α,
aα \ aβ = aα ∩ (ω \ aβ) is a member of Bβ+1, and so, either contains, or is disjoint
from, a member of xβ . �

Proposition 2.3. [5] Every coherently minimally generated Boolean algebra is su-
peratomic.

Proof. Let B be coherently minimally generated by the sequence {aα : α < λ}.
Suppose the ϕ is a homomorphism from the Boolean algebra B onto A. Choose
α minimal so that ϕ(aα) is not equal to 1. Then we check that ϕ((ω \ aα)) is an
atom. By the minimality of α, we have that if b ∈ Bα \uα, then ϕ(b) = 0. Since xα
generates an ultrafilter on B, we then have that ϕ(b \ aα) > 0 if and only if b ∈ xα.
It then also follows immediately that ϕ(b \ aα) = ϕ(ω \ aα) for all b ∈ xα. This
shows that ϕ(ω \ aα) is an atom of A. �

It is also proven in [5] that every superatomic Boolean algebra can be coherently
minimally generated but we shall not need that result.

Definition 2.4. Let B be a Boolean algebra and let u be an ultrafilter on B. A
sequence {bn : n ∈ ω} ⊂ B is said to converge to u if for all a ∈ u, the set
{n : bn < a} is cofinite. Similarly, a sequence {xn : n ∈ ω} of ultrafilters of B is
said to converge to u if for all a ∈ u, the set {n : a ∈ xn} is cofinite.

A topological space is sequentially compact if every infinite subset contains a
converging sequence.

Proposition 2.5. If B is a coherently minimally generated, then S(B) is sequen-
tially compact.

Proof. Let {ξn : n ∈ ω} be an infinite subset of λ, hence {xξn : n ∈ ω} is an infinite
set of ultrafilters on Bλ. We must show there is an infinite I ⊂ ω and an ultrafilter
u on Bλ such that {xξn : n ∈ I} converges to u. We may assume that {xξn : n ∈ ω}
does not converge to uλ. Choose α < λ minimal such that I = {n ∈ ω : aα ∈ xξn}
is infinite. Clearly, {n ∈ I : (ω \ aα) ∈ xξn} is a cofinite subset of I. Since α was
minimal, we then have that for all a ∈ xα, {n ∈ I : a ∈ xξn} is a cofinite subset of
I. �

Proposition 2.6. If Bλ is a coherently minimally generated Boolean algebra, then
S(Bλ)\{uλ} is sequentially compact if and only if there is no infinite sequence from
S(Bλ) which converges to uλ.

3. The Scarborough-Stone game

We define a game, which we will call the Scarborough-Stone game, which calls
for the construction of coherently minimally generated Boolean algebras. The main
object to construct is a sequence 〈aα : α < λ〉 (λ ≤ c) of subsets of ω. The sequence
will be required to be the generators of a coherently minimally generated Boolean
algebra. We reiterate our convention that an = ω \ n for n ∈ ω. The game aspect
will be that Player I will propose a set bα and (for α ≥ ω) Player II will choose to
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let aα to be one of {bα, ω \ bα}. Player I will win at any stage λ if S(Bλ) \ {uλ}
is sequentially compact. At stage α, if Player I has not already won, then Player
II will choose a sequence converging to uα, and Player II will win at stage α+ 1 if
that sequence still converges to uα+1. For simpler notation, Player II can simply
choose any set S ∈ [α]ω such that {xξ : ξ ∈ S} converges to uα.

Our interest is not really to explore this game, but rather to show that if b = c
then Player I has a winning strategy σ which will win at some stage λ ≤ c. It is
not known if, in ZFC, Player I has a winning strategy for this game.

The reason we call this the Scarborough-Stone game is that if Player I has a
winning strategy, then the Scarborough-Stone problem has an negative answer.
The Scarborough-Stone question asks if the product of sequentially compact spaces
is necessarily countably compact. It is known that the answer is negative if, for
each free ultrafilter u on ω, there is a sequentially compact space, Xu, containing
ω such that for each x ∈ Xu, x has a neighborhood Wx satisfying that Wx ∩ω /∈ u.
If Player II always chooses aα so that aα /∈ u, then Xu = S(Bλ) \ {uλ} is such a
space (when Player I has won at stage λ).

Let S = {Sξ : ξ ∈ c} be a fixed enumeration of [c]ω, in effect a well-ordering
of [c]ω. This sequence can be used to ensure that if the play of the game lasts
until λ = c, then Player I has ensured that S(Bc) \ {uc} is sequentially compact.
We will simplify the game (the S-game) and assume that the sequence played by
Player II at stage α will always be Sξα where ξα is the minimal ξ such that Sξ ⊂ α
and {xζ : ζ ∈ Sξ} converges to uα. Thus we can regard the elements of the tree

T = ([ω]ω)
≤c

, (ordered by extension) as partial plays of the game. For each t ∈ T ,
let o(t) denote the domain of t (which is an ordinal less than or equal to c). Also
let Bt denote the Boolean algebra generated by the elements of t together with the
cofinite subsets of ω, and let ut denote the (possibly degenerate) filter extending
the cofinite filter generated in Bt by the elements of t. For each β < o(t), let xtβ
denote the (possibly degenerate) filter generated by ut�β ∪ {ω \ t(β)}.

Definition 3.1. A strategy σ, for Player I, is a function from T into 2-element
partitions of ω. The subtree Tσ ⊂ T would be, recursively, the collection of t =
〈aβ : β < α〉 ∈ Tσ which satisfy that, for all n ∈ ω, an = ω \ n, and for all
ω ≤ γ < α, σ(t � γ) = {aγ , ω \aγ} and S(Bt�γ)\{ut�γ} is not sequentially compact.
If S(Bt) \ {ut} is sequentially compact, then t is a maximal node in Tσ.

The following is a straightforward reformulation of what a winning strategy for
Player I must satisfy if we are playing the S-game. We omit the routine verification.

Lemma 3.2. A strategy σ for Player I is a winning S-strategy if for each t ∈ Tσ
which is not maximal, each of the following holds for each a ∈ σ(t):

(1) 〈Bt, a〉 is a minimal extension of Bt,
(2) ut ∪ {a} generates a proper filter on ω
(3) the set of γ ∈ Sξt , such that a ∈ xtγ is infinite, where ξt is minimal such

that {xtγ : γ ∈ Sξt} converges to ut.

Theorem 3.3. There is an Efimov space if Player I has a winning S-strategy.

Proof. Let σ be a winning S-strategy for Player I. Let Tσ be defined as above,
and let B be the Boolean subalgebra of P(ω) generated by the family {σ(t) : t ∈
Tσ is not maximal }. We check that S(B) is Efimov.
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The main tool to prove this is a structure theorem on the ultrafilters developed by
Koszmider. For each maximal t ∈ Tσ, the ultrafilter ut on the Boolean subalgebra
Bt generates an ultrafilter on B. To see this, assume that s ∈ Tσ and that γ < o(s).
Thus, asγ can be regarded as an arbitrary member of the family that generates B.
If s ⊂ t, then asγ ∈ Bt so there is nothing to check. Otherwise, choose β minimal

such that s(β) 6= t(β). It follows that asβ and atβ are complementary sets. We want
to show that asγ either contains, or is disjoint from, a member of ut. If γ < β, then

asγ ∈ utβ , and so, is a member of ut. If γ ≥ β, then asγ ∩ asβ is disjoint from atβ ,

which is a member of ut. Thus we finish by proving that asγ \asβ is either a member

of ut, or is disjoint from a member of ut. But remember (Lemma 2.2) that asγ \ asβ
is a member of Bs�β , which is a subset of Bt.

Conversely, if u is an ultrafilter on S(B), we show there is a maximal t ∈ Tσ

such that u is the ultrafilter generated by ut. This is proven by a simple recursion
by which atγ is the unique member of σ(t � γ) which is a member of u.

Another useful tool is to note that for each maximal element t ∈ Tσ, we have
the canonical continuous map ϕt from S(B) onto S(Bt). It is easily checked that
this map is given by ϕ(ut) = ut and, for s 6= t, ϕ(us) = xtγ where γ is minimal such
that s(γ) 6= t(γ).

Let {tn : n ∈ ω} be a collection of pairwise distinct maximal members of Tσ, and
let U = {utn : n ∈ ω}. Since S(B) is compact, we may choose a maximal element
t ∈ Tσ so that ut is a limit of U , which means that, for all γ < o(t), {n : atγ ∈ utn}
is infinite. We may assume t 6= tn for all n.

First we prove that U is not a converging sequence in S(B). Since ut is a limit
of the sequence {utn : n ∈ ω}, it follows that it is a limit of the set S = {ϕt(utn) :
n ∈ ω} ⊂ S(Bt) \ {ut}. Since S(Bt) \ {ut} is sequentially compact, the set S has a
limit distinct from ut. Therefore {utn : n ∈ ω} has more than one limit point.

Now we prove that ut has a countable local π-base in the closure of U . A
collection of non-empty open sets in a space X is a local π-base at x if every
open set containing x contains a set from the collection. Let {γk : k ∈ ω} be
the set of ordinals γ < o(t) satisfying that xtγ is an isolated point of the subspace

{ϕt(utn) : n ∈ ω}. By Lemma 1.2, {xtγk : k ∈ ω} is dense (and thus infinite) in

ϕt[U ]. For each k, Uk = U ∩ϕ−1
t ({xtγk}) is a relatively open subset of U . Let a ∈ ut

and choose k so that xtγk ∈ a
∗, i.e. a ∈ xtγk . Choose b ∈ Bt�(γk+1) ∩ xtγk so that

b ⊂ a. For u ∈ Uk, we have that xtγk ∩Bt�(γk+1) is contained in u, hence a ⊃ b ∈ u.
We have shown that a∗ contains Uk, and thus, the family {Uk : k ∈ ω} is a local
π-base at ut in U .

Since βω has separable subspaces in which no point has a countable local π-
base, we have shown that βω is not a subspace of S(B). In fact, of course, we have
shown that S(B) does not map onto 2ω1 and so B does not contain an uncountable
independent family. �

Let us again remark that the algebra B in the proof of Theorem 3.3 can be shown
to be a T-algebra in the sense of Koszmider [7]. Koszmider showed that each T-
algebra is minimally generated, and Koppelberg [5] established that no minimally
generated algebra contains an uncountable independent family. However, it does
seem easier to prove directly in Theorem 3.3 that the Stone space does not contain
a copy of βω rather than to review all the terminology of T-algebras. Nonetheless,
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we certainly acknowledge that our method was based from the outset on the fact
that we were constructing a T-algebra.

4. Building a strategy from b = c

The construction of a strategy σ will require that we maintain some auxillary
objects and inductive assumptions. Specifically, we proceed by induction on α and
define σ for members of t ∈ Tσ ∩ [c]<α. If t ∈ [c]<α \ Tσ, then σ(t) can be set
to be {ω, ∅}. We suppress mention of the t ∈ T and simply assume that we have
followed the recursive definition of the strategy in defining {aβ : β < α}. Recall
that we have a fixed sequence S = {Sξ : ξ ∈ c} which enumerates [c]ω. Player
I’s choice will always consist of a partition of the form {bα0 ,

⋃
`>0 b

α
` }. For ` > 0,

bα` will be a member of Bα \ uα and the sequence will converge to uα. So long as
we have ensured that, in addition, bα0 is not a member of Bα, then items (1) and
(2) of Lemma 3.2 will be fulfilled. It will be convenient to use the notation from
Stone duality theory. For b ∈ Bα, the standard notation b∗ denotes the clopen
set of ultrafilters on Bα which have b as a member. If β ≤ α and b ∈ Bβ \ uβ ,
then we may interpret b∗ as the set of ξ < β such that b ∈ xξ. It is important to
observe that this is unambiguous, since if β ≤ ξ, then uβ ⊂ xξ and so b /∈ xξ for all
b ∈ Bβ \ uβ . For each α, let Xα denote the space we obtain on the set α by using
the family {b∗ : b ∈ Bα \ uα} as a base for the open sets.

Definition 4.1. Let Γα be the set of ξ ∈ α that xξ does not have a countable filter
base. Set Λα to be the family of limit ordinals λ of cofinality ω which are less than
α+ 1 satisfying that for each a /∈ uα, Γα \ a∗ is cofinal in λ.

We observe that for β < α, Γβ = Γα ∩ β and Λβ ⊃ Λα ∩ β. If aα is set to be
bα0 , then refer to this as that α is Case 0. Otherwise, aα =

⋃
`>0 b

α
` , and we are in

Case 1. In each case we are assuming that the condition (1) and (2) of Lemma 3.2
are fulfilled.

Claim 1. If α is Case 0, then xα has a countable base given by {
⋃
`>n b

α
` : n ∈ ω}.

Claim 2. If α is Case 1, in particular if α ∈ Γα+1, then Xα+1 is σ-compact.

Proof. We have that Xα+1 is covered by the collection {(bα` )
∗

: ` ∈ ω}. �

Next we have the very useful observation.

Lemma 4.2. For each γ ∈ Γα, Λα ∩ γ is countable.

Proof. We prove this by induction on γ ∈ Γα. So assume that Λα ∩ δ is countable
for all δ ∈ Γα ∩ γ and that Λα ∩ γ is uncountable. Let ζ ≤ γ be minimal such that
Λα ∩ ζ is uncountable. Since Γα is cofinal in each λ ∈ Λα, we also have that Γα ∩ ζ
cofinal in ζ. Let γ′ be the minimal element of Γα \ ζ, hence ζ ≤ γ′ ≤ γ. The key
to the proof is that with this minimal γ′ being in Γγ′+1 ⊂ Γα results in a drastic
change in the membership of Λγ′ ⊃ Λα ∩ ζ from that of Λδ for δ < γ′ as we now
discuss.

We claim that b∗ ∩ ζ is bounded in ζ for all b ∈ Bγ′ \ uγ′ . This is immediate for
all b ∈ Bζ \ uζ since Bζ is coherently minimal. If ζ < γ′, then we prove this for
b ∈ Bβ \ uβ by induction on β ∈ [ζ, γ′]. For limit β there is nothing to check, so
assume it holds for some β < γ′ and we check β + 1. By our assumptions on the

game strategy, we will have that (bβ` )∗ ∩ ζ is bounded in ζ for each ` > 0. It should
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be clear that if β /∈ Γα, then it must be the case that aβ = bβ0 , and that a∗β contains

a final segment of ζ. For each b ∈ Bβ+1 \ uβ+1 we will have that b ∩ aβ will be a
member of Bβ \ uβ and so the induction hypothesis still holds.

Now since we have that γ′ ∈ Γα, this time it follows that aγ′ is chosen to be⋃
`>0 b

γ′

` . In addition, we have that a = (ω \ aγ′) is not in uγ′+1 (note also that
a /∈ uα), and a∗ contains a final segment of ζ. Fix any δ < ζ so that ζ \ a∗ is
contained in δ. Of course this implies that (Γα \ a∗) ∩ ζ, and thus Λα ∩ ζ, is also
contained in δ + 1. This contradicts the original assumption that Λα ∩ ζ is cofinal
in ζ. �

Now we define the extra induction hypotheses we impose when defining our
sequence. For each λ such that λ ∈ Λλ, we select a countable family, Zλ, of
pairwise disjoint compact Gδ’s of Xλ; and we will impose inductive assumptions on
this family that must be maintained. Of course, in the case that S(Bα) \ {uα} is
sequentially compact, there is no need to proceed.

Definition 4.3. b ∈ Bα \ uα is Zλ-saturated (for λ ≤ α) if Zλ refines the cover
{b∗, Xα \ b∗}. A Zλ-saturated open set from Bα will always mean a set of the form
b∗ for some b ∈ Bα \ uα which is Zλ-saturated.

Definition 4.4. Inductive Hypotheses (IHα) on the family of {Zλ : λ < α} at stage
α for all β < α and λ < α:

(1) Zλ is a countable family of pairwise disjoint compact Gδ’s of Xλ whose
union covers Γλ,

(2) λ ∈ Λλ implies each Z ∈ Zλ has a base of Zλ-saturated open subsets from
Bλ,

(3) for each ` > 0, bβ` must be chosen to be Zλ-saturated if λ ∈ Λβ,
(4) if λ ∈ Λα, and β /∈

⋃
Zλ, then xβ has a base of Zλ-saturated elements from

Bβ+1,
(5) if λ′ < λ are both in Λλ then Zλ′ ⊂ Zλ, and for Z ∈ Zλ \ Zλ′ , Z ∩ λ′ is

empty.

(6) if Λα is uncountable, then there is λ̄β ∈ Λα such that (bβ` )∗ ∩ (
⋃

Λα) ⊂ λ̄β.

Now we consider “stage α”. We first define Zα and then give the construction
of the sequence {bα` : ` ∈ ω} along with the selection of λ̄α. We then have to check
that regardless of the choice of aα from {bα0 ,

⋃
{bα` : ` > 0}} that IHα+1 and the

conditions in Lemma 3.2 will hold. If α /∈ Λα, for example if α is not a limit with
cofinality ω, then Zα is empty. If α has countable cofinality and α ∈ Λα, then we
have two cases when making the choice of Zα. Let µα be the supremum of Λα\{α}.

Lemma 4.5. If Λα is countable and cofinal in α, then we set Zα to be
⋃
{Zλ′ :

λ′ ∈ Λα}, and the hypotheses of Definition 4.4 will hold.

Proof. It bears checking that the family is pairwise disjoint. Suppose λ1 < λ2 are
each in Λα and Z1 ∈ Zλ1 and Z2 ∈ Zλ2 \ {Z1}. By definition, λ1 ∈ Λα, which as
mentioned above, means that λ1 ∈ Λλ2 . Therefore, by induction hypothesis (5),
Zλ1
⊂ Zλ2

and we have by (1) that Z1 ∩ Z2 is empty. Properties (1)–(5) are now
immediate by the inductive assumptions. Of course (6) is vacuous. �

Now for the construction of the family Zα in the case that α ∈ Λα and µα < α.
Recall that Xγ+1 is σ-compact and open in Xα for each γ ∈ Γα. In fact, as
stated in Claim 2 above, {(bγ` )∗ : ` ∈ ω} is a cover of Xγ+1 by compact open sets.
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Furthermore, if γ > µα, this collection is Zµα-saturated. Furthermore, since Γα
has a countable subset cofinal in µα, Xµα is also σ-compact and open in Xα.

Let {γn : n ∈ ω} be any cofinal subsequence of Γα \ µα. Now we have that
{(bγn` )∗ : n < ω, ` < ω} is a cover of Xα \Xµα by compact Zµα -saturated open sets.
Fix an enumeration, {cm : m ∈ ω}, of this collection. Set d0 = c0 and, for each
m > 0, let dm = cm \ (c0 ∪ · · · ∪ cm−1). Finally, for each m, let Zm = dm \Xµα – a
Gδ. Evidently each Zm has a countable base of Zµα-saturated open sets.

Therefore {Zm : m ∈ ω} is a pairwise disjoint sequence of compact Gδ subsets of
Xα. In addition Zn∩Xµα is empty for all n. Therefore, Zα = Zµα∪{Zm : m ∈ ω} is
a sequence that fulfills item (1) of IHα+1 for λ = α. Items (2) and (5) of IHα+1 are
also immediate. Similarly there are no new instances of items (3) or (6) to check.
We must verify that (4) of IHα+1 is satisfied for λ = α. Since µα ∈ Λα, conditions
(2) and (4) applied to λ = µα ensures that Xµα can be covered by Zµα -saturated
sets. Since Xα \Xµα is contained in

⋃
m Zm, we have that item (4) holds.

This completes the construction of Zα. The next step is to examine the choice
of {bα` : ` ∈ ω}. Recall that S(Bα) \ {uα} is not sequentially compact, and we are
handed the sequence {ξαn : n ∈ ω} ⊂ α from the listing S which (equivalent to
converging to uα) has no limit points in Xα. If Λα is uncountable, then, by Lemma
4.2, it has order type ω1 and µα is the supremum. If Λα is countable, we let λ̄α
denote its maximum element. If Λα is uncountable we will define some λ̄α ∈ Λα to
fulfill the condition (6) of IHα+1.

For each n, if there is any λn ∈ Λα such that xξαn ∈ Zn for some Zn ∈ Zλn ,
then, by Induction Hypothesis (5) and (1), there is a unique such Zn. If there
are infinitely many n such that such a Zn and λn exists, then we may pass to
a subsequence and assume Zn exists for each n. Furthermore, since each Zn is
compact and the sequence {ξαn : n ∈ ω} has no limit in Xα, we may assume that the
Zn’s are pairwise distinct. If Λα is countable then we have, by induction hypothesis
(5), that {Zn : n ∈ ω} ⊂ Zλ̄α . Otherwise, again by passing to a subsequence, if

we let λ̄α ∈ Λα be minimal such that λn ≤ λ̄α for infinitely many n, then we may
assume that {Zn : n ∈ ω} ⊂ Zλ̄α . In either case, by inductive hypothesis (2), we
have that for each n, Zn has a base of Zλ̄α -saturated sets from Bλ̄α .

Next we assume, by passing to a subsequence, that no ξαn is a member of any
element of

⋃
{Zλ : λ ∈ Λα}. We can adopt a uniform notation by setting Zn = {ξαn}.

If there are infinitely many n for which ξαn < λn for some λn ∈ Λα, then we may
suppose there is a value λ̄α ∈ Λα such that ξαn < λ̄α for all n. Finally, we are
faced with the case that Λα is uncountable and µα < ξαn for all n. We then apply
induction hypothesis (6) in turn for β = ξαn for each n, and are able to choose

λ̄α ∈ Λα such that for all ` > 0 and all β ∈ {ξαn : n ∈ ω}, (bβ` )∗ ∩ µα ⊂ λ̄α.
In each of the above cases, we have selected a value λ̄α ∈ Λα satisfying that each

Zn has a descending base, generated by {cαn,k : k ∈ ω} ⊂ Bα \uα, of Zλ̄α -saturated

open sets from Bα, each satisfying that (cαn,k)∗∩λ is contained in λ̄α for all λ ∈ Λα.

Since the original sequence {ξαn : n ∈ ω} has no limit points, we may assume that,
for each n, (cαn,0)∗ ∩ {ξαm : m ∈ ω} = {ξαn}. Furthermore, since these bases are all
Zλ̄α -saturated, it follows that (cαn,0)∗ ∩ Zm = ∅ for all m 6= n. Therefore, we can
also assume that {cαn,0 : n ∈ ω} is a pairwise disjoint family. For each γ < α, there
is a bγ ∈ xγ ∩Bα \uα and a function fγ ∈ ωω such that bγ ∩ cαn,fγ(n) = ∅ for all but



AN EFIMOV SPACE FROM MARTIN’S AXIOM 9

at most one n. Using that α < b, we may choose f ∈ ωω so that fγ is mod finite
below f for all γ ∈ α.

Finally we define our sequence {bα` : ` > 0} by setting bα` = cα2`,f(2`); and we let

bα0 be the complement of
⋃
{bα` : ` > 0}. Naturally for each n ∈ ω (after all the

reductions),
⋃
{(bα` )∗ : ` > 0} ∩ {ξα2n, ξα2n+1} = {ξα2n}. This ensures that item (3) of

Lemma 3.2 will be fulfilled in this strategy. We check that {bα` : ` > 0} converges
to uα. Let a ∈ uα and consider the compact set K = (ω \ a)∗ ⊂ Xα. For each
γ ∈ K, since fγ <

∗ f , we have chosen the element bγ ∈ xγ ∩ Bα \ uα such that
bγ ∩ bα` = ∅ for all but finitely many `. Since K is compact, there is a finite cover
of K by elements of {(bγ)∗ : γ ∈ K}. Thus there is an n such that bα` ⊂ a for all
` > n.

By the construction, each member of the sequence {bα` : 0 < ` ∈ ω} is Zλ̄α -
saturated. In case that Λα is countable, it is immediate that item (3) of the In-
duction Hypotheses IHα+1 is satisfied. If λ̄α < µα, then item (5) of the Induction
Hypotheses combined with the fact that (bα` )∗ ∩ µα ⊂ λ̄α ensures that item (3)
holds in this case as well. Of course the choice of λ̄α also ensures that item (6) of
the Induction Hypotheses also holds for β = α.

The only thing remaining is to prove that induction hypothesis (4) will hold for
IHα+1. Also this only needs to be checked for β = α.

Lemma 4.6. If aα is chosen to be bα0 , then the induction hypotheses (4) of IHα+1

holds.

Proof. In case 0, the filter base for xα is {
⋃
`>n b

α
` : n ∈ ω} and Λα+1 = Λα. This

collection is Zλ̄α -saturated. Furthermore, for λ ∈ Λα and ` > 0, (bα` )∗ ∩ λ ⊂ λ̄α,
hence, by inductive hypothesis (3), this collection is Zλ-saturated for all λ ∈ Λα. �

Lemma 4.7. If aα is chosen to be
⋃
{bα` : ` > 0}, then the induction hypotheses

(4) of IHα+1 holds.

Proof. Let Bα denote the set of elements of Bα \uα which are Zλ̄α -saturated. The
filter xα has bα0 as an element and (bα0 )∗ is a compact open subset of Xα+1. By
construction bα0 is Zλ-saturated for all λ ∈ Λα. By induction hypotheses (2) and
(4), Xα+1\{xα} can be expressed as a union of Zλ̄α-saturated sets. Thus the family
{(bα0 \ b) : b ∈ Bα} is a base for xα which is Zλ̄α -saturated. We must show that it is

Zλ-saturated for all λ ∈ Λα+1. If Λα is countable, then λ̄α is the maximum element
of Λα, and we are done by induction hypothesis (5). Otherwise, in this so-called
Case 1, we have a potentially big change from Λα to Λα+1. By construction, the
interval (λ̄α, µα) is contained in (bα0 )∗. In particular, (Γα+1 \ (bα0 )∗) \ λ̄α is finite.
This implies that Λα+1 is contained in Λα∩ λ̄α+1; which completes the verification
of induction hypothesis (4). �
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