Carolina Seminar 9/6/23

Roy Shalev, Bar-Ilan University

I'll be reporting on the following papers:

- Assaf Rinot and R.S., A guessing principle from a Souslin tree, with applications to topology, accepted to Topology Appl, 2023.
- Assaf Rinot, R.S and Stevo Todorčević, A new small Dowker space, accepted to Periodica Mathematica Hungarica, 2023.

A standard question in mathematics asks what properties are preserved under taking products.

A standard question in mathematics asks what properties are preserved under taking products.

• The product of two regular topological spaces is regular.

A standard question in mathematics asks what properties are preserved under taking products.

• The product of two regular topological spaces is regular.

In contrast, the Sorgenfrey line \mathbb{R}_l is a regular Lindelöf (hence normal) space whose square is not normal (hence, non-Lindelöf).

The property of a space $\mathbb X$ called binormal, that the product of $\mathbb X$ with the closed unit interval be normal, had long been a standard hypothesis for certain homotopy extension theorems.

The property of a space $\mathbb X$ called binormal, that the product of $\mathbb X$ with the closed unit interval be normal, had long been a standard hypothesis for certain homotopy extension theorems.

This raise the question:

The property of a space $\mathbb X$ called binormal, that the product of $\mathbb X$ with the closed unit interval be normal, had long been a standard hypothesis for certain homotopy extension theorems.

This raise the question:

Question (C. H. Dowker, 1951)

Is there a normal topological space whose product with the unit interval is not normal?

Such a space is called **Dowker**.

The Dowker space problem

Theorem (C. H. Dowker, 1951)

A normal space X is Dowker iff there exists a \subseteq -decreasing sequence $\langle D_n \mid n < \omega \rangle$ of closed sets s.t.:

1. $\bigcap_{n < \omega} D_n = \emptyset$; 2. if, for every $n < \omega$, U_n is some open set covering D_n , then $\bigcap_{n < \omega} U_n \neq \emptyset$.

Theorem (M. E. Rudin, 1955)

If there is a Souslin tree, then there is a Dowker space of size \aleph_1 .

Theorem (M. E. Rudin, 1955)

If there is a Souslin tree, then there is a Dowker space of size \aleph_1 .

Curiously, the existence of a Souslin tree was only shown to be consistent around 1967.

Theorem (M. E. Rudin, 1955)

If there is a Souslin tree, then there is a Dowker space of size \aleph_1 .

Curiously, the existence of a Souslin tree was only shown to be consistent around 1967.

Does the existence of a Dowker space follow from ZFC?

Theorem (M. E. Rudin, 1972) There exists a Dowker space of size $(\aleph_{\omega+1})^{\aleph_0}$.

https://yewtu.be/TL-QWMr7-9E

Theorem (Balogh, 1996) There exists a Dowker space of size 2^{\aleph_0} .

Theorem (Balogh, 1996) There exists a Dowker space of size 2^{\aleph_0} .

Theorem (Kojman-Shelah, 1998)

There exists a Dowker space of size $\aleph_{\omega+1}$.

Theorem (Balogh, 1996) There exists a Dowker space of size 2^{\aleph_0} .

Theorem (Kojman-Shelah, 1998) There exists a Dowker space of size $\aleph_{\omega+1}$.

Whose space is actually smaller?

Theorem (Balogh, 1996) There exists a Dowker space of size 2^{\aleph_0} . Theorem (Kojman-Shelah, 1998) There exists a Dowker space of size $\aleph_{\omega+1}$. Whose space is actually smaller? Conjecture (M. E. Rudin, 1990)

There exists a Dowker space of size \aleph_1 .

The list of known sufficient conditions for the existence of a Dowker space of size \aleph_1 include

The list of known sufficient conditions for the existence of a Dowker space of size \aleph_1 include CH (Juhász, Kunen and Rudin, 1976),

The list of known sufficient conditions for the existence of a Dowker space of size \aleph_1 include CH (Juhász, Kunen and Rudin, 1976), **4** (de Caux, 1977),

The list of known sufficient conditions for the existence of a Dowker space of size ℵ₁ include CH (Juhász, Kunen and Rudin, 1976), ♣ (de Caux, 1977), a Luzin set (Todorčević, 1989),

The list of known sufficient conditions for the existence of a Dowker space of size ℵ₁ include CH (Juhász, Kunen and Rudin, 1976), ♣ (de Caux, 1977), a Luzin set (Todorčević, 1989), and a certain tailored instance of a strong club-guessing principle (Hernńdez-Hernńdez and Szeptycki, 2009).

The list of known sufficient conditions for the existence of a Dowker space of size ℵ₁ include CH (Juhász, Kunen and Rudin, 1976), ♣ (de Caux, 1977), a Luzin set (Todorčević, 1989), and a certain tailored instance of a strong club-guessing principle (Hernńdez-Hernńdez and Szeptycki, 2009).

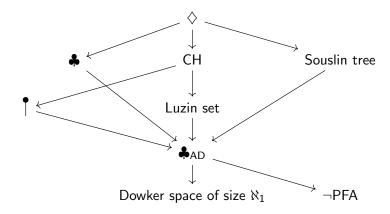
In [54], we present a new sufficient condition, namely, the following weakening of the continuum hypothesis:

Definition (Broverman-Ginsburg-Kunen-Tall, 1978)

asserts there is a list $\langle A_{\alpha} \mid \alpha < \omega_1 \rangle$ of infinite subsets of ω_1 such that for every uncountable $B \subseteq \omega_1$, there is $\alpha < \omega_1$ with $A_{\alpha} \subseteq B$.

Diagram of implications

Along the way, we unify the above-mentioned results, factoring the Dowker space constructions through a new 'guessing' principle that we call \clubsuit_{AD} .



We denote by L the set of all nonzero limit countable ordinals. For every infinite ordinal $\beta < \omega_1$, we denote by α_β the unique $\alpha \in L$ such that $\alpha \leq \beta < \alpha + \omega$.

We denote by L the set of all nonzero limit countable ordinals. For every infinite ordinal $\beta < \omega_1$, we denote by α_β the unique $\alpha \in L$ such that $\alpha \leq \beta < \alpha + \omega$.

Definition ([48])

 A_{AD} asserts there is a matrix $\langle A_{\alpha,n} \mid \alpha \in L, n < \omega \rangle$ such that:

0. for every $\alpha \in L$, $\langle A_{\alpha,n} \mid n < \omega \rangle$ consists of pairwise disjoint cofinal subsets of α ;

We denote by L the set of all nonzero limit countable ordinals. For every infinite ordinal $\beta < \omega_1$, we denote by α_β the unique $\alpha \in L$ such that $\alpha \leq \beta < \alpha + \omega$.

Definition ([48])

 A_{AD} asserts there is a matrix $\langle A_{\alpha,n} \mid \alpha \in L, n < \omega \rangle$ such that:

- 0. for every $\alpha \in L$, $\langle A_{\alpha,n} | n < \omega \rangle$ consists of pairwise disjoint cofinal subsets of α ;
- 1. for every uncountable $B \subseteq \omega_1$, there is $\alpha \in L$ such that $\sup(A_{\alpha,n} \cap B) = \alpha$ for all $n < \omega$;

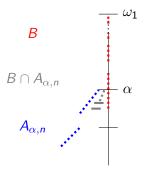
We denote by L the set of all nonzero limit countable ordinals. For every infinite ordinal $\beta < \omega_1$, we denote by α_β the unique $\alpha \in L$ such that $\alpha \leq \beta < \alpha + \omega$.

Definition ([48])

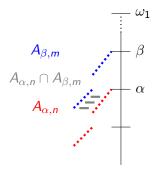
 A_{AD} asserts there is a matrix $\langle A_{\alpha,n} \mid \alpha \in L, n < \omega \rangle$ such that:

- 0. for every $\alpha \in L$, $\langle A_{\alpha,n} | n < \omega \rangle$ consists of pairwise disjoint cofinal subsets of α ;
- 1. for every uncountable $B \subseteq \omega_1$, there is $\alpha \in L$ such that $\sup(A_{\alpha,n} \cap B) = \alpha$ for all $n < \omega$;
- 2. for all $(\alpha, n) \neq (\beta, m)$, $\sup(A_{\alpha,n} \cap A_{\beta,m}) < \alpha$.

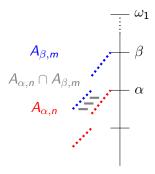
1. for every uncountable $B \subseteq \omega_1$, there is $\alpha \in L$ such that $\sup(A_{\alpha,n} \cap B) = \alpha$ for all $n < \omega$;



2. for all $(\alpha, n) \neq (\beta, m)$, $\sup(A_{\alpha,n} \cap A_{\beta,m}) < \alpha$.



2. for all $(\alpha, n) \neq (\beta, m)$, $\sup(A_{\alpha,n} \cap A_{\beta,m}) < \alpha$.



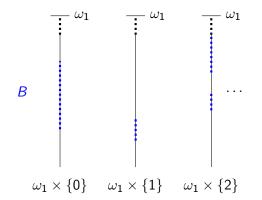
Disjointifying initial segments

For every $\epsilon < \omega_1$, there exists a map $f : (L \cap \epsilon) \times \omega \to \epsilon$ such that

1. $f(\alpha, n) < \alpha$; 2. $\{A_{\alpha,n} \setminus f(\alpha, n) \mid (\alpha, n) \in \text{dom}(f)\}$ is a pairwise disjoint family.

Constructing the space

Our space $\mathbb{X} = (X, \tau)$ will have underlying set $\omega_1 \times \omega$. For all $B \subseteq X$ and $j < \omega$, we write $\pi_j(B) := \{\xi < \omega_1 \mid (\xi, j) \in B\}$ for its j^{th} -section.



Our space $\mathbb{X} = (X, \tau)$ will have underlying set $\omega_1 \times \omega$. For all $B \subseteq X$ and $j < \omega$, we write $\pi_j(B) := \{\xi < \omega_1 \mid (\xi, j) \in B\}$ for its j^{th} -section.

For each $x \in X$, we shall define a weak neighborhood base \mathcal{N}_x , and then a subset $U \subseteq X$ will be declared to be τ -open iff for every $x \in U$ there is $N \in \mathcal{N}_x$ with $N \subseteq U$.

Our space $\mathbb{X} = (X, \tau)$ will have underlying set $\omega_1 \times \omega$. For all $B \subseteq X$ and $j < \omega$, we write $\pi_j(B) := \{\xi < \omega_1 \mid (\xi, j) \in B\}$ for its j^{th} -section. For each $x \in X$, we shall define a weak neighborhood base \mathcal{N}_x , and then a subset $U \subseteq X$ will be declared to be τ -open iff for every

 $x \in U$ there is $N \in \mathcal{N}_x$ with $N \subseteq U$.

All $x \in \omega \times \omega$ will be isolated (so $\mathcal{N}_x = \{\{x\}\}\)$.

Our space $\mathbb{X} = (X, \tau)$ will have underlying set $\omega_1 imes \omega$.

For all $B \subseteq X$ and $j < \omega$, we write $\pi_j(B) := \{\xi < \omega_1 \mid (\xi, j) \in B\}$ for its j^{th} -section.

For each $x \in X$, we shall define a weak neighborhood base \mathcal{N}_x , and then a subset $U \subseteq X$ will be declared to be τ -open iff for every $x \in U$ there is $N \in \mathcal{N}_x$ with $N \subseteq U$.

All $x \in \omega \times \omega$ will be isolated (so $\mathcal{N}_x = \{\{x\}\}\)$.

For every $x = (\beta, n)$ in $X \setminus (\omega \times \omega)$, each $N \in \mathcal{N}_x$ will be a subset of $(\beta + 1) \times (n + 1)$.

A few promises

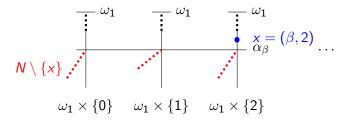
Our space $\mathbb{X} = (X, \tau)$ will have underlying set $\omega_1 \times \omega$.

For all $B \subseteq X$ and $j < \omega$, we write $\pi_j(B) := \{\xi < \omega_1 \mid (\xi, j) \in B\}$ for its j^{th} -section.

For each $x \in X$, we shall define a weak neighborhood base \mathcal{N}_x , and then a subset $U \subseteq X$ will be declared to be τ -open iff for every $x \in U$ there is $N \in \mathcal{N}_x$ with $N \subseteq U$.

All $x \in \omega \times \omega$ will be isolated (so $\mathcal{N}_x = \{\{x\}\}\)$.

For every $x = (\beta, n)$ in $X \setminus (\omega \times \omega)$, each $N \in \mathcal{N}_x$ will be a subset of $(\beta + 1) \times (n + 1)$, and for every $j \leq n$, $\pi_j(N \setminus \{x\})$ will be a cofinal subset of α_{β} .



A few promises

Our space $\mathbb{X} = (X, \tau)$ will have underlying set $\omega_1 imes \omega$.

For all $B \subseteq X$ and $j < \omega$, we write $\pi_j(B) := \{\xi < \omega_1 \mid (\xi, j) \in B\}$ for its j^{th} -section.

For each $x \in X$, we shall define a weak neighborhood base \mathcal{N}_x , and then a subset $U \subseteq X$ will be declared to be τ -open iff for every $x \in U$ there is $N \in \mathcal{N}_x$ with $N \subseteq U$.

All $x \in \omega \times \omega$ will be isolated (so $\mathcal{N}_x = \{\{x\}\}\)$.

For every $x = (\beta, n)$ in $X \setminus (\omega \times \omega)$, each $N \in \mathcal{N}_x$ will be a subset of $(\beta + 1) \times (n + 1)$, and for every $j \leq n$, $\pi_j(N \setminus \{x\})$ will be a cofinal subset of α_{β} .

Consequence 1

For all $\delta < \omega_1$ and $n < \omega$, $\delta \times n$ is τ -open, and $D_n := \omega_1 \times (\omega \setminus n)$ is τ -closed. $\langle D_n \mid n < \omega \rangle$ is \subseteq -decreasing, and $\bigcap_{n < \omega} D_n = \emptyset$. The first part implies that \mathbb{X} is not Lindelöf.

A few promises

Our space $\mathbb{X} = (X, \tau)$ will have underlying set $\omega_1 \times \omega$.

For all $B \subseteq X$ and $j < \omega$, we write $\pi_j(B) := \{\xi < \omega_1 \mid (\xi, j) \in B\}$ for its j^{th} -section.

For each $x \in X$, we shall define a weak neighborhood base \mathcal{N}_x , and then a subset $U \subseteq X$ will be declared to be τ -open iff for every $x \in U$ there is $N \in \mathcal{N}_x$ with $N \subseteq U$.

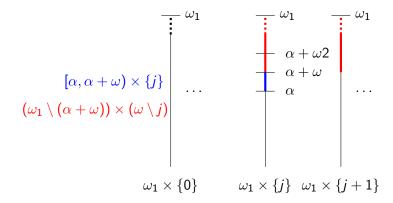
All $x \in \omega \times \omega$ will be isolated (so $\mathcal{N}_x = \{\{x\}\}\)$.

For every $x = (\beta, n)$ in $X \setminus (\omega \times \omega)$, each $N \in \mathcal{N}_x$ will be a subset of $(\beta + 1) \times (n + 1)$, and for every $j \leq n$, $\pi_j(N \setminus \{x\})$ will be a cofinal subset of α_{β} .

Consequence 2: The domino effect

For every $(\alpha, j) \in L \times \omega$, the τ -closure of the strip $[\alpha, \alpha + \omega) \times \{j\}$ covers the following tail of ω_1 times a tail of ω :

$$(\omega_1 \setminus (\alpha + \omega)) \times (\omega \setminus j).$$



Re-index $\langle A_{\alpha,n} \mid \alpha \in L, n < \omega \rangle$ as $\langle A_{\beta,n}^j \mid \omega \leq \beta < \omega_1, j \leq n < \omega \rangle$ such that, for every $\alpha \in L$,

$$\{A_{\alpha,n} \mid n < \omega\} \stackrel{1-1}{==} \{A^j_{\beta,n} \mid \alpha \leq \beta < \alpha + \omega, j \leq n < \omega\}.$$

Re-index $\langle A_{\alpha,n} \mid \alpha \in L, n < \omega \rangle$ as $\langle A_{\beta,n}^j \mid \omega \leq \beta < \omega_1, j \leq n < \omega \rangle$ such that, for every $\alpha \in L$,

$$\{A_{\alpha,n} \mid n < \omega\} \stackrel{1-1}{==} \{A^j_{\beta,n} \mid \alpha \leq \beta < \alpha + \omega, j \leq n < \omega\}.$$

So, each $A_{\beta,n}^{j}$ is a cofinal subset of α_{β} .

Re-index $\langle A_{\alpha,n} \mid \alpha \in L, n < \omega \rangle$ as $\langle A_{\beta,n}^j \mid \omega \leq \beta < \omega_1, j \leq n < \omega \rangle$ such that, for every $\alpha \in L$,

$$\{A_{\alpha,n} \mid n < \omega\} \stackrel{1-1}{==} \{A^j_{\beta,n} \mid \alpha \le \beta < \alpha + \omega, j \le n < \omega\}.$$

So, each $A_{\beta,n}^{j}$ is a cofinal subset of α_{β} .

▶ For $x \in \omega \times \omega$, let $\mathcal{N}_x = \{\{x\}\}$. ▶ For $x = (\beta, n)$ in $X \setminus \omega \times \omega$, let $\mathcal{N}_x := \{\mathcal{N}_x^{\epsilon} \mid \epsilon < \alpha_{\beta}\}$, where

$$N_x^{\epsilon} := \{x\} \cup \bigcup_{j \le n} ((\mathcal{A}_{\beta,n}^j \setminus \epsilon) \times \{j\}).$$

Re-index $\langle A_{\alpha,n} \mid \alpha \in L, n < \omega \rangle$ as $\langle A_{\beta,n}^j \mid \omega \leq \beta < \omega_1, j \leq n < \omega \rangle$ such that, for every $\alpha \in L$,

$$\{A_{\alpha,n} \mid n < \omega\} \stackrel{1-1}{==} \{A^j_{\beta,n} \mid \alpha \le \beta < \alpha + \omega, j \le n < \omega\}.$$

So, each $A_{\beta,n}^{J}$ is a cofinal subset of α_{β} .

► For $x \in \omega \times \omega$, let $\mathcal{N}_x = \{\{x\}\}.$ ► For $x = (\beta, n)$ in $X \setminus \omega \times \omega$, let $\mathcal{N}_x := \{N_x^{\epsilon} \mid \epsilon < \alpha_{\beta}\}$, where $N_x^{\epsilon} := \{x\} \cup \bigcup_{i \leq n} ((A_{\beta,n}^j \setminus \epsilon) \times \{j\}).$

*The epsilons are there to ensure that the outcome space X is T_1 . Indeed, $\bigcap \mathcal{N}_x = \{x\}$.

Re-index $\langle A_{\alpha,n} \mid \alpha \in L, n < \omega \rangle$ as $\langle A_{\beta,n}^j \mid \omega \leq \beta < \omega_1, j \leq n < \omega \rangle$ such that, for every $\alpha \in L$,

$$\{A_{\alpha,n} \mid n < \omega\} \stackrel{1-1}{==} \{A^j_{\beta,n} \mid \alpha \le \beta < \alpha + \omega, j \le n < \omega\}.$$

So, each $A_{\beta,n}^{J}$ is a cofinal subset of α_{β} .

► For $x \in \omega \times \omega$, let $\mathcal{N}_x = \{\{x\}\}$. ► For $x = (\beta, n)$ in $X \setminus \omega \times \omega$, let $\mathcal{N}_x := \{\mathcal{N}_x^{\epsilon} \mid \epsilon < \alpha_{\beta}\}$, where

$$N_x^{\epsilon} := \{x\} \cup \bigcup_{j \le n} ((A_{\beta,n}^{j} \setminus \epsilon) \times \{j\}).$$

and $\pi_j(N_x^{\epsilon} \setminus \{x\}) = A_{\beta,n}^j \setminus \epsilon$ is a cofinal subset of α_{β} , as promised.

Re-index $\langle A_{\alpha,n} \mid \alpha \in L, n < \omega \rangle$ as $\langle A_{\beta,n}^j \mid \omega \leq \beta < \omega_1, j \leq n < \omega \rangle$ such that, for every $\alpha \in L$,

$$\{A_{\alpha,n} \mid n < \omega\} \stackrel{1-1}{==} \{A^j_{\beta,n} \mid \alpha \le \beta < \alpha + \omega, j \le n < \omega\}.$$

So, each $A_{\beta,n}^{J}$ is a cofinal subset of α_{β} .

► For
$$x \in \omega \times \omega$$
, let $\mathcal{N}_x = \{\{x\}\}$.
► For $x = (\beta, n)$ in $X \setminus \omega \times \omega$, let $\mathcal{N}_x := \{\mathcal{N}_x^{\epsilon} \mid \epsilon < \alpha_{\beta}\}$, where
 $\mathcal{N}_x^{\epsilon} := \{x\} \cup \bigcup ((\mathcal{A}_{\beta,n}^j \setminus \epsilon) \times \{j\}).$

j≤n

Consequence 3

Given $(\beta, n) \in X \setminus \omega \times \omega$ and $B \subseteq X$, if there exists $j < \omega$ such that $\sup(A_{\beta,n}^{j} \cap \pi_{j}(B)) = \alpha_{\beta}$, then $(\beta, n) \in cl(B)$.

Lemma

Every τ -closed uncountable $B \subseteq X$ contains a 'tail', i.e., there is $(\gamma, j) \in L \times \omega$ such that $(\omega_1 \setminus \gamma) \times (\omega \setminus j) \subseteq B$. Proof. Given an uncountable $B \subseteq X$, find the least $j < \omega$ such that $\pi_i(B)$ is uncountable.

Lemma

Every τ -closed uncountable $B \subseteq X$ contains a 'tail', i.e., there is $(\gamma, j) \in L \times \omega$ such that $(\omega_1 \setminus \gamma) \times (\omega \setminus j) \subseteq B$. Proof. Given an uncountable $B \subseteq X$, find the least $j < \omega$ such that $\pi_j(B)$ is uncountable. By the guessing feature of \clubsuit_{AD} , pick $\alpha \in L$ such that $\sup(A_{\alpha,n} \cap \pi_j(B)) = \alpha$ for all $n < \omega$.

Lemma

Every τ -closed uncountable $B \subseteq X$ contains a 'tail', i.e., there is $(\gamma, j) \in L \times \omega$ such that $(\omega_1 \setminus \gamma) \times (\omega \setminus j) \subseteq B$. Proof. Given an uncountable $B \subseteq X$, find the least $j < \omega$ such that $\pi_j(B)$ is uncountable. By the guessing feature of A_{AD} , pick $\alpha \in L$ such that $\sup(A_{\alpha,n} \cap \pi_j(B)) = \alpha$ for all $n < \omega$. In particular, $\sup(A_{\beta,j}^j \cap \pi_j(B)) = \alpha$ for all $\beta \in [\alpha, \alpha + \omega)$. So, the τ closure of the countable set $Y := B \cap (\alpha \times \{j\})$ covers $[\alpha, \alpha + \omega) \times \{j\}$.

Lemma

Every τ -closed uncountable $B \subseteq X$ contains a 'tail', i.e., there is $(\gamma, j) \in L \times \omega$ such that $(\omega_1 \setminus \gamma) \times (\omega \setminus j) \subseteq B$. Proof. Given an uncountable $B \subseteq X$, find the least $j < \omega$ such that $\pi_j(B)$ is uncountable. By the guessing feature of \clubsuit_{AD} , pick $\alpha \in L$ such that $\sup(A_{\alpha,n} \cap \pi_j(B)) = \alpha$ for all $n < \omega$. In particular, $\sup(A_{\beta,j}^j \cap \pi_j(B)) = \alpha$ for all $\beta \in [\alpha, \alpha + \omega)$. So, the τ closure of the countable set $Y := B \cap (\alpha \times \{j\})$ covers $[\alpha, \alpha + \omega) \times \{j\}$. By the domino effect, the τ -closure of Y moreover covers

$$(\omega_1 \setminus (\alpha + \omega)) \times (\omega \setminus j).$$

Lemma

Every τ -closed uncountable $B \subseteq X$ contains a 'tail', i.e., there is $(\gamma, j) \in L \times \omega$ such that $(\omega_1 \setminus \gamma) \times (\omega \setminus j) \subseteq B$. Proof. Given an uncountable $B \subseteq X$, find the least $j < \omega$ such that $\pi_j(B)$ is uncountable. By the guessing feature of \clubsuit_{AD} , pick $\alpha \in L$ such that $\sup(A_{\alpha,n} \cap \pi_j(B)) = \alpha$ for all $n < \omega$. In particular, $\sup(A_{\beta,j}^j \cap \pi_j(B)) = \alpha$ for all $\beta \in [\alpha, \alpha + \omega)$. So, the τ closure of the countable set $Y := B \cap (\alpha \times \{j\})$ covers $[\alpha, \alpha + \omega) \times \{j\}$. By the domino effect, the τ -closure of Y moreover covers

$$(\omega_1 \setminus (\alpha + \omega)) \times (\omega \setminus j).$$

The above proof shows that the space is hereditary separable, so altogether X is an *S*-space.

To verify normality, let K_0, K_1 be two disjoint τ -closed subsets of X.

To verify normality, let K_0, K_1 be two disjoint τ -closed subsets of X. As any uncountable closed set contains a 'tail', at least one of the sets must be countable.

To verify normality, let K_0, K_1 be two disjoint τ -closed subsets of X. As any uncountable closed set contains a 'tail', at least one of the sets must be countable.

So, one of these sets is covered by $\epsilon \times \omega$ for some $\epsilon \in L$.

Now, construct two disjoint τ -open sets V_0 , V_1 using the feature of disjointifying initial segments.

To verify normality, let K_0, K_1 be two disjoint τ -closed subsets of X. As any uncountable closed set contains a 'tail', at least one of the sets must be countable.

So, one of these sets is covered by $\epsilon \times \omega$ for some $\epsilon \in L$.

Now, construct two disjoint τ -open sets V_0 , V_1 using the feature of disjointifying initial segments.

Finally, to prove that \mathbb{X} is Dowker, recall that each $D_n := \omega_1 \times (\omega \setminus n)$ is an uncountable τ -closed set, and that $\bigcap_{n < \omega} D_n = \emptyset$.

To verify normality, let K_0, K_1 be two disjoint τ -closed subsets of X. As any uncountable closed set contains a 'tail', at least one of the sets must be countable.

So, one of these sets is covered by $\epsilon \times \omega$ for some $\epsilon \in L$.

Now, construct two disjoint τ -open sets V_0 , V_1 using the feature of disjointifying initial segments.

Finally, to prove that \mathbb{X} is Dowker, recall that each $D_n := \omega_1 \times (\omega \setminus n)$ is an uncountable τ -closed set, and that $\bigcap_{n < \omega} D_n = \emptyset$. We need to show that, if, for every $n < \omega$, U_n is some open set covering D_n , then $\bigcap_{n < \omega} U_n \neq \emptyset$.

To verify normality, let K_0, K_1 be two disjoint τ -closed subsets of X. As any uncountable closed set contains a 'tail', at least one of the sets must be countable.

So, one of these sets is covered by $\epsilon \times \omega$ for some $\epsilon \in L$.

Now, construct two disjoint τ -open sets V_0 , V_1 using the feature of disjointifying initial segments.

Finally, to prove that \mathbb{X} is Dowker, recall that each $D_n := \omega_1 \times (\omega \setminus n)$ is an uncountable τ -closed set, and that $\bigcap_{n < \omega} D_n = \emptyset$. We need to show that, if, for every $n < \omega$, U_n is some open set covering D_n , then $\bigcap_{n < \omega} U_n \neq \emptyset$. For each $n < \omega$, $F_n := X \setminus U_n$ is a closed set disjoint from D_n .

To verify normality, let K_0, K_1 be two disjoint τ -closed subsets of X. As any uncountable closed set contains a 'tail', at least one of the sets must be countable.

So, one of these sets is covered by $\epsilon \times \omega$ for some $\epsilon \in L$.

Now, construct two disjoint τ -open sets V_0 , V_1 using the feature of disjointifying initial segments.

Finally, to prove that \mathbb{X} is Dowker, recall that each $D_n := \omega_1 \times (\omega \setminus n)$ is an uncountable τ -closed set, and that $\bigcap_{n < \omega} D_n = \emptyset$. We need to show that, if, for every $n < \omega$, U_n is some open set covering D_n , then $\bigcap_{n < \omega} U_n \neq \emptyset$. For each $n < \omega$, $F_n := X \setminus U_n$ is a closed set disjoint from D_n . Since D_n is uncountable, F_n must be countable. So $\bigcup_{n < \omega} F_n$ is countable, and hence $\bigcap_{n < \omega} U_n = X \setminus \bigcup_{n < \omega} F_n$ is nonempty. The consistency of the negation of our guessing principle

Theorem Suppose that PID_{\aleph_1} holds and $\mathfrak{b} > \omega_1$. Then, for any stationary $S \subseteq \omega_1$, $AD(\{S\}, 1, 1)$ fails.

An ideal \mathcal{I} consisting of countable sets is said to be a **P-ideal** iff every countable family of sets in the ideal admits a pseudo-union in the ideal. That is, for every sequence $\langle X_n \mid n < \omega \rangle$ of elements of \mathcal{I} , there exists $X \in \mathcal{I}$ such that $X_n \setminus X$ is finite for all $n < \omega$.

An ideal \mathcal{I} consisting of countable sets is said to be a **P-ideal** iff every countable family of sets in the ideal admits a pseudo-union in the ideal. That is, for every sequence $\langle X_n \mid n < \omega \rangle$ of elements of \mathcal{I} , there exists $X \in \mathcal{I}$ such that $X_n \setminus X$ is finite for all $n < \omega$.

Definition (Todorčević)

The P-ideal dichotomy (PID) asserts that for every P-ideal \mathcal{I} consisting of countable subsets of some set Z, either:

- 1. there is an uncountable $B \subseteq Z$ such that $[B]^{\aleph_0} \subseteq \mathcal{I}$, or
- 2. there is a sequence $\langle B_n \mid n < \omega \rangle$ such that $\bigcup_{n < \omega} B_n = Z$ and, for each $n < \omega$, $[B_n]^{\aleph_0} \cap \mathcal{I} = \emptyset$.

An ideal \mathcal{I} consisting of countable sets is said to be a **P-ideal** iff every countable family of sets in the ideal admits a pseudo-union in the ideal. That is, for every sequence $\langle X_n \mid n < \omega \rangle$ of elements of \mathcal{I} , there exists $X \in \mathcal{I}$ such that $X_n \setminus X$ is finite for all $n < \omega$.

Definition (Todorčević)

The P-ideal dichotomy (PID) asserts that for every P-ideal ${\cal I}$ consisting of countable subsets of some set Z, either:

- 1. there is an uncountable $B \subseteq Z$ such that $[B]^{\aleph_0} \subseteq \mathcal{I}$, or
- 2. there is a sequence $\langle B_n | n < \omega \rangle$ such that $\bigcup_{n < \omega} B_n = Z$ and, for each $n < \omega$, $[B_n]^{\aleph_0} \cap \mathcal{I} = \emptyset$.

We denote by PID_{\aleph_1} the restriction of the above principle to $Z := \omega_1$. This special case was first introduced and studied by Abraham and Todorčević.

Theorem

Suppose that PID_{\aleph_1} holds and $\mathfrak{b} > \omega_1$. Then, for any stationary $S \subseteq \omega_1$, $AD(\{S\}, 1, 1)$ fails.

Theorem

Suppose that PID_{\aleph_1} holds and $\mathfrak{b} > \omega_1$. Then, for any stationary $S \subseteq \omega_1$, $AD(\{S\}, 1, 1)$ fails.

Proof. Towards a contradiction, suppose that $S \subseteq \omega_1$ is stationary, and that $\vec{A} = \langle A_{\alpha} \mid \alpha \in S \rangle$ is a $A_{AD}(\{S\}, 1, 1)$ -sequence. Let

$$\mathcal{I} := \{ X \in [\omega_1]^{\leq \aleph_0} \mid \forall \alpha \in \mathsf{acc}(\omega_1) \cap S[A_\alpha \cap X \text{ is finite}] \}.$$

It is clear that ${\mathcal I}$ is an ideal.

 ${\mathcal I}$ is a P-ideal.

 \mathcal{I} is a P-ideal. Proof. Let $\vec{X} = \langle X_n \mid n < \omega \rangle$ be a sequence of elements of \mathcal{I} .

 \mathcal{I} is a P-ideal. Proof. Let $\vec{X} = \langle X_n \mid n < \omega \rangle$ be a sequence of elements of \mathcal{I} . We need to find a pseudo-union of \vec{X} that lies in \mathcal{I} .

 \mathcal{I} is a P-ideal. Proof. Let $\vec{X} = \langle X_n \mid n < \omega \rangle$ be a sequence of elements of \mathcal{I} . We need to find a pseudo-union of \vec{X} that lies in \mathcal{I} . As \mathcal{I} is downward closed, we may assume that $\langle X_n \mid n < \omega \rangle$ consists of pairwise disjoint sets.

 \mathcal{I} is a P-ideal. Proof. Let $\vec{X} = \langle X_n \mid n < \omega \rangle$ be a sequence of elements of \mathcal{I} . We need to find a pseudo-union of \vec{X} that lies in \mathcal{I} . As \mathcal{I} is downward closed, we may assume that $\langle X_n \mid n < \omega \rangle$ consists of pairwise disjoint sets.

Fix a bijection $e: \omega \leftrightarrow \biguplus_{n < \omega} X_n$. Then, for all $\alpha \in S$, define a function $f_{\alpha}: \omega \to \omega$ via

$$f_{\alpha}(n) := \min\{m < \omega \mid X_n \cap A_{\alpha} \subseteq e^{*}m\}.$$

 \mathcal{I} is a P-ideal. Proof. Let $\vec{X} = \langle X_n \mid n < \omega \rangle$ be a sequence of elements of \mathcal{I} . We need to find a pseudo-union of \vec{X} that lies in \mathcal{I} . As \mathcal{I} is downward closed, we may assume that $\langle X_n \mid n < \omega \rangle$ consists of pairwise disjoint sets.

Fix a bijection $e: \omega \leftrightarrow \biguplus_{n < \omega} X_n$. Then, for all $\alpha \in S$, define a function $f_{\alpha}: \omega \to \omega$ via

$$f_{\alpha}(n) := \min\{m < \omega \mid X_n \cap A_{\alpha} \subseteq e^{*}m\}.$$

As $\mathfrak{b} > \omega_1$, let us fix a function $f : \omega \to \omega$ such that $f_\alpha <^* f$ for all $\alpha \in S$.

Set $X := \biguplus \{X_n \setminus e[f(n)] \mid n < \omega\}.$

Set $X := \bigcup \{X_n \setminus e[f(n)] \mid n < \omega\}$. Clearly, for every $n < \omega$, $X_n \setminus X$ is a subset of e[f(n)], and, in particular, it is finite.

Set $X := \bigcup \{X_n \setminus e[f(n)] \mid n < \omega\}$. Clearly, for every $n < \omega$, $X_n \setminus X$ is a subset of e[f(n)], and, in particular, it is finite.

Towards a contradiction, suppose that $X \notin \mathcal{I}$.

Set $X := \bigcup \{X_n \setminus e[f(n)] \mid n < \omega\}$. Clearly, for every $n < \omega$, $X_n \setminus X$ is a subset of e[f(n)], and, in particular, it is finite. Towards a contradiction, suppose that $X \notin \mathcal{I}$. Fix $\alpha \in \operatorname{acc}(\omega_1) \cap S$ such that $A_\alpha \cap X$ is infinite.

Set $X := \biguplus \{X_n \setminus e[f(n)] \mid n < \omega\}$. Clearly, for every $n < \omega$, $X_n \setminus X$ is a subset of e[f(n)], and, in particular, it is finite. Towards a contradiction, suppose that $X \notin \mathcal{I}$. Fix $\alpha \in \operatorname{acc}(\omega_1) \cap S$ such that $A_\alpha \cap X$ is infinite. Since $X \subseteq \biguplus_{n < \omega} X_n$, but $A_\alpha \cap X_n$ is finite for all $n < \omega$, we may find a large enough $n < \omega$ such that $A_\alpha \cap X \cap X_n \neq \emptyset$ and $f_\alpha(n) < f(n)$.

Set $X := \biguplus \{X_n \setminus e[f(n)] \mid n < \omega\}$. Clearly, for every $n < \omega$, $X_n \setminus X$ is a subset of e[f(n)], and, in particular, it is finite. Towards a contradiction, suppose that $X \notin \mathcal{I}$. Fix $\alpha \in \operatorname{acc}(\omega_1) \cap S$ such that $A_\alpha \cap X$ is infinite. Since $X \subseteq \biguplus_{n < \omega} X_n$, but $A_\alpha \cap X_n$ is finite for all $n < \omega$, we may find a large enough $n < \omega$ such that $A_\alpha \cap X \cap X_n \neq \emptyset$ and $f_\alpha(n) < f(n)$. Pick $\beta \in A_\alpha \cap X \cap X_n$.

Set $X := [+] \{ X_n \setminus e[f(n)] \mid n < \omega \}.$ Clearly, for every $n < \omega$, $X_n \setminus X$ is a subset of e[f(n)], and, in particular, it is finite. Towards a contradiction, suppose that $X \notin \mathcal{I}$. Fix $\alpha \in \operatorname{acc}(\omega_1) \cap S$ such that $A_{\alpha} \cap X$ is infinite. Since $X \subseteq [+]_{n < \omega} X_n$, but $A_{\alpha} \cap X_n$ is finite for all $n < \omega$, we may find a large enough $n < \omega$ such that $A_{\alpha} \cap X \cap X_n \neq \emptyset$ and $f_{\alpha}(n) < f(n)$. Pick $\beta \in A_{\alpha} \cap X \cap X_{n}$. By the definition of f_{α} , $\beta \in e[f_{\alpha}(n)]$. But $f_{\alpha}(n) < f(n)$, so that $\beta \in e[f_{\alpha}(n)] \subseteq e[f(n)]$, contradicting the fact that $\beta \in X$.

$$f_{\alpha}(n) := \min\{m < \omega \mid X_n \cap A_{\alpha} \subseteq e^{"}m\}.$$

Let $B \subseteq \omega_1$ be uncountable.

- 1. There exists $X \in [B]^{\aleph_0}$ with $X \notin \mathcal{I}$;
- 2. There exists $X \in [B]^{\aleph_0}$ with $X \in \mathcal{I}$.

Let $B \subseteq \omega_1$ be uncountable.

1. There exists $X \in [B]^{\aleph_0}$ with $X \notin \mathcal{I}$;

2. There exists $X \in [B]^{\aleph_0}$ with $X \in \mathcal{I}$.

Proof. As *B* is uncountable,

 $\mathcal{G} := \{ lpha \in \mathsf{acc}(\omega_1) \cap \mathcal{S} \mid \mathsf{sup}(\mathcal{A}_{lpha} \cap \mathcal{B}) = lpha \}$ is stationary.

Let $B \subseteq \omega_1$ be uncountable.

- 1. There exists $X \in [B]^{\aleph_0}$ with $X \notin \mathcal{I}$;
- 2. There exists $X \in [B]^{\aleph_0}$ with $X \in \mathcal{I}$.

Proof. As B is uncountable, $G := \{ \alpha \in \operatorname{acc}(\omega_1) \cap S \mid \sup(A_\alpha \cap B) = \alpha \}$ is stationary.

(1) Fix arbitrary $\alpha \in G$. Then $X := A_{\alpha} \cap B$ is an element of $[B]^{\aleph_0} \setminus \mathcal{I}$.

Let $B \subseteq \omega_1$ be uncountable.

- 1. There exists $X \in [B]^{\aleph_0}$ with $X \notin \mathcal{I}$;
- 2. There exists $X \in [B]^{\aleph_0}$ with $X \in \mathcal{I}$.

Proof. As B is uncountable, $G := \{ \alpha \in \operatorname{acc}(\omega_1) \cap S \mid \sup(A_{\alpha} \cap B) = \alpha \} \text{ is stationary.}$

(1) Fix arbitrary $\alpha \in G$. Then $X := A_{\alpha} \cap B$ is an element of $[B]^{\aleph_0} \setminus \mathcal{I}$.

(2) Let $\langle \alpha_n \mid n < \omega \rangle$ be some increasing sequence of elements of *G*.

Let $B \subseteq \omega_1$ be uncountable.

- 1. There exists $X \in [B]^{\aleph_0}$ with $X \notin \mathcal{I}$;
- 2. There exists $X \in [B]^{\aleph_0}$ with $X \in \mathcal{I}$.

Proof. As B is uncountable, $G := \{ \alpha \in \operatorname{acc}(\omega_1) \cap S \mid \sup(A_{\alpha} \cap B) = \alpha \} \text{ is stationary.}$

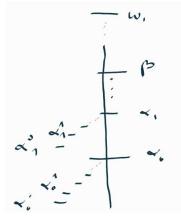
(1) Fix arbitrary $\alpha \in G$. Then $X := A_{\alpha} \cap B$ is an element of $[B]^{\aleph_0} \setminus \mathcal{I}$.

(2) Let $\langle \alpha_n \mid n < \omega \rangle$ be some increasing sequence of elements of *G*. For every $n < \omega$, let $\langle \alpha_n^m \mid m < \omega \rangle$ be the increasing enumeration of some cofinal subset of $A_{\alpha_n} \cap B$.

Furthermore, we require that, for all $n < \omega$, $\alpha_n < \alpha_{n+1}^0$.

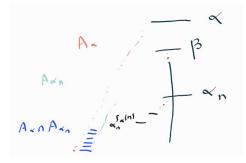
Furthermore, we require that, for all $n < \omega$, $\alpha_n < \alpha_{n+1}^0$. Set $\beta := \sup_{n < \omega} \alpha_n$.

Furthermore, we require that, for all $n < \omega$, $\alpha_n < \alpha_{n+1}^0$. Set $\beta := \sup_{n < \omega} \alpha_n$.



Furthermore, we require that, for all $n < \omega$, $\alpha_n < \alpha_{n+1}^0$. Set $\beta := \sup_{n < \omega} \alpha_n$. As \vec{A} is an AD-ladder system, for every $\alpha \in S \cap \operatorname{acc}(\omega_1) \setminus \beta$, we may define a function $f_{\alpha} : \omega \to \omega$ via:

$$f_{\alpha}(n) := \min\{m < \omega \mid A_{\alpha_n} \cap A_{\alpha} \subseteq \alpha_n^m\}.$$



Furthermore, we require that, for all $n < \omega$, $\alpha_n < \alpha_{n+1}^0$. Set $\beta := \sup_{n < \omega} \alpha_n$. As \vec{A} is an AD-ladder system, for every $\alpha \in S \cap \operatorname{acc}(\omega_1) \setminus \beta$, we may define a function $f_{\alpha} : \omega \to \omega$ via:

$$f_{\alpha}(n) := \min\{m < \omega \mid A_{\alpha_n} \cap A_{\alpha} \subseteq \alpha_n^m\}.$$

As $\mathfrak{b} > \omega_1$, let us fix a function $f : \omega \to \omega$ such that $f_\alpha <^* f$ for all $\alpha \in S$.

Furthermore, we require that, for all $n < \omega$, $\alpha_n < \alpha_{n+1}^0$. Set $\beta := \sup_{n < \omega} \alpha_n$. As \vec{A} is an AD-ladder system, for every $\alpha \in S \cap \operatorname{acc}(\omega_1) \setminus \beta$, we may define a function $f_{\alpha} : \omega \to \omega$ via:

$$f_{\alpha}(n) := \min\{m < \omega \mid A_{\alpha_n} \cap A_{\alpha} \subseteq \alpha_n^m\}.$$

As $\mathfrak{b} > \omega_1$, let us fix a function $f : \omega \to \omega$ such that $f_\alpha <^* f$ for all $\alpha \in S$. Set $X := \{\alpha_n^{f(n)} \mid 0 < n < \omega\}.$

Furthermore, we require that, for all $n < \omega$, $\alpha_n < \alpha_{n+1}^0$. Set $\beta := \sup_{n < \omega} \alpha_n$. As \vec{A} is an AD-ladder system, for every $\alpha \in S \cap \operatorname{acc}(\omega_1) \setminus \beta$, we may define a function $f_{\alpha} : \omega \to \omega$ via:

$$f_{\alpha}(n) := \min\{m < \omega \mid A_{\alpha_n} \cap A_{\alpha} \subseteq \alpha_n^m\}.$$

As $\mathfrak{b} > \omega_1$, let us fix a function $f : \omega \to \omega$ such that $f_\alpha <^* f$ for all $\alpha \in S$.

Set $X := \{\alpha_n^{f(n)} \mid 0 < n < \omega\}$. For every $n < \omega$, the interval (α_n, α_{n+1}) contains a single element of X, so that X is a cofinal subset of β with $\operatorname{otp}(X) = \omega$. In particular, $X \in [B]^{\aleph_0}$.

Towards a contradiction, suppose that $X \notin \mathcal{I}$. Fix $\alpha \in \operatorname{acc}(\omega_1) \cap S$ such that $A_{\alpha} \cap X$ is infinite.

Towards a contradiction, suppose that $X \notin \mathcal{I}$. Fix $\alpha \in \operatorname{acc}(\omega_1) \cap S$ such that $A_\alpha \cap X$ is infinite. Clearly, $\alpha \geq \beta$. As $f_\alpha <^* f$, we may find $k < \omega$ such that, for every integer $n \geq k$, $f_\alpha(n) < f(n)$.

Towards a contradiction, suppose that $X \notin \mathcal{I}$. Fix $\alpha \in \operatorname{acc}(\omega_1) \cap S$ such that $A_\alpha \cap X$ is infinite. Clearly, $\alpha \geq \beta$. As $f_\alpha <^* f$, we may find $k < \omega$ such that, for every integer $n \geq k$, $f_\alpha(n) < f(n)$. As $A_\alpha \cap X$ is infinite, let us now pick a positive integer $n \geq k$ such that $\alpha_n^{f(n)} \in A_\alpha$.

Towards a contradiction, suppose that $X \notin \mathcal{I}$. Fix $\alpha \in \operatorname{acc}(\omega_1) \cap S$ such that $A_\alpha \cap X$ is infinite. Clearly, $\alpha \geq \beta$. As $f_\alpha <^* f$, we may find $k < \omega$ such that, for every integer $n \geq k$, $f_\alpha(n) < f(n)$. As $A_\alpha \cap X$ is infinite, let us now pick a positive integer $n \geq k$ such that $\alpha_n^{f(n)} \in A_\alpha$.

$$f_{\alpha}(n) := \min\{m < \omega \mid A_{\alpha_n} \cap A_{\alpha} \subseteq \alpha_n^m\}.$$

Towards a contradiction, suppose that $X \notin \mathcal{I}$. Fix $\alpha \in \operatorname{acc}(\omega_1) \cap S$ such that $A_{\alpha} \cap X$ is infinite. Clearly, $\alpha \geq \beta$. As $f_{\alpha} <^* f$, we may find $k < \omega$ such that, for every integer $n \geq k$, $f_{\alpha}(n) < f(n)$. As $A_{\alpha} \cap X$ is infinite, let us now pick a positive integer $n \geq k$ such that $\alpha_n^{f(n)} \in A_{\alpha}$.

$$f_{\alpha}(n) := \min\{m < \omega \mid A_{\alpha_n} \cap A_{\alpha} \subseteq \alpha_n^m\}.$$

Recalling that $\{\alpha_n^m \mid m < \omega\} \subseteq A_{\alpha_n}$, we altogether infer that $\alpha_n^{f(n)} \in A_{\alpha_n} \cap A_{\alpha} \subseteq \alpha_n^{f_{\alpha}(n)}$.

Towards a contradiction, suppose that $X \notin \mathcal{I}$. Fix $\alpha \in \operatorname{acc}(\omega_1) \cap S$ such that $A_{\alpha} \cap X$ is infinite. Clearly, $\alpha \geq \beta$. As $f_{\alpha} <^* f$, we may find $k < \omega$ such that, for every integer $n \geq k$, $f_{\alpha}(n) < f(n)$. As $A_{\alpha} \cap X$ is infinite, let us now pick a positive integer $n \geq k$ such that $\alpha_n^{f(n)} \in A_{\alpha}$.

$$f_{\alpha}(n) := \min\{m < \omega \mid A_{\alpha_n} \cap A_{\alpha} \subseteq \alpha_n^m\}.$$

Recalling that $\{\alpha_n^m \mid m < \omega\} \subseteq A_{\alpha_n}$, we altogether infer that $\alpha_n^{f(n)} \in A_{\alpha_n} \cap A_\alpha \subseteq \alpha_n^{f_\alpha(n)}$. In particular, $\alpha_n^{f(n)} < \alpha_n^{f_\alpha(n)}$, contradicting the fact that $f_\alpha(n) < f(n)$.

Towards a contradiction, suppose that $X \notin \mathcal{I}$. Fix $\alpha \in \operatorname{acc}(\omega_1) \cap S$ such that $A_{\alpha} \cap X$ is infinite. Clearly, $\alpha \geq \beta$. As $f_{\alpha} <^* f$, we may find $k < \omega$ such that, for every integer $n \geq k$, $f_{\alpha}(n) < f(n)$. As $A_{\alpha} \cap X$ is infinite, let us now pick a positive integer $n \geq k$ such that $\alpha_n^{f(n)} \in A_{\alpha}$.

$$f_{\alpha}(n) := \min\{m < \omega \mid A_{\alpha_n} \cap A_{\alpha} \subseteq \alpha_n^m\}.$$

Recalling that $\{\alpha_n^m \mid m < \omega\} \subseteq A_{\alpha_n}$, we altogether infer that $\alpha_n^{f(n)} \in A_{\alpha_n} \cap A_\alpha \subseteq \alpha_n^{f_\alpha(n)}$. In particular, $\alpha_n^{f(n)} < \alpha_n^{f_\alpha(n)}$, contradicting the fact that $f_\alpha(n) < f(n)$.

Altogether, \mathcal{I} is a P-ideal for which the two alternatives of PID_{\aleph_1} fail. This is a contradiction.

Thank you!