COMPACT SPACES AND THE PSEUDORADIAL PROPERTY, I

ALAN DOW

ABSTRACT. We investigate two properties and their connection to the prop-
erty of pseudoradiality in the context of compact spaces. The first is the WAP
property introduced by P. Simon and the second is the Rg-pseudoradial prop-
erty introduced by B. Sapirovskii. We show that <> implies there is a compact
space which is pseudoradial but not WAP. We show that there is a model
in which CH fails and in which all compact spaces of weight at most Ny are
Np-pseudoradial.

1. INTRODUCTION

A space X is said to have the property of weak approximation by points, or
WAP, if for every non-closed set A, there exists a point 2 € A\ A such that, for
some subset B of A, B\ A = {x}. A space X is AP if it is hereditarily WAP,
equivalently, if for every x € A\ A, there is a B C A with B\ A = {z}. Note that
each Fréchet space is AP and each sequential space is WAP. A compact AP space
is Fréchet

Much of this work is motivated by Sapirovski’s CH result [4] (CH weakened
to ¢ < wy in an improvement by Juhasz and Szentmiklossy [2]) that a compact
sequentially compact space is pseudoradial. Several similar results were shown to
follow from the assumption that 2“2 is not pseudoradial. Sapirovski asked if 2«2
fails to be Ng-pseudoradial and it is asked in [1] if it fails to be pseudoradial. We
show that it is consistent to have ¢ be arbitrarily large and to have that 22 is
No-pseudoradial.

P. Simon showed that a compact WAP space is pseudoradial and to our knowl-
edge it was not known if the simpler WAP condition could characterize the pseu-
doradial spaces in the class of compact spaces. We do not know if there is a ZFC
example of a compact pseudoradial space which is not WAP but we produce an
example from .

Definition 1.1. A set A is w-closed in X if A contains the closure of each of
its countable subsets. A space X is Wyp-pseudoradial provided that every w-closed
non-closed set A C X contains a sequence converging to a point outside A.

We introduce a pair of properties that will serve to generalize the Fréchet and
sequential properties. Given a point = in a space X, let U, denote the family of
open subsets of X containing the point 2 (X should be clear from the context).

Definition 1.2. X is (Ry, Rg)-Fréchet if for each {z4 : @ < w1} in X and each com-
plete accumulation point x there is an uncountable subset C of w; and a function
¢ : U, — wy such that for each v € C, the family

U ={Un{zs:f<a<y}t:Be€vUecl, and ¢oU) <~}
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has the finite intersection property.
A space X is (Ng, N;)-sequential if there is some complete accumulation point
satisfying the above.

The idea behind the definition is that, if for each v € C|, there is an adherent
point z, of the filter generated by U, then the sequence {z, : v € C} would
converge to x.

It is proven in [1, 2.9] (using slightly different notation) that each compact pseu-
doradial space is (Ng, N1)-sequential.

Lemma 1.3. If X is a compact space of character at most ws, then X is Wo-
pseudoradial if X is (R, Ro)-sequential.

Proof. Assume that A is an w-closed subset of X which is not closed. Fix a neigh-
borhood basis B of any limit point, z, which is not in A so that |B| < ws. Notice
that whenever D is a countable subset of B, A will meet (| D. This follows directly
from the compactness of X and the fact that A is w-closed. For D C B of size
w1, two cases are possible. In the first case, assume again that A meets (D for
each D C B of size wy. Fix a well-ordering {B, : « € wy} of B and pick a point
ao € AN({Bjs: B € a} for each a € wy. The sequence {aq : @ € wy} converges to
x.

In the other case, there is some D C B of cardinality w; such that A is disjoint
from (D. Choose any £ C B of cardinality w; that contains D and that has the
property that for each B € &, there is a B’ € £ whose closure is contained in B.
Enumerate £ as {B, : « € w;} and again pick a, € AN({Bg : § € a} for a € w;.
Each complete accumulation point of {a, : @ € w1} belongs to (€ and so is not
in A. Apply the definition of (N1, Ng)-sequential to the above sequence to obtain a
point y, an unbounded set C' C w; and a function ¢ : U, — w; as in Definition 1.2.
Since, X is compact and A is w-closed, there is a point y, € A such that y, is a
limit of each member of /. It should be clear by the properties of Definition 1.2
that {y, : v € C} does indeed converge to y. O

Proposition 1.4. The space [0,1]“2 is Ro-pseudoradial iff it is (Ry, Ro)-sequential.

2. WAP SPACES

For completeness we include the proof (see [5]) that a compact WAP space is
pseudoradial.

Proposition 2.1. If X is compact and WAP, then X is pseudoradial.

Proof. Assume that X is compact and WAP and that A is subset of X which is not
closed. Fix any B C A such that there is an # € A\ A such that B\ A = {z}. Let &
denote the minimum cardinality of a local basis for z in B (i.e. the character of z in
B). Let {U, : a € k} enumerate a local basis of open sets for z in B where U, C
U,. Again, choose for each a € k any point a, € BN {Us : 8 < a}. Clearly if we
are able to choose a, for each a € k, then {a, : @ € K} converges to = and shows
that X is pseudoradial. If there is no such a,, then the family of finite intersections
from {Us : 3 < a} would form a local basis at = contradicting the minimality of &
(i.e. character and pseudocharacter coincide in compact spaces). ([l
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Definition 2.2. [3, I1.7.1] A sequence {E, : @ € w;} is a {-sequence if for each
subset E of wy, there is a stationary set S in w; such that E, = E N « for each
o€ Wwr.

It will be useful to record a prepratory Lemma whose simple proof is left to the
reader before proving the main result of this section.

Lemma 2.3. Let t be a point in the Cantor set, C, and let K be any countable
collection of subsets of C such that t is an accumulation point of each of them.
Then C\ {t} can be partitioned into open sets Uy, Ur,Usz so that so that t is an
accumulation point of K NU; for each K € K and i € {0,1,2}.

Theorem 2.4. Assume <>, there is a compact space X which is pseudoradial but is
not WAP. The space X also contains a dense first-countable sequentially compact
subspace.

Proof. Let f be any bijection from wy onto wy x 3 X wy and let {E, : @ € w1} be
a {-sequence on wi. We verify that there is a {-sequence for wy; X 3 X wq, i.e. a
sequence {4, : a € wy} such that for each A C wy X 3 X wy, there is a stationary
set of a such that A, = AN (a x 3 x «). In fact, we simply set A, = f[E,] for
each « such that f[E,] C a x 3 x a. For other values of «, let A, be empty (or
any subset of & x 3 x a). We first show that there is a closed and unbounded set
C' consisting of v such that f[y] = v x 3 x 7. For each a, let g(a) € w; \ « be
minimal such that flg(e)] D a x 3 x o and fla] C g(a) x 3 x g(a). Since g is
a monotone increasing continuous unbounded function from w; into itself, we can
show that the set C = {7 : g(y) = 7} is closed and unbounded. The continuity of
g implies that C' is closed. To see that C' is unbounded, one checks that for each
a € wy, v =sup{g"(a) :n €w}isin C.

Now suppose that A C wy x 3 x wy and set E = f~1[A]. Since the set S = {~:
E, = EN~} is stationary, S meets each cub (this is the definition of stationary).
It easily follows that A, = f[E,] = f[EN~] = AN f~[y] = AN~y x 3 x v for each
v in the stationary set SN C.

Therefore, if we have {aq : @ € w1} C 3“1, there is a stationary set of A such
that Ay = J{{B} xag [ A : B < A}, i.e we can consider A, as a sequence
{a(\,B) : B < A} of points in 3*. We will specifically set the value for A, below.

We will construct a sequence {z, : n € w} C 3“*. In order to do so, we will
define by induction on « € wy the values {z,, | @ :n € w}. For each a > w, let X,
denote the closure in 3% of the sequence {z, | @:n € w}. We will also inductively
construct other elements of X, {zg | @,ys0 | @,ys1 | @: f < a < wi} and we
will define sets T, C « in order to ensure that X = X, has the desired properties.
It will follow by induction that for each a@ < wy, X, is homeomorphic to the Cantor
set.

We define {x,, | w: n € w} to be any dense subset of 3“. Set A, = {a(w,n) :
n € w} to be any subset of X, which does not have any limit in {z, | w:n € w}.

The role of the x,’s is to form the sequential closure of the x,,’s and, additionally,
to generally serve as sequential limits to ensure the space is sequentially compact.
The role of the yz o [ @ and ys1 [ « is to be points eventually not in the sequential
closure of {z, : n € w} and to witness that certain sets do witness the failure of
WAP. At each stage a > w, we choose some t, € Xo \ {ze [ @ : § < a} and apply
Lemma 2.3 to obtain open subsets, U$*, U and U, of X, \ {ta}. For each n € w,
Zn () is defined to be the unique ¢ such that =, | o € U?, hence Xo41 is clearly
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defined. For each 8 < «, zg | (o + 1) is implicitly defined, and for e € 2 such that
Yge | @ # ta, Yge | (a+ 1) is also implicitly defined. For any 8 < a and e € 2
such that yg . [ o =t we will set yg () to be e. Finally, we will set zo [ (4 1)
to be the extension of ¢, which has value 2 at «, and similarly, yq. | (o + 1) will
be the extension of t, which has value e at «. Recall also that we will define a set
T, C a.

There is nothing to do at limit stages, «, of the induction but to realize that
each of the elements x5 [ a, yge | o (e € 2) have been defined. Of course, X, is
the closure in 3% of the set {z,, | @ :n € w} (and is also equal to the inverse limit
of the previous Xg under the obvious projection maps). For successor stages, we
must define, for arbitrary «a, the space X,4+1 by selecting ¢, as well as the sets Ty,
and U for i = 0, 1,2 in order to preserve the following inductive hypotheses.

) ta € Xo \{ze [a: &< a},

) {U§, U, US} is a partition of X, \ {to} into open sets,

) to is a limit point of UX N {z¢ [ a: £ € T, } for each i € 3,

) foreach B < a,e€2andi€3,ifty =yg.e | o, then U N{ze [ a: € € T}
is infinite,

(5) if {a(a,n) : n € w} is an infinite subset of X, which has no limits in

{ze [ a: € < a}, then t, is a limit of Us* N {a(a,n) : n € w},

(6) if Ay = {a(a,§) : £ < a} is a subset of {x¢ [ a : £ < a} which has a

limit not in {z¢ | o : £ < a}, then t, will be such a limit and T, will be

contained in {{ < av:ze [ € Ay}

Assume first that the condition in 5 holds, then let ¢, be any limit in X, of
{a(a,n) :n € w}. Set T, = w and define Ky = {a(a,n) : n € w}.

If both conditions 5 and 6 fail, then let ¢t € X4 \ {ze | @ : € < a} be arbitrary.
Set T, = w and Ky = X,.

Now suppose that condition 6 holds. If 5 also holds, then there is no change.
If 5 fails, then let t, be any limit of A, which is not in {z¢ [ a : £ < a}. Set
To={{ca:xzeacA,}and Kog={xe [ a: £ €T,}.

We next let {K,, : n € w\{0}} be any enumeration of those sets {z¢ [ o : { € T}
such that § < «, and and there is e € 2 such that yg . = t,. If there are no such
sets, then simply set K,, = K for all n € w.

The sets Ug', Uy, Us' are then obtained by simply applying Lemma 2.3 to the
family {K,, : n € w}.

This completes the induction, and we set X to be the closure in 3 of {x, : n €
w}. We will show that Xo = {z¢ : £ € wq} is the sequential closure of {z,, : n € w}
and though X is not closed it contains no subset B with a unique accumulation
point not in Xj.

Clearly, X is compact, and note that by the construction, especially conditions
(1) and (2), it follows that X is first countable at each z¢. For our purposes it
suffices to note that a sequence {z, : n € w} C X converges to z, if and only if
{zn | (¢ + 1) : n € w} converges to z, | (a+ 1).

To see that X is not closed, note that for each g and e € 2, we have the point
ya,e which is clearly a limit point of {z,, : n € w}. In the construction, yg . extends
g, hence yg . # x¢ for £ < 3. For each o > 3, whenever yg. =t = 2o [ o, We
ensured that z,(a) =2 > yg (a) = e. Therefore ys . is not in Xp.

We next prove that every infinite sequence, {z, : n € w} C X, has a subsequence
which converges to x¢ for some { € w;. Indeed, set A = {aq : o € w1} where
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ap = zp for n € w and a, = xo for @ € [w,w1). Apply & to find some « so that
Ay ={ag | a: § € a} and so that « is large enough such that z,, [ a # 2z, | « for
n # m. At stage « in the construction, we first considered if inductive condition
5 held. If it failed, it is because there is a & < « such that some converging
subsequence of {z, [ ({+1) : n € w} has z¢ | (§€+1) as a limit, which implies that z¢
is the limit of the corresponding converging subsequence of {z, : n € w}. If 5 held, it
follows similarly from the conclusion of 5 that a subsequence of {z,, | (a+1) : n € w}
will converge to z,, | (a+1). Then again, we have that a subsequence of {z,, : n € w}
will converge to z,,.

It certainly follows then that each of X and X is sequentially compact. Now
suppose that some point y is not in Xy and that Y = {ag : w < § < w1} is a subset
of Xy which has y as a limit point. To show that X is not WAP, we prove that Y
has another limit point not in Xy. For each n € w, let a, also equal a, and set
A ={ag : B < wi}. By astandard enumeration argument, there is a closed and
unbounded C' C w; such that for each o € C, y | v is a limit of {ag | a: § < a}
and for each 8 < a, ag € {z¢ : £ € a}. Note that since y ¢ X, it follows that
ylad{ze a: € a}foral a. Therefore, at stage «, condition 6 applied,
while 5 fails since {a, : n € w} is not infinite. The conclusion of conditions 6
and 3 gives us that each of yo0 [ (o + 1) and y,41 [ (o + 1) are limit points of
{z¢ [ (a+1) : £ € T, }, while {z¢ : £ € T,,} is a subset of Y. Conditions 4 and 2
together imply that the condition y, . | G is a limit of {z¢ | 5 : & € T, } is preserved
for all 8 > a. Therefore Y has at least two limit points not in Xj.

Finally, we observe that X is pseudoradial since it is compact, sequentially com-
pact and CH holds. O

3. COHEN REALS AND Np-PSEUDORADIAL

In [1], it was shown that 2+ is Ny-pseudoradial if CH and Kunen’s principle
P; hold. In this section we verify the conjecture from [1] that 2“2 remains Ng-
pseudoradial if any number of Cohen reals are added. However, since s = w; in
this model, even 2“1 is not pseudoradial but it is interesting that we can get ¢ to
be arbitrarily large and retain Ng-pseudoradiality. Recall that ¢ < ws implies that
2“2 is not pseudoradial.

We first recall Kunen’s principle P; and then introduce two weakenings that are
closely related to the (Nq,Ng)-Fréchet and (Ny, Ng)-sequential properties.

Definition 3.1. [3, VIIL.7.11] P; is the statement that whenever A C p(w1),
|A] < 2¥t, and

VF C A(|F| < wy — |w1 \UFI =w1),
then there is an uncountable d C wy such that d N A is countable for each A € A.

For our applications, we take w;y as representing a subset of a space and A to be
the complements of a neighborhood of a point. Note the hypothesis however, that
no countable union of members of A can cover the set wi. The set d represents
an wj subsequence that converges to the point in question. We introduce two set-
theoretic principles which remove the restriction on the family 4. However we have
adopted a filter approach, sP; for strong version and wP; for weak version.

Definition 3.2. A filter base on a cardinal & is said to be uniform if each member
has cardinality «.
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(1) sPy is the statement that whenever U is a uniform filter base on w; with
[U] < 21, then there is an uncountable set C' C w; and a function ¢ : U —
w1 such that for each v € C, the family

{UN(B,y):8€~Uel, and p(U) < v}
has the finite intersection property.
(2) wPy is the statement that whenever X C p(wp) and |X| < 2“1, then there
are a uniform filter base U on wy so that [U N {X,w; \ X}| = 1 for each
X € X, and an uncountable set C' C w; and a function ¢ : Y — w; such
that for each v € C, the family

{UN(B,7):8€~,Uel, and p(U) <~}
has the finite intersection property.

We leave it as an exercise the relationship of the above principles to (X1, Rg)
Fréchet and sequentiality.

Proposition 3.3. The principle wP; is equivalent to the statement that each com-
pact space of weight less than 2¥1 is (N1, Ng)-sequential. The principle sPy is equiv-
alent to the statement that each space of character less 2“1 is (N1, Rg)-Fréchet.

We will need an equivalent formulation of P; which can be found in [6, 7].

Proposition 3.4 (CH). The principle Py is equivalent to the statement that if a
poset P is wi-centered and each countable directed subset has a lower bound, then
for any collection D of fewer than 2% dense sets there exists a D-generic filter on
P.

Recall that, for a poset P, and a set x, £ denotes the canonical name for the set
z in the extension. Also, we may assume that a name, X of a subset of wy (i.e.
1I-X C 1) has the following convenient form X CcPx w1. In addition, in the
case where P is Fn(I,2) for any set I, we can assume that for each o € wy, there
is a countable set I(X,a) C I such that for each p € P, (p,&) € X if and only if
(p T I(X7a), a) € X. We will use p L ¢ to denote the relation that p and ¢ are
incompatible in P.

We will say that a Fn(l,2)-name of a subset of w; is a Fn(J,2)-name if J C I
and for each o € wy, I(X, ) C J.

Definition 3.5. Given a P-name X of a subset of wy as above and a condition
p € P we introduce notation for some related names. Let X[p] denote the name
{(g,0) € X : ¢ < p}, (w1 — X) will be {(¢,@) : ¢IF & ¢ X}, and X[p'] = {(¢,a) €
X : ¢ L p}. Finally, in the case that P = Fn(I,2) for some I and J C I, let
X[IJ]={(a1J,&):(q,a) € X}.

The intended effect of X[p] and X[p'] should be reasonably clear. The name
X[[ J] is really just a projection of X toa Fn(J,2)-name with the property that a
member, g, of Fn(J, 2) will force an a in X“ J] if and only if there is a p € Fn(I\J, 2)
such that p U ¢ forces « is in X.

Proposition 3.6. Suppose that X and X' are Fn(I,2)-names of subsets of wi. Let
p,q € Fn(1,2) withp L ¢ and o € wy. Then

plF X = (X[p] U X'[p7])
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and
gk X' = (X[p] U X'[p"])
and
(pl-aeX)iff (p| I(X,a)lFae X).

In the remainder of this section we prove the following two results. We prove
Proposition 3.7 at the end.

Proposition 3.7. If CH holds in the model M, and G is Fn(I,2)-generic for any
index set I with |I| > Ny, then sPy fails in any cardinal preserving extension of
MI[G].

Theorem 3.8. Assume that CH and Py holds in the model M and that G 1is
Fn(I,2)-generic over M for any set I € M. Then the principle wP; holds in
MIG].

Proof. Let X be a collection of ws many Fn(I,2)-names of subsets of w;. Since X
has cardinality ws and these are names of subsets of wy, there is a subset J of I
such that each X € X is a Fn(J,2)-name. With no loss of generality then, we may
assume that J = wy and for each A < wy let Py = Fn(\,2). In fact, it is a simple
consequence of Proposition 3.6 that we may assume that I = wy given the nature
of the properties required in wP;.

Since 2“1 > wq, we will need to select a collection of wy many P,,-names of
subsets of w; which will be closed under basic set-theoretic operations and contain
the family X'. For this purpose, let 6 be a sufficiently large regular cardinal and let
X be a member and subset of an Ng-sized elementary submodel M of H(f) such
that M“ C M. With no loss, we may now assume that X is the set of all P,,,-
names of subsets of w; and (real) subsets of wy which are elements of M. Unless
we explicitly mention to the contrary, we intend that every name of a subset of wq
under discussion will be a member of M.

By induction on A < ws, we construct a family Fy of Py-names in M such that

(1) for each p € Py and Py-name H € X, there is a ¢ < p and an F' € F),
ql- H e {F,w \ F};
(2) for each {F; : i <n} C Fy, 1IF [ F; is uncountable.

We let Fy be any uniform filter which is maximal over X Np(w;). If A = a+1 and
Fa has been chosen, then F' € F) if there are Hy, H, € F, such that pI- F = H;
iff p(a) = 4. It is easily seen that F) will satisfy the above conditions.

Now suppose that A is a limit ordinal and let 7Y equal | J{Fa : @ < A}. Let
{(pe, X¢) : & € wy} enumerate all pairs (p, X) such that p € Py and X € X is a
Py-name of a subset of w;.

We construct ff by induction on ¢ < we and we assume, inductively, that if
{F;:i<n}C ff, then the canonical name for ,_,, Fj is in Fs

If there is a g¢ < pe and an F' € .7:§ such that g¢ IF FNX¢ = (), then there’s really
nothing to do: .7-"§+1 is all finite intersections from ]—"§ U ((w1 — F)lge] U (un [qgl]))
Otherwise, let Fe = (X¢[pe]) U (w1 [pg-]) and let fi“ be the collection of all names
F N Fe for F e F5. (Note that (wy \ 7) € Fo for all v € wy).

We have to check that condition (2) holds in the latter case. So let {F; : i <
n} C ]-"§ and p € Py, we must show that p I- Fe N({F; : ¢ < n} is uncountable. It
is easily seen that this will suffice to verify condition (2) is maintained. Let F' be
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the name (), _,, Fi. In case p L pg, then p IF Fy = wi, hence the result follows by
induction. In case p [ pe, then we may assume that p < pe and the result follows
since we know that every extension of p, forces that F' N X, is uncountable.

Observation: For each F' € F), for each o < A and each p € Py with dom(p)Na =
@7

(3.1) FDlh o] ={(¢gla,§):pCqandql-§ € F} € Fo .

This follows easily from the maximality condition on F, and the inductive con-
struction of Fy. Indeed, if there were some H € F, and a condition ¢ € P, such
that ¢ IF H N (F[p])[l ] is empty, then ¢ U p would force that F N H is empty.

For the remainder, fix a sequence G = {gy : A € wy} such that for each A € wo,
g is a function from wy onto A.

Lemma 3.9. Suppose that {M; : i € n} are elementary submodels of H(6) such
that they all have the same transitive collapse (i.e. they are pairwise isomorphic)
and that these maps all send the pair {G, F.,} € M; to the same object. Suppose
further that F; € M; N F,, for each i < n. Let 6 = My Nw;y (which also equals
M;Nwy for each i <n). Then 11-(,_, F;NJ is not empty (and thus is cofinal in

5).

Proof. (of Lemma 3.9) We proceed by induction on n. For n = 1 it follows by
elementarity and Proposition 3.6. Assume (and the fact that P,, is ccc) that
11k Fy N ¢ is not empty.

Now suppose n > 1 and fix any condition p € P,,,. It suffices to show that there
isa B €46 and a g < p such that ¢ I+ 3 € F; for each i < n.

For each ¢ < n, let A; be minimal such that F; € F),. Also let f; be the standard
transitive collapsing function on M;. It is well-known (see [3, II1.5.9-14]) that f; is
an isomorphism and, therefore, fj_1 o f; is an isomorphism from M; to M; which is
the identity on {G, F,,} and on M; Nw;. Additionally, if A € M; N M; N wa, then
M; N\ = M; N X since each is equal to g»[d].

The lexicographic order on wf is defined by {(a; : 7 € n) < (B; : i € n) if
a; < f3; where i is minimal such that «; # ;. Since w; is well-ordered, this defines
a well-ordering on w?'.

We may assume that {M; : i € n} is enumerated so that f(\;) > f(A;) for i < j,
and we then proceed by induction on (f;();) : 7 € n) in the lexicographic ordering.

For each i with 0 < ¢ < n, let u; = sup(M; N My N Np). Recall that M; N p; =
MO N i«

Fix any 4 such that u; is maximal, and there’s no loss of generality if we assume
that ¢ = 1 for notational convenience. We proceed in cases according to whether or
not My N [p1, Ag) is empty.

In case there is some p € My with p; < p < Ag, then set Hy = (Fo[p I [, Ao]D[!
). It follows that Hy € My and that Hy is a P,-name, and by Equation 3.1 above,
that Hy € F,,. Therefore, by the inductive hypotheses applied to the sequence
{Ho, F1,...,F,_1}, thereisa ¢ < pand a 3 € ¢ such that ¢ IF 8 € HoN(y, ., Fi-
Recall that we may assume that dom(q) C dom(p) U I(Ho, 8) U Uyc;en I(F3, B3),
hence, in particular, we may assume that dom(q) N [, Ag) C dom(p). Since Hy =
(Folp 1 [ MoIDIT 1] and ¢ | p I B € Hy, it follows that there is a ¢’ € Fn(Ag \
i, 2) N My such that ¢’ D p | [, Ao] and q | pU ¢’ I- 8 € Fy. Therefore, it follows
that ¢ is compatible with ¢’ and ¢ U ¢ IF 5 € [, F} as required.

i<n
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Now we assume that there are no elements of My in the interval [p1, Ag). There-
fore, p [ Ao = p | p1. In this case, we set Fj, = fl_1 o fo(Fp) and note that
F| € My N F,,. Now the name for FjN Fy is in M; N F,,, and we apply the
inductive hypothesis to the (n—1)-length sequence (F{ N Fy), Fa,..., F,_1. Again,
fix any ¢ < pand 8 € § so that ¢ I 8 € (FjNFy) and g I+ B8 € F; for 2 < n.
We finish by showing that ¢ IF 3 € Fy. Note that J = I(Fp, ) C My N Ag and
so is a subset of My N pp. Therefore, fi ' o folJ] = J, and J = I(F}, ). Tt fol-
lows that ¢ [ J IF 8 € F{ and, by the isomorphism fi Lo f, applied to each item,
q|JIFgeF. O

Now we continue with the proof of Theorem 3.6.

We will define a poset and a family of dense sets as in Proposition 3.4. Say that
a family M of countable elementary submodels of H(f) are pairwise compatible if
they satisfy the condition in Lemma 3.9. For a countable elementary submodel M
of H(9), let far denote the transitive collapsing function. We will need the fact
that far (M), the transitive collapse, is a member of the R;-sized set H(w1) (see [3,
VLEx 4]).

Conditions in our poset P are pairs (Cp, M) where C,, is a countable subset of w;
and M, is a countable collection of elementary submodels of H(6) each containing G
and F,,. In addition, M, can be expressed as the union of the pairwise compatible
non-empty families M,, 5 for 6 € C}, where M Nw; = § for each M € M,, 5. Finally,
if 6 < ¢’ are both in C), and M € M, 5, then there is some M’ € M, s such that
M € M’. The poset P is ordered as follows: p < p’ if C, Nsup Cpy = C)y and for
each 0 € Cp, Mps D My s.

It is routine to show that countable directed subsets of P are bounded below by
the condition which is basically the union. In addition, it is completely trivial that
P is Ny-centered since for each p € P, the family

A, ={peP:Cy =Cpand fr (M) € {fps(M): M € M,} for each M’ € M}

is centered and A, is determined by the element {fa(M): M € M,} of H(w).

For each F' € F,,, and v € w1, the set Dp, ={p € P: (IM € M,) ~,F € M}
is easily seen to be dense (given any p € P, find M < H(#) such that ~,p, F € M
and take (Cp, U (M Nwq), M, U{M})).

Therefore there is a filter G C P such that G N Dp,, is not empty for each
F ¢ F,, and v € wy. We will set C' to be the (uncountable) union of all C}, such
that p € G.

The hard part to this proof was accomplished in Lemma 3.9, because that is
what will allow us to show that we can define p(F) € wy for F € U = F,,, and have
the condition in Definition 3.2.2 holding. For each F € F,,, set ¢(F) to be the
minimum § such that there is a p € G and an M € M, s with I € M. Note that
the definition of P and the directedness of G guarantees that for each v € C'\ (§+1),
there is p’ € G such that M € M’ € M,, ., hence F' € M’. It now follows directly
from Lemma 3.9 that wP; will hold. O

Now we prove Theorem 3.7.

Proof. (of Theorem 3.7.) Let T denote the tree 2<“* as computed in the model
M. Rather than work directly with Fn(ws,2), we simplify notation by letting G
be Fn(T U ws, 2)-generic over M. Since CH holds in M, T has cardinality w;. We
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fix (still in M) a collection {b¢ : £ € wo} of maximal branches of T, i.e. bs € 2
for each & € wo.
For each £ € wy, we define a set X¢ in M[G] as follows:

a € X iff G(bg[a)Zl

and note that X¢ is an uncountable subset of w; whose complement is also un-
countable by the genericty of G.

Consider any finite family £y < & < -+ < §,-1 < wa, and fix any § € wy, such
that be, [ 0 # be, [ 0 for i < j < mn. Let p € Fn(T Uwy,2) be any condition. Note
that there is a 3 € wy such that for each t € dom(p) N T, t € 2<P. Therefore if
« € wy is any ordinal larger than each of 5 and J, p can be extended to force that
o is a member of X¢, exactly for ¢ in any specified I C n. That is to say, the family
{X¢ : € € wo} is an independent family (mod countable).

Next, for each § € wo, set Fr = X if G(§) = L and Fr = w1\ X¢ if G(§) = 0. Since
the family was independent mod countable, it follows that the family {F¢ : £ € wa}
generates a filter of uncountable sets. We show that in any ccc forcing extension
M’ of M[G], there is no uncountable C and ¢ : {F¢ : £ € wa} — w; as in the
definition of sP;. Indeed, given any such M’, ¢ and unbounded C, since it is a ccc
forcing extension over M, there is a function ¢ € M such that ¢ : wy — w; and
©(Fe) < (€) for each € wy. Similarly, there is a cub € € M such that C' is
cofinal in « for each v € C’ (see [3, VII]). Since CH holds in M, thereisat e T
and a set S C wy of cardinality we, such that be [ () =t for all £ € S. Similarly,
given any v € C’ such that (&) < v for all £ € S, it is easily seen that there are
&€ < nboth in S so that be [ v =b, [ v, Fe = X¢ and F,, = w1 \ X,. However,
since be [ v = by, | 7, it follows that X Ny = X, N~. Then, since G(§) # G(n), it
follows that F¢e N F;, N~ is empty. Clearly then for each 6 € C' N~ \ ¢(§), we see a
failure of the statement of sP;, completing the proof. (|
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