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Abstract. An Efimov space is a compact space which contains neither a non-

trivial converging sequence nor a copy of the Stone-Cech compactification of the

integers. We give a new construction of a space which consistently results in an
Efimov space. The required set-theoretic assumption is on the splitting number s.

Efimov’s problem is to determine if every compact space with no converging se-
quences contains a copy of βN? A counterexample could be called an Efimov space.
Fedorchuk [Fed76] showed that ♦ implies there is a compact hereditarily separable
space with no converging sequences – certainly an Efimov space. This result was later
generalized, again by Fedorchuk [Fed77], by formulating what was called a Partition
Hypothesis and proving that the existence of an Efimov space is a consequence. The
Partition Hypothesis is very much like the assumptions that s = ω1 and 2s < 2c (see
also the review MR54:13827 for additional information). We improve this result to
more general values of s. A family S ⊂ [ω]ω is a splitting family if for each infinite
a ⊂ ω there is an I ∈ S such that each of a ∩ I and a \ I are infinite. The cardinal s
is the least cardinality of a splitting family.

We will need a special set-theoretic hypothesis about the cardinal s. For a cardinal
κ, the order theoretic structure ([κ]ω,⊂) may or may not have a cofinal subset of
cardinality κ. We will assume that for κ = s it does. It is a “large cardinal” hypothesis
to assume that there is a cardinal κ with uncountable cofinality such that this cofinality
is greater than κ. It holds in ZFC that the cofinality of ([ℵn]ω,⊂) is ℵn for each n ∈ ω.

The above examples of Efimov spaces are constructed by inverse limits. Another
interesting feature of this problem is the role of simple extensions. These are referred
to as minimmal extensions in the Boolean algebra setting. Fedorchuk’s spaces were
constructed with inverse limit systems consisting of simple extensions (defined in the
next section). S. Koppelberg [Kop89] has proven that such an inverse limit of compact
0-dimensional spaces will never contain a copy of βN . We give a proof of this in the
general case (mostly for the reader’s interest) in the next section.

1. Simple extensions

In an inverse limit 〈Xα : α ∈ κ〉 with bonding maps 〈fα,β : β < α < κ〉, say
that Xα+1 is a simple extension if f−1(x) is a single point for all x ∈ Xα with but
one exception xα. Consult Engelking’s book [Eng89] for background on inverse limit
systems. Throughout the paper we will be assuming that our inverse limit systems are
continuous at limits stages. By this we mean that for each limit ordinal γ ∈ κ, Xγ

is the limit space of the system 〈Xα : α ∈ γ〉 with the corresponding bonding maps.
Observe that if U is an open subset of Xα+1 and xα /∈ fα+1,α(U), then fα+1,α(U) is
open in Xα, and fα+1,α(U) = fα+1,α(U),
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Proposition 1 (S. Koppelberg). If Xκ is constructed by simple extensions, then Xκ

does not map onto 2ω1 (unless X0 does).

Question: Is it consistent that every such inverse limit contains a converging se-
quence? (under PFA?)

Proof. For each γ < κ, let Tγ+1 denote the family of open subsets of Xγ+1. For γ < ζ,
let Tζ,γ = {f−1

ζ,γ(U) : U ∈ Tγ}. We can also assume that that Tζ,γ ⊂ Tζ for each
γ < ζ ≤ κ. Finally, for each limit ζ, we can assume that Tζ is equal to

⋃
{Tζ,γ : γ < ζ}

since this union does form a base the topology on Xζ . Observe that if U, V ∈ Tζ,γ are
disjoint, then so are fζ,γ(U) and fζ,γ(V ). Furthermore, since our system consists of
simple extensions, if U, V ∈ Tζ,γ+1 have disjoint closures and xγ /∈ fζ,γ(U ∪ V ), then
U, V ∈ Tζ,γ , and fζ,γ(U) and fζ,γ(V ) also have disjoint closures.

Let λ ≤ κ, be minimal such that Xλ maps onto Iω1 and let g denote such a map.
For each ξ ∈ ω1, let gξ denote the projection πξ ◦ g : Xλ 7→ I (where πξ : Iω1 7→ I is
the usual projection). For each ξ ∈ ω1, choose basic open sets Uξ, Ũξ, Vξ, and Ṽξ in
Tλ such that

g−1
ξ (0) ⊂ Uξ ⊂ g−1([0, 1/4]) ⊂ Ũξ ⊂ g−1([0, 3/8])

and
g−1

ξ (1) ⊂ Vξ ⊂ g−1([3/4, 1]) ⊂ Ṽξ ⊂ g−1([5/8, 1]) .

A family of pairs of sets {〈Ai, Bi〉 : i ∈ S} is dyadic, if for each disjoint pair
of finite sets S0, S1 ⊂ S, the set

⋂
{Ai : i ∈ S0} ∩

⋂
{Bi : i ∈ S1} is not empty.

Sapirovskǐı [Sa80] has shown that a compact space will map onto Iω1 whenever it has
an uncountable dyadic family consisting of closed sets. We will show that there is
some γ < λ such that Xγ contains such a dyadic family. Observe that if S0 and S1 are
disjoint finite subsets of ω1, and W =

⋂
{Ui : i ∈ S0}∩

⋂
{Vi : i ∈ S1}, then the family

{〈Uξ ∩W,Vξ ∩W 〉 : ξ ∈ S} is dyadic for any S ⊂ ω1 \ (S0 ∪ S1).
If λ = γ + 1 then let {x, y} = f−1

λ,γ(xγ). If x /∈ Ũ0, let W0 = U0, otherwise x /∈ Ṽ0

and set W0 = V0. Similarly, if y /∈ Ũ1, let W1 = U1, otherwise y /∈ Ṽ1 and we set
W1 = V1. For each ξ ∈ ω1 \ {0, 1}, set U ′

ξ = Uξ ∩ W0 ∩ W1 and V ′
ξ = Vξ ∩ W0 ∩ W1.

Now, U ′
ξ and V ′

ξ are disjoint closed sets and each are disjoint from {x, y}. Therefore
xγ /∈ fλ,γ(U ′

ξ ∪ V ′
ξ ) for each ξ ∈ ω1 \ {0, 1} and by the above, it follows that fλ,γ(U ′

ξ)
and fλ,γ(V ′

ξ ) have disjoint closures. Since the family {〈U ′
ξ, V

′
ξ 〉 : ξ ∈ ω1 \ {0, 1}} is

dyadic, so is the family {〈fλ,γ(U ′
ξ), fλ,γ(V ′

ξ )〉 : ξ ∈ ω1 \ {0, 1}}.
Therefore λ is a limit and Tλ =

⋃
γ<λ Tλ,γ . Suppose there is a γ < λ such that

{Uξ, Ũξ, Vξ, Ṽξ} ⊂ Tλ,γ for all ξ ∈ S ∈ [ω1]ω1 . For each ξ ∈ S, fλ,γ(Ũξ) and fλ,γ(Ṽξ)
are disjoint and contain, respectively, fλ,γ(Uξ) and fλ,γ(Vξ). Therefore, Xγ contains
an uncountable dyadic family of closed sets.

Now we consider the case that λ has uncountable cofinality. There is some δ < λ
such that there is a countably infinite set S ⊂ ω1 such that {Uξ, Ũξ, Vξ, Ṽξ} ⊂ Tλ,δ for
each ξ ∈ S.

For finite sets S0, S1 ⊂ S, let W (S0, S1) denote the set
⋂
{Uξ : ξ ∈ S0} ∩

⋂
{Vξ : ξ ∈

S1}. We now show that for each α ∈ ω1, there are disjoint finite sets Sα
0 , Sα

1 ⊂ S such
that if we set Wα = W (Sα

0 , Sα
1 ), then

{Uα ∩Wα, Vα ∩Wα} ⊂ Tλ,δ .

Fix any α ∈ ω1 and let γ be minimal such that {Uα, Vα} ⊂ Tλ,γ+1. If γ + 1 ≤ δ

we can let Sα
0 = Sα

1 = ∅. Otherwise, fix any ξ ∈ S. Then either fγ,δ(xγ) /∈ fλ,δ(Ũξ)
or fγ,δ(xγ) /∈ fλ,δ(Ṽξ). If the former and W = W ({ξ}, ∅), or the latter and W =
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W (∅, {ξ}), then {Uα ∩ W,Vα ∩ W} ∈ Tλ,γ and fλ,γ(Uα ∩ W ) and fλ,γ(Vα ∩ W ) have
disjoint closures. We obtain Sα

0 and Sα
1 by a finite induction.

There is an uncountable set L ⊂ ω1 \S and finite sets S0, S1 such that Sα
0 = S0 and

Sα
1 = S1 for all α ∈ L.
It follows that the family

{〈fλ,δ(Uα ∩W (S0, S1), fλ,δ(Vα ∩W (S0, S1)))〉 : α ∈ L}

is a dyadic family in Xδ. �

2. An Efimov space

Theorem 2. Assume that cof([s]ω) = s and 2s < 2c, Then there is an Efimov space.

We prove the theorem in a (converging) sequence of lemmas.

Definition 3. A collection Z is a z-partition of a space X, if Z ⊂ ω(℘(X)), for each
Z ∈ Z, {Z(n) : n ∈ ω} is a pairwise disjoint collection of (possibly empty) compact
open sets, Z(ω) = X \

⋃
n Z(n) is nowhere dense, and {Z(ω) : Z ∈ Z} is a partition

of X.

A typical z-partition will have cardinality c. For example, if X is compact first
countable with no isolated points then there are natural z-partitions Z such that
{Z(ω) : Z ∈ Z} consists of the singletons of X.

Definition 4. A family P of z-partitions of X is point-separating if for each x 6= y ∈ X,
there is a Z ∈ P and a Z ∈ Z such that x ∈ Z(ω) and y /∈ Z(ω). We will say that
a z-partition Z ′ refines a z-partition Z, if for each Z ′ ∈ Z ′ is a Z ∈ Z such that
Z ′(ω) ⊂ Z(ω). We will say that the family P is σ-directed if for each countable
P ′ ⊂ P, there is a Z ′ ∈ P which refines each Z ∈ P ′.

Lemma 5. If Z is a z-partition of a compact space X and I ⊂ ω, then there is
a space X(Z, I) and a continuous irreducible map fZ,I : X(Z, I) 7→ X such that

|X(Z, I)| = |X| and for each Z ∈ Z, f−1
(⋃

n∈I Z(n)
)

and f−1
(⋃

n∈N\I Z(n)
)

have
disjoint closures whose union covers X(Z, I).

Proof. We simply define X(Z, I) as a subset of a product space, X × 2Z . Let I0 = I
and I1 = N \ I.

〈x, ϕ〉 ∈ X(Z, I) if (Z ∈ Z and x /∈ Z(ω)) implies

(
ϕ(Z) = e iff x ∈

⋃
n∈Ie

Z(n)

)
.

For each Z ∈ Z, we can let [〈Z, 0〉] and [〈Z, 1〉] denote the canonical basic open subsets
of X × 2Z consisting of all those 〈x, ϕ〉 such that ϕ(Z) = 0 and ϕ(Z) = 1 respectively.
The family of finite intersections from {X(Z, I) ∩ W × 2Z : W open subset of X}
together with {X(Z, I)∩ [〈Z, e〉] : (Z, e) ∈ Z×{0, 1}} forms a base for the topology on
X(Z, I). Let fZ,I denote the projection mapping onto the first coordinate X. Each
of fZ,I([〈Z, 0〉]) and fZ,I([〈Z, 1〉]) are the complementary regular closed subsets of X,⋃

n∈I Z(n) and
⋃

n∈N\I Z(n).
More generally finite intersections from {X(Z, I)∩ [〈Z, e〉] : (Z, e) ∈ Z×{0, 1}} also

map to regular closed sets. From this we can show that the mapping fZ,I is irreducible.
If F is a proper closed subset of X(Z, I), we must show that fZ,I [F ] is a proper subset
of X. The complement of F contains some open set W × 2Z intersected with some
finite intersection from {X(Z, I)∩ [〈Z, e〉] : (Z, e) ∈ Z×{0, 1}}. The finite intersection
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will map to a regular closed subset of X which can be assumed to contain the open
set W . It follows that W is disjoint from F .

For each Z ∈ Z, f−1
Z,I(Z(ω)) maps onto Z(ω) by an at most two to one mapping.

In fact, there are two points only if each of [〈Z, 0〉] and [〈Z, 1〉] contain one. Since
{Z(ω) : Z ∈ Z} is a partition of X, |X(Z, I)| = |X|. It is routine to check that
X(Z, I) is a closed subset of X × 2Z and so is compact. �

Lemma 6. Let P be a family of z-partitions of a compact 0-dimensional space X. If
|P| ≤ s, then there is a σ-directed family P ′ containing P, such that |P ′| ≤ cof([s]ω,⊂).

Proof. Let {Zα : α ∈ s} be an enumeration of P. Fix a family A ⊂ [s]ω which is
cofinal. For each A ∈ A, we define ZA so that ZA refines Zα for each α ∈ A. In fact,
for each ζ = 〈Zα〉α∈A ∈ Π{Zα : α ∈ A} let Zζ(ω) equal

⋂
{Zα(ω) : α ∈ A}. If Zζ(ω) is

not empty, then since X is 0-dimensional, we can choose a partition {Zζ(n) : n ∈ ω}
of X \ Zζ(ω) consisting of compact open subsets of X. Then ZA consists of all the
partitions {Zζ : ζ ∈ Π{Zα : α ∈ A} such that Zζ(ω) 6= ∅}. Let {An : n ∈ ω} ⊂ A and
A ∈ A such that

⋃
n An ⊂ A. The construction of ZA ensures that ZA refines ZAn

and Zα for each n ∈ ω and α ∈ A. Therefore P ′ is σ-directed. �

Lemma 7. Assume cof([s]ω,⊂) = s. Let X be a compact 0-dimensional space and P
a point-separating family of z-partitions of X with |P| ≤ s. There is a space X(P)
and an irreducible mapping f onto X such that |X(P)| ≤ |X| · 2s and if S ⊂ X(P)
is a converging sequence then f [S] is finite. Furthermore, there is a point-separating
family P ′ of z-partitions of X(P) of cardinality s.

Proof. We may assume that P is σ-directed. Let S ⊂ [ω]ω be a splitting family with
cardinality s. For each (Z, I) ∈ P × S, let fZ,I and X(Z, I) be as in Lemma 5.

We define X(P) as a subspace of X × Π{X(Z, I) : (Z, I) ∈ P × S}. A pair
〈x, g〉 ∈ X(P) if for each (Z, I) ∈ P × S, fZ,I(g(Z, I)) = x.

Let us show that X(P) is a closed subset. Suppose that 〈x, g〉 /∈ X(P) and fix
(Z, I) ∈ P × S such that fZ,I(g(Z, I)) = x′ 6= x. Let U be an open subset of X such
that x ∈ U and x′ /∈ U . Let W = f−1

Z,I(X \ U) and notice that

U ×Π{X(Z ′, I ′) : (Z, I) 6= (Z ′, I ′) ∈ P × S} ×W

is a neighborhood of 〈x, g〉 which is disjoint from X(P).
We let f denote the restriction to X(P) of the first coordinate projection mapping.

The proof that f is irreducible is similar to the proof that fZ,I is irreducible in Lemma
5. For each (Z, I) ∈ P×S, the (Z, I)-coordinate projection mapping induces a natural
mapping f̃Z,I from X(P) onto X(Z, I) such that f = fZ,I ◦ f̃Z,I .

Assume that S ⊂ X(P) and that f [S] is a countably infinite subset of X. Let
x ∈ X be the image of any limit point of S. For each y ∈ f [S] \ {x}, there is a
Zy ∈ P and some Zy ∈ Zy such that x ∈ Zy(ω) and y /∈ Zy(ω). Since P is σ-directed,
there is a Z ∈ P and a Z ∈ Z such that x ∈ Z(ω), and f [S] \ Z(ω) is infinite. If
there is some n such that Z(n) ∩ f [S] is infinite, then f [S] does not converge to x.
Otherwise, there is an I ∈ S such that f [S] ∩

⋃
n∈I Z(n) and f [S] ∩

⋃
n∈N\I Z(n)

are each infinite. By Lemma 5, f−1
Z,I(

⋃
n∈I Z(n)) and f−1

Z,I(
⋃

n∈N\I Z(n)) have disjoint
closures in X(Z, I). Therefore f̃Z,I [S] does not converge in X(Z, I). It then follows
that S does not converge in X(P).

For each (Z, I) ∈ P × S, we define two z-partitions of X(P). Again by Lemma
5, the closures of f−1

Z,I(
⋃

n∈I Z(n)) and f−1
Z,I(

⋃
n∈N\I Z(n)) in X(Z, I) form a clopen
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partition of X(Z, I). Let C(Z, I, Z, 0) and C(Z, I, Z, 1) denote the preimage under
f̃Z,I of these clopen sets.

We define partitions Ze for e ∈ {0, 1}:

Ze(n) =

{
f−1(Z(n)) ∪ C(Z, I, Z, 1− e) n = 0
f−1(Z(n)) ∩ C(Z, I, Z, e) 0 < n ≤ ω .

The collection W(Z, I) = {Ze : e ∈ {0, 1}, Z ∈ Z} is a z-partition of X(P).
Suppose that x, y are distinct points of X(P). If f(x) 6= f(y), then there is a Z ∈ P
such that f(x) ∈ Z(ω) and f(y) /∈ Z(ω) for some Z ∈ Z. Fix any I ∈ S and choose
e ∈ {0, 1} such that x ∈ C(Z, I, Z, e). It follows that x ∈ Ze(ω) and y /∈ Ze(ω). If
f(x) = f(y) = x̄, then there are g, h such that x = 〈x̄, g〉 and y = 〈x̄, h〉. There
must be (Z, I) such that g(Z, I) 6= h(Z, I). There is a unique Z ∈ Z such that
x̄ ∈ Z(ω) and f−1

Z,I(x̄) contains at most two points; in this case {g(Z, I), h(Z, I)}. One

of these points is in f−1
Z,I [

⋃
n∈I Z(n)] and the other in f−1

Z,I [
⋃

n∈N\I Z(n)]. That is, we
have found (Z, I) and Z ∈ Z such that x ∈ C(Z, I, Z, 0) and y ∈ C(Z, I, Z, 1) (or
vice-versa). Moreover, x ∈ Z0(ω) and y ∈ Z1(ω).

This shows that the family P ′ is point-separating where P ′ consists of {W(Z, I) :
(Z, I) ∈ P × I}. �

Proof of Theorem 2. Let X0 be the Cantor set 2ω and let Z0 be any z-partition such
that {Z(ω) : Z ∈ Z0} are the singletons. Set P0 = {Z0}. Suppose that λ ∈ ω1 and
we have defined an inverse limit 〈Xα : α ∈ λ〉 with bonding maps 〈fα,β : β < α < λ〉.
Suppose further that for each α ∈ λ we have specified a point-separating family Pα of
z-partitions of Xα such that |Pα| ≤ s. Finally, assume that if β < α < λ and S ⊂ Xα

is a converging sequence, then fα,β [S] is a finite subset of Xβ . If λ is a limit then
define Xλ to be the inverse limit of the system 〈Xα, {fα,β : β < α} : α ∈ λ〉. There
are canonical mappings fλ,α from Xλ onto Xα for each α < λ. For each α < λ and
Z ∈ Pα, let f−1

λ,α(Z) denote the natural z-partition of Xλ,

{〈f−1
λ,α(Z(n)) : n ∈ ω + 1〉 : Z ∈ Z}.

It is routine to check that Pλ = {f−1
λ,α(Z) : α ∈ λ, Z ∈ Pα} is a point-separating family

of z-partitions of Xλ. It also trivially follows that for each converging sequence S ⊂ Xλ

and each α < λ, fλ,α[S] is finite because fλ,α+1[S] will be a converging sequence in
Xα+1 and fλ,α = fλ,α+1 ◦ fα+1,α.

If λ = α + 1, then we obtain Xλ as Xα(Pα) by applying Lemma 7.
We check that X = Xω1 is an Efimov space. Since the cardinality of X is constructed

to be no larger than 2s and we are assuming that 2s < 2c, X can not contain a copy of
βN . Suppose that S ⊂ X is an infinite set. Let α < ω1 be chosen so that fω1,α[S] is
also infinite. By the inductive hypothesis, it follows that fω1,α+1[S] is not a converging
sequence. Therefore X contains no converging sequences. �
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