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Plan for today

I’ll be reporting on the following papers:

▶ Assaf Rinot and R.S., A guessing principle from a Souslin tree,
with applications to topology, accepted to Topology Appl,
2023.

▶ Assaf Rinot, R.S and Stevo Todorčević, A new small Dowker
space, accepted to Periodica Mathematica Hungarica, 2023.
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Motivation

A standard question in mathematics asks what properties are
preserved under taking products.

• The product of two regular topological spaces is regular.
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Motivation

A standard question in mathematics asks what properties are
preserved under taking products.

• The product of two regular topological spaces is regular.

In contrast, the Sorgenfrey line Rl is a regular Lindelöf (hence
normal) space whose square is not normal (hence, non-Lindelöf).
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Motivation

The property of a space X called binormal, that the product of X
with the closed unit interval be normal, had long been a standard
hypothesis for certain homotopy extension theorems.

This raise the question:

Question (C. H. Dowker, 1951)

Is there a normal topological space whose product with the unit
interval is not normal?

Such a space is called Dowker .
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The Dowker space problem

Theorem (C. H. Dowker, 1951)

A normal space X is Dowker iff there exists a ⊆-decreasing
sequence ⟨Dn | n < ω⟩ of closed sets s.t.:

1.
⋂

n<ω Dn = ∅;
2. if, for every n < ω, Un is some open set covering Dn, then⋂

n<ω Un ̸= ∅.
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The Dowker space problem (cont.)

Theorem (M. E. Rudin, 1955)

If there is a Souslin tree, then there is a Dowker space of size ℵ1.

Curiously, the existence of a Souslin tree was only shown to be
consistent around 1967.

Does the existence of a Dowker space follow from ZFC?
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The Dowker space problem (cont.)

Theorem (M. E. Rudin, 1972)

There exists a Dowker space of size (ℵω+1)
ℵ0 .

https://yewtu.be/TL-QWMr7-9E
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The Dowker space problem (cont.)

Theorem (Balogh, 1996)

There exists a Dowker space of size 2ℵ0 .

Theorem (Kojman-Shelah, 1998)

There exists a Dowker space of size ℵω+1.

Whose space is actually smaller?

Conjecture (M. E. Rudin, 1990)

There exists a Dowker space of size ℵ1.
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The small Dowker space problem

The list of known sufficient conditions for the existence of a
Dowker space of size ℵ1 include

CH (Juhász, Kunen and Rudin,
1976), ♣ (de Caux, 1977), a Luzin set (Todorčević, 1989), and a
certain tailored instance of a strong club-guessing principle
(Hernńdez-Hernńdez and Szeptycki, 2009).

In [54], we present a new sufficient condition, namely, the following
weakening of the continuum hypothesis:

Definition (Broverman-Ginsburg-Kunen-Tall, 1978)

|• asserts there is a list ⟨Aα | α < ω1⟩ of infinite subsets of ω1 such
that for every uncountable B ⊆ ω1, there is α < ω1 with Aα ⊆ B.
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certain tailored instance of a strong club-guessing principle
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Diagram of implications

Along the way, we unify the above-mentioned results, factoring the
Dowker space constructions through a new ‘guessing’ principle that
we call ♣AD.

♢

♣ CH Souslin tree

|• Luzin set

♣AD

Dowker space of size ℵ1 ¬PFA

10 / 28



♣AD

We denote by L the set of all nonzero limit countable ordinals.
For every infinite ordinal β < ω1, we denote by αβ the unique
α ∈ L such that α ≤ β < α+ ω.

Definition ([48])

♣AD asserts there is a matrix ⟨Aα,n | α ∈ L, n < ω⟩ such that:

0. for every α ∈ L, ⟨Aα,n | n < ω⟩ consists of pairwise disjoint
cofinal subsets of α;

1. for every uncountable B ⊆ ω1, there is α ∈ L such that
sup(Aα,n ∩ B) = α for all n < ω;

2. for all (α, n) ̸= (β,m), sup(Aα,n ∩ Aβ,m) < α.
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♣AD

1. for every uncountable B ⊆ ω1, there is α ∈ L such that
sup(Aα,n ∩ B) = α for all n < ω;

ω1

α

Aα,n

B

B ∩ Aα,n
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♣AD

2. for all (α, n) ̸= (β,m), sup(Aα,n ∩ Aβ,m) < α.

ω1

β

α

Aα,n

Aβ,m

Aα,n ∩ Aβ,m

Disjointifying initial segments

For every ϵ < ω1, there exists a map f : (L ∩ ϵ)× ω → ϵ such that

1. f (α, n) < α;

2. {Aα,n \ f (α, n) | (α, n) ∈ dom(f )} is a pairwise disjoint family.
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Constructing the space
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A few promises
Our space X = (X , τ) will have underlying set ω1 × ω.
For all B ⊆ X and j < ω, we write πj(B) := {ξ < ω1 | (ξ, j) ∈ B}
for its j th-section.

ω1

ω1 × {1}

ω1

ω1 × {0}

ω1

ω1 × {2}

. . .B

15 / 28



A few promises
Our space X = (X , τ) will have underlying set ω1 × ω.
For all B ⊆ X and j < ω, we write πj(B) := {ξ < ω1 | (ξ, j) ∈ B}
for its j th-section.
For each x ∈ X , we shall define a weak neighborhood base Nx , and
then a subset U ⊆ X will be declared to be τ -open iff for every
x ∈ U there is N ∈ Nx with N ⊆ U.
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of (β + 1) × (n + 1), and for every j ≤ n, πj(N \ {x}) will be a
cofinal subset of αβ.

Consequence 1

For all δ < ω1 and n < ω, δ × n is τ -open, and Dn := ω1 × (ω \ n)
is τ -closed. ⟨Dn | n < ω⟩ is ⊆-decreasing, and

⋂
n<ω Dn = ∅.

The first part implies that X is not Lindelöf.
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For every x = (β, n) in X \ (ω×ω), each N ∈ Nx will be a subset

of (β + 1) × (n + 1), and for every j ≤ n, πj(N \ {x}) will be a
cofinal subset of αβ.

Consequence 2: The domino effect

For every (α, j) ∈ L× ω, the τ -closure of the strip [α, α+ ω)× {j}
covers the following tail of ω1 times a tail of ω:

(ω1 \ (α+ ω))× (ω \ j).
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ω1

ω1 × {j}

α

α+ ω

α+ ω2

ω1

ω1 × {0}

. . .

ω1

ω1 × {j + 1}

. . .[α, α+ ω)× {j}

(ω1 \ (α+ ω))× (ω \ j)
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The actual construction

Re-index ⟨Aα,n | α ∈ L, n < ω⟩ as ⟨Aj
β,n | ω ≤ β < ω1, j ≤ n < ω⟩

such that, for every α ∈ L,

{Aα,n | n < ω} 1−1
== {Aj

β,n | α ≤ β < α+ ω, j ≤ n < ω}.

So, each Aj
β,n is a cofinal subset of αβ.

▶ For x ∈ ω × ω, let Nx = {{x}}.
▶ For x = (β, n) in X \ ω × ω, let Nx := {Nϵ

x | ϵ < αβ}, where

Nϵ
x := {x} ∪

⋃
j≤n

((Aj
β,n \ ϵ)× {j}).
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▶ For x = (β, n) in X \ ω × ω, let Nx := {Nϵ

x | ϵ < αβ}, where

Nϵ
x := {x} ∪

⋃
j≤n

((Aj
β,n \ ϵ)× {j}).

*The epsilons are there to ensure that the outcome space X is T1.
Indeed,

⋂
Nx = {x}.
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β,n \ ϵ)× {j}).

and πj(N
ϵ
x \ {x}) = Aj

β,n \ ϵ is a cofinal subset of αβ, as promised.
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The actual construction

Re-index ⟨Aα,n | α ∈ L, n < ω⟩ as ⟨Aj
β,n | ω ≤ β < ω1, j ≤ n < ω⟩
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x | ϵ < αβ}, where

Nϵ
x := {x} ∪

⋃
j≤n

((Aj
β,n \ ϵ)× {j}).

Consequence 3

Given (β, n) ∈ X \ ω × ω and B ⊆ X , if there exists j < ω such
that sup(Aj

β,n ∩ πj(B)) = αβ, then (β, n) ∈ cl(B).
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Verifications

Lemma
Every τ -closed uncountable B ⊆ X contains a ‘tail’, i.e., there is
(γ, j) ∈ L× ω such that (ω1 \ γ)× (ω \ j) ⊆ B.

Proof. Given an uncountable B ⊆ X , find the least j < ω such that
πj(B) is uncountable.
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such that sup(Aα,n ∩ πj(B)) = α for all n < ω.

In particular, sup(Aj
β,j∩πj(B)) = α for all β ∈ [α, α+ω). So, the τ -

closure of the countable set Y := B∩(α×{j}) covers [α, α+ω)×{j}.
By the domino effect, the τ -closure of Y moreover covers

(ω1 \ (α+ ω))× (ω \ j).

The above proof shows that the space is hereditary separable, so
altogether X is an S-space.
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Verifications (cont.)

To verify normality, let K0,K1 be two disjoint τ -closed subsets of
X .

As any uncountable closed set contains a ‘tail’, at least one of
the sets must be countable.
So, one of these sets is covered by ϵ× ω for some ϵ ∈ L.
Now, construct two disjoint τ -open sets V0,V1 using the feature of
disjointifying initial segments.

Finally, to prove that X is Dowker, recall that each
Dn := ω1 × (ω \ n) is an uncountable τ -closed set, and that⋂

n<ω Dn = ∅. We need to show that, if, for every n < ω, Un is
some open set covering Dn, then

⋂
n<ω Un ̸= ∅.

For each n < ω, Fn := X \ Un is a closed set disjoint from Dn.
Since Dn is uncountable, Fn must be countable. So

⋃
n<ω Fn is

countable, and hence
⋂

n<ω Un = X \
⋃

n<ω Fn is nonempty. ■
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The consistency of the negation of our guessing principle

Theorem
Suppose that PIDℵ1 holds and b > ω1. Then, for any stationary
S ⊆ ω1, ♣AD({S}, 1, 1) fails.
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Combinatorial principles

An ideal I consisting of countable sets is said to be a P-ideal iff
every countable family of sets in the ideal admits a pseudo-union in
the ideal. That is, for every sequence ⟨Xn | n < ω⟩ of elements of
I, there exists X ∈ I such that Xn \ X is finite for all n < ω.

Definition (Todorčević)

The P-ideal dichotomy (PID) asserts that for every P-ideal I
consisting of countable subsets of some set Z, either:

1. there is an uncountable B ⊆ Z such that [B]ℵ0 ⊆ I, or
2. there is a sequence ⟨Bn | n < ω⟩ such that

⋃
n<ω Bn = Z and,

for each n < ω, [Bn]
ℵ0 ∩ I = ∅.

We denote by PIDℵ1 the restriction of the above principle to
Z := ω1. This special case was first introduced and studied by
Abraham and Todorčević.
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Combinatorial principles

Theorem
Suppose that PIDℵ1 holds and b > ω1. Then, for any stationary
S ⊆ ω1, ♣AD({S}, 1, 1) fails.

Proof. Towards a contradiction, suppose that S ⊆ ω1 is stationary,
and that A⃗ = ⟨Aα | α ∈ S⟩ is a ♣AD({S}, 1, 1)-sequence. Let

I := {X ∈ [ω1]
≤ℵ0 | ∀α ∈ acc(ω1) ∩ S [Aα ∩ X is finite]}.

It is clear that I is an ideal.
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Combinatorial principles

I is a P-ideal.

Proof.
Let X⃗ = ⟨Xn | n < ω⟩ be a sequence of elements of I.
We need to find a pseudo-union of X⃗ that lies in I.
As I is downward closed, we may assume that ⟨Xn | n < ω⟩
consists of pairwise disjoint sets.
Fix a bijection e : ω ↔

⊎
n<ω Xn. Then, for all α ∈ S , define a

function fα : ω → ω via

fα(n) := min{m < ω | Xn ∩ Aα ⊆ e“m}.

As b > ω1, let us fix a function f : ω → ω such that fα <∗ f for all
α ∈ S .
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Combinatorial principles

Set X :=
⊎
{Xn \ e[f (n)] | n < ω}.

Clearly, for every n < ω, Xn \ X is a subset of e[f (n)], and, in
particular, it is finite.
Towards a contradiction, suppose that X /∈ I.
Fix α ∈ acc(ω1) ∩ S such that Aα ∩ X is infinite.
Since X ⊆

⊎
n<ω Xn, but Aα ∩ Xn is finite for all n < ω, we may

find a large enough n < ω such that Aα ∩ X ∩ Xn ̸= ∅ and
fα(n) < f (n).
Pick β ∈ Aα ∩ X ∩ Xn.
By the definition of fα, β ∈ e[fα(n)]. But fα(n) < f (n), so that
β ∈ e[fα(n)] ⊆ e[f (n)], contradicting the fact that β ∈ X .

fα(n) := min{m < ω | Xn ∩ Aα ⊆ e“m}.
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Combinatorial principles

Let B ⊆ ω1 be uncountable.

1. There exists X ∈ [B]ℵ0 with X /∈ I;
2. There exists X ∈ [B]ℵ0 with X ∈ I.

Proof. As B is uncountable,
G := {α ∈ acc(ω1) ∩ S | sup(Aα ∩ B) = α} is stationary.

(1) Fix arbitrary α ∈ G . Then X := Aα ∩ B is an element of
[B]ℵ0 \ I.

(2) Let ⟨αn | n < ω⟩ be some increasing sequence of elements of
G . For every n < ω, let ⟨αm

n | m < ω⟩ be the increasing
enumeration of some cofinal subset of Aαn ∩ B.
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Combinatorial principles

Furthermore, we require that, for all n < ω, αn < α0
n+1.
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α ∈ S .
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n+1.

Set β := supn<ω αn.

As A⃗ is an AD-ladder system, for every α ∈ S ∩acc(ω1)\β, we may
define a function fα : ω → ω via:

fα(n) := min{m < ω | Aαn ∩ Aα ⊆ αm
n }.

As b > ω1, let us fix a function f : ω → ω such that fα <∗ f for all
α ∈ S .
Set X := {αf (n)

n | 0 < n < ω}. For every n < ω, the interval
(αn, αn+1) contains a single element of X , so that X is a cofinal
subset of β with otp(X ) = ω.
In particular, X ∈ [B]ℵ0 .
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Combinatorial principles

Towards a contradiction, suppose that X /∈ I.
Fix α ∈ acc(ω1) ∩ S such that Aα ∩ X is infinite.

Clearly, α ≥ β.
As fα <∗ f , we may find k < ω such that, for every integer n ≥ k ,
fα(n) < f (n).
As Aα ∩ X is infinite, let us now pick a positive integer n ≥ k such

that α
f (n)
n ∈ Aα.

fα(n) := min{m < ω | Aαn ∩ Aα ⊆ αm
n }.

Recalling that {αm
n | m < ω} ⊆ Aαn , we altogether infer that

α
f (n)
n ∈ Aαn ∩ Aα ⊆ α

fα(n)
n .

In particular, α
f (n)
n < α

fα(n)
n , contradicting the fact that

fα(n) < f (n).

Altogether, I is a P-ideal for which the two alternatives of PIDℵ1

fail. This is a contradiction.
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Thank you!

28 / 28


