
COMPACT SPACES AND THE PSEUDORADIAL PROPERTY, I

ALAN DOW

Abstract. We investigate two properties and their connection to the prop-

erty of pseudoradiality in the context of compact spaces. The first is the WAP

property introduced by P. Simon and the second is the ℵ0-pseudoradial prop-
erty introduced by B. Šapirovskii. We show that ♦ implies there is a compact

space which is pseudoradial but not WAP. We show that there is a model
in which CH fails and in which all compact spaces of weight at most ℵ2 are
ℵ0-pseudoradial.

1. Introduction

A space X is said to have the property of weak approximation by points, or
WAP, if for every non-closed set A, there exists a point x ∈ A \ A such that, for
some subset B of A, B \ A = {x}. A space X is AP if it is hereditarily WAP,
equivalently, if for every x ∈ A \A, there is a B ⊂ A with B \A = {x}. Note that
each Fréchet space is AP and each sequential space is WAP. A compact AP space
is Fréchet

Much of this work is motivated by Sapirovsk̆ı’s CH result [4] (CH weakened
to c ≤ ω2 in an improvement by Juhasz and Szentmiklossy [2]) that a compact
sequentially compact space is pseudoradial. Several similar results were shown to
follow from the assumption that 2ω2 is not pseudoradial. Sapirovsk̆ı asked if 2ω2

fails to be ℵ0-pseudoradial and it is asked in [1] if it fails to be pseudoradial. We
show that it is consistent to have c be arbitrarily large and to have that 2ω2 is
ℵ0-pseudoradial.

P. Simon showed that a compact WAP space is pseudoradial and to our knowl-
edge it was not known if the simpler WAP condition could characterize the pseu-
doradial spaces in the class of compact spaces. We do not know if there is a ZFC
example of a compact pseudoradial space which is not WAP but we produce an
example from ♦.

Definition 1.1. A set A is ω-closed in X if A contains the closure of each of
its countable subsets. A space X is ℵ0-pseudoradial provided that every ω-closed
non-closed set A ⊆ X contains a sequence converging to a point outside A.

We introduce a pair of properties that will serve to generalize the Fréchet and
sequential properties. Given a point x in a space X, let Ux denote the family of
open subsets of X containing the point x (X should be clear from the context).

Definition 1.2. X is (ℵ1,ℵ0)-Fréchet if for each {xα : α < ω1} in X and each com-
plete accumulation point x there is an uncountable subset C of ω1 and a function
ϕ : Ux → ω1 such that for each γ ∈ C, the family

Uγ
x = {U ∩ {xα : β < α < γ} : β ∈ γ, U ∈ Ux and ϕ(U) < γ}
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has the finite intersection property.
A space X is (ℵ0,ℵ1)-sequential if there is some complete accumulation point

satisfying the above.

The idea behind the definition is that, if for each γ ∈ C, there is an adherent
point zγ of the filter generated by Uγ

x , then the sequence {zγ : γ ∈ C} would
converge to x.

It is proven in [1, 2.9] (using slightly different notation) that each compact pseu-
doradial space is (ℵ0,ℵ1)-sequential.

Lemma 1.3. If X is a compact space of character at most ω2, then X is ℵ0-
pseudoradial if X is (ℵ1,ℵ0)-sequential.

Proof. Assume that A is an ω-closed subset of X which is not closed. Fix a neigh-
borhood basis B of any limit point, x, which is not in A so that |B| ≤ ω2. Notice
that whenever D is a countable subset of B, A will meet

⋂
D. This follows directly

from the compactness of X and the fact that A is ω-closed. For D ⊂ B of size
ω1, two cases are possible. In the first case, assume again that A meets

⋂
D for

each D ⊂ B of size ω1. Fix a well-ordering {Bα : α ∈ ω2} of B and pick a point
aα ∈ A∩

⋂
{Bβ : β ∈ α} for each α ∈ ω2. The sequence {aα : α ∈ ω2} converges to

x.
In the other case, there is some D ⊂ B of cardinality ω1 such that A is disjoint

from
⋂
D. Choose any E ⊂ B of cardinality ω1 that contains D and that has the

property that for each B ∈ E , there is a B′ ∈ E whose closure is contained in B.
Enumerate E as {Bα : α ∈ ω1} and again pick aα ∈ A ∩

⋂
{Bβ : β ∈ α} for α ∈ ω1.

Each complete accumulation point of {aα : α ∈ ω1} belongs to
⋂
E and so is not

in A. Apply the definition of (ℵ1,ℵ0)-sequential to the above sequence to obtain a
point y, an unbounded set C ⊂ ω1 and a function ϕ : Uy → ω1 as in Definition 1.2.
Since, X is compact and A is ω-closed, there is a point yγ ∈ A such that yγ is a
limit of each member of Uγ

y . It should be clear by the properties of Definition 1.2
that {yγ : γ ∈ C} does indeed converge to y. �

Proposition 1.4. The space [0, 1]ω2 is ℵ0-pseudoradial iff it is (ℵ1,ℵ0)-sequential.

2. WAP spaces

For completeness we include the proof (see [5]) that a compact WAP space is
pseudoradial.

Proposition 2.1. If X is compact and WAP, then X is pseudoradial.

Proof. Assume that X is compact and WAP and that A is subset of X which is not
closed. Fix any B ⊂ A such that there is an x ∈ A\A such that B \A = {x}. Let κ
denote the minimum cardinality of a local basis for x in B (i.e. the character of x in
B). Let {Uα : α ∈ κ} enumerate a local basis of open sets for x in B where Uα+1 ⊂
Uα. Again, choose for each α ∈ κ any point aα ∈ B ∩

⋂
{Uβ : β < α}. Clearly if we

are able to choose aα for each α ∈ κ, then {aα : α ∈ κ} converges to x and shows
that X is pseudoradial. If there is no such aα, then the family of finite intersections
from {Uβ : β < α} would form a local basis at x contradicting the minimality of κ
(i.e. character and pseudocharacter coincide in compact spaces). �
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Definition 2.2. [3, II.7.1] A sequence {Eα : α ∈ ω1} is a ♦-sequence if for each
subset E of ω1, there is a stationary set S in ω1 such that Eα = E ∩ α for each
α ∈ ω1.

It will be useful to record a prepratory Lemma whose simple proof is left to the
reader before proving the main result of this section.

Lemma 2.3. Let t be a point in the Cantor set, C, and let K be any countable
collection of subsets of C such that t is an accumulation point of each of them.
Then C \ {t} can be partitioned into open sets U0, U1, U2 so that so that t is an
accumulation point of K ∩ Ui for each K ∈ K and i ∈ {0, 1, 2}.

Theorem 2.4. Assume ♦, there is a compact space X which is pseudoradial but is
not WAP. The space X also contains a dense first-countable sequentially compact
subspace.

Proof. Let f be any bijection from ω1 onto ω1 × 3 × ω1 and let {Eα : α ∈ ω1} be
a ♦-sequence on ω1. We verify that there is a ♦-sequence for ω1 × 3 × ω1, i.e. a
sequence {Aα : α ∈ ω1} such that for each A ⊂ ω1 × 3 × ω1, there is a stationary
set of α such that Aα = A ∩ (α × 3 × α). In fact, we simply set Aα = f [Eα] for
each α such that f [Eα] ⊂ α × 3 × α. For other values of α, let Aα be empty (or
any subset of α × 3 × α). We first show that there is a closed and unbounded set
C consisting of γ such that f [γ] = γ × 3 × γ. For each α, let g(α) ∈ ω1 \ α be
minimal such that f [g(α)] ⊃ α × 3 × α and f [α] ⊂ g(α) × 3 × g(α). Since g is
a monotone increasing continuous unbounded function from ω1 into itself, we can
show that the set C = {γ : g(γ) = γ} is closed and unbounded. The continuity of
g implies that C is closed. To see that C is unbounded, one checks that for each
α ∈ ω1, γ = sup{gn(α) : n ∈ ω} is in C.

Now suppose that A ⊂ ω1 × 3× ω1 and set E = f−1[A]. Since the set S = {γ :
Eγ = E ∩ γ} is stationary, S meets each cub (this is the definition of stationary).
It easily follows that Aγ = f [Eγ ] = f [E ∩ γ] = A∩ f−1[γ] = A∩ γ × 3× γ for each
γ in the stationary set S ∩ C.

Therefore, if we have {aα : α ∈ ω1} ⊂ 3ω1 , there is a stationary set of λ such
that Aλ =

⋃
{{β} × aβ � λ : β < λ}, i.e we can consider Aλ as a sequence

{a(λ, β) : β < λ} of points in 3λ. We will specifically set the value for Aω below.
We will construct a sequence {xn : n ∈ ω} ⊂ 3ω1 . In order to do so, we will

define by induction on α ∈ ω1 the values {xn � α : n ∈ ω}. For each α ≥ ω, let Xα

denote the closure in 3α of the sequence {xn � α : n ∈ ω}. We will also inductively
construct other elements of Xα, {xβ � α, yβ,0 � α, yβ,1 � α : β < α < ω1} and we
will define sets Tα ⊂ α in order to ensure that X = Xω1 has the desired properties.
It will follow by induction that for each α < ω1, Xα is homeomorphic to the Cantor
set.

We define {xn � ω : n ∈ ω} to be any dense subset of 3ω. Set Aω = {a(ω, n) :
n ∈ ω} to be any subset of Xω which does not have any limit in {xn � ω : n ∈ ω}.

The role of the xα’s is to form the sequential closure of the xn’s and, additionally,
to generally serve as sequential limits to ensure the space is sequentially compact.
The role of the yβ,0 � α and yβ,1 � α is to be points eventually not in the sequential
closure of {xn : n ∈ ω} and to witness that certain sets do witness the failure of
WAP. At each stage α ≥ ω, we choose some tα ∈ Xα \ {xξ � α : ξ < α} and apply
Lemma 2.3 to obtain open subsets, Uα

0 , U
α
1 and Uα

2 , of Xα \ {tα}. For each n ∈ ω,
xn(α) is defined to be the unique i such that xn � α ∈ Uα

i , hence Xα+1 is clearly
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defined. For each β < α, xβ � (α+ 1) is implicitly defined, and for e ∈ 2 such that
yβ,e � α 6= tα, yβ,e � (α + 1) is also implicitly defined. For any β < α and e ∈ 2
such that yβ,e � α = tα we will set yβ,e(α) to be e. Finally, we will set xα � (α+ 1)
to be the extension of tα which has value 2 at α, and similarly, yα,e � (α + 1) will
be the extension of tα which has value e at α. Recall also that we will define a set
Tα ⊂ α.

There is nothing to do at limit stages, α, of the induction but to realize that
each of the elements xβ � α, yβ,e � α (e ∈ 2) have been defined. Of course, Xα is
the closure in 3α of the set {xn � α : n ∈ ω} (and is also equal to the inverse limit
of the previous Xβ under the obvious projection maps). For successor stages, we
must define, for arbitrary α, the space Xα+1 by selecting tα as well as the sets Tα

and Uα
i for i = 0, 1, 2 in order to preserve the following inductive hypotheses.

(1) tα ∈ Xα \ {xξ � α : ξ < α},
(2) {Uα

0 , U
α
1 , U

α
2 } is a partition of Xα \ {tα} into open sets,

(3) tα is a limit point of Uα
i ∩ {xξ � α : ξ ∈ Tα} for each i ∈ 3,

(4) for each β < α, e ∈ 2 and i ∈ 3, if tα = yβ,e � α, then Uα
i ∩{xξ � α : ξ ∈ Tβ}

is infinite,
(5) if {a(α, n) : n ∈ ω} is an infinite subset of Xα which has no limits in

{xξ � α : ξ < α}, then tα is a limit of Uα
2 ∩ {a(α, n) : n ∈ ω},

(6) if Aα = {a(α, ξ) : ξ < α} is a subset of {xξ � α : ξ < α} which has a
limit not in {xξ � α : ξ < α}, then tα will be such a limit and Tα will be
contained in {ξ < α : xξ � α ∈ Aα}.

Assume first that the condition in 5 holds, then let tα be any limit in Xα of
{a(α, n) : n ∈ ω}. Set Tα = ω and define K0 = {a(α, n) : n ∈ ω}.

If both conditions 5 and 6 fail, then let tα ∈ Xα \ {xξ � α : ξ < α} be arbitrary.
Set Tα = ω and K0 = Xα.

Now suppose that condition 6 holds. If 5 also holds, then there is no change.
If 5 fails, then let tα be any limit of Aα which is not in {xξ � α : ξ < α}. Set
Tα = {ξ ∈ α : xξ � α ∈ Aα} and K0 = {xξ � α : ξ ∈ Tα}.

We next let {Kn : n ∈ ω\{0}} be any enumeration of those sets {xξ � α : ξ ∈ Tβ}
such that β < α, and and there is e ∈ 2 such that yβ,e = tα. If there are no such
sets, then simply set Kn = K0 for all n ∈ ω.

The sets Uα
0 , U

α
1 , U

α
2 are then obtained by simply applying Lemma 2.3 to the

family {Kn : n ∈ ω}.
This completes the induction, and we set X to be the closure in 3ω1 of {xn : n ∈

ω}. We will show that X0 = {xξ : ξ ∈ ω1} is the sequential closure of {xn : n ∈ ω}
and though X0 is not closed it contains no subset B with a unique accumulation
point not in X0.

Clearly, X is compact, and note that by the construction, especially conditions
(1) and (2), it follows that X is first countable at each xξ. For our purposes it
suffices to note that a sequence {zn : n ∈ ω} ⊂ X converges to xα if and only if
{zn � (α+ 1) : n ∈ ω} converges to xα � (α+ 1).

To see that X0 is not closed, note that for each β and e ∈ 2, we have the point
yβ,e which is clearly a limit point of {xn : n ∈ ω}. In the construction, yβ,e extends
tβ , hence yβ,e 6= xξ for ξ < β. For each α ≥ β, whenever yβ,e = tα = xα � α, we
ensured that xα(α) = 2 > yβ,e(α) = e. Therefore yβ,e is not in X0.

We next prove that every infinite sequence, {zn : n ∈ ω} ⊂ X, has a subsequence
which converges to xξ for some ξ ∈ ω1. Indeed, set A = {aα : α ∈ ω1} where
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an = zn for n ∈ ω and aα = x0 for α ∈ [ω, ω1). Apply ♦ to find some α so that
Aα = {aβ � α : β ∈ α} and so that α is large enough such that zn � α 6= zm � α for
n 6= m. At stage α in the construction, we first considered if inductive condition
5 held. If it failed, it is because there is a ξ < α such that some converging
subsequence of {zn � (ξ+1) : n ∈ ω} has xξ � (ξ+1) as a limit, which implies that xξ

is the limit of the corresponding converging subsequence of {zn : n ∈ ω}. If 5 held, it
follows similarly from the conclusion of 5 that a subsequence of {zn � (α+1) : n ∈ ω}
will converge to xα � (α+1). Then again, we have that a subsequence of {zn : n ∈ ω}
will converge to xα.

It certainly follows then that each of X and X0 is sequentially compact. Now
suppose that some point y is not in X0 and that Y = {aβ : ω ≤ β < ω1} is a subset
of X0 which has y as a limit point. To show that X is not WAP, we prove that Y
has another limit point not in X0. For each n ∈ ω, let an also equal aω and set
A = {aβ : β < ω1}. By a standard enumeration argument, there is a closed and
unbounded C ⊂ ω1 such that for each α ∈ C, y � α is a limit of {aβ � α : β < α}
and for each β < α, aβ ∈ {xξ : ξ ∈ α}. Note that since y /∈ X0, it follows that
y � α /∈ {xξ � α : ξ ∈ α} for all α. Therefore, at stage α, condition 6 applied,
while 5 fails since {an : n ∈ ω} is not infinite. The conclusion of conditions 6
and 3 gives us that each of yα,0 � (α + 1) and yα,1 � (α + 1) are limit points of
{xξ � (α + 1) : ξ ∈ Tα}, while {xξ : ξ ∈ Tα} is a subset of Y . Conditions 4 and 2
together imply that the condition yα,e � β is a limit of {xξ � β : ξ ∈ Tα} is preserved
for all β > α. Therefore Y has at least two limit points not in X0.

Finally, we observe that X is pseudoradial since it is compact, sequentially com-
pact and CH holds. �

3. Cohen Reals and ℵ0-pseudoradial

In [1], it was shown that 2ω2 is ℵ0-pseudoradial if CH and Kunen’s principle
P1 hold. In this section we verify the conjecture from [1] that 2ω2 remains ℵ0-
pseudoradial if any number of Cohen reals are added. However, since s = ω1 in
this model, even 2ω1 is not pseudoradial but it is interesting that we can get c to
be arbitrarily large and retain ℵ0-pseudoradiality. Recall that c ≤ ω2 implies that
2ω2 is not pseudoradial.

We first recall Kunen’s principle P1 and then introduce two weakenings that are
closely related to the (ℵ1,ℵ0)-Fréchet and (ℵ1,ℵ0)-sequential properties.

Definition 3.1. [3, VIII.7.11] P1 is the statement that whenever A ⊂ ℘(ω1),
|A| < 2ω1 , and

∀F ⊂ A(|F | < ω1 → |ω1 \
⋃
F | = ω1),

then there is an uncountable d ⊂ ω1 such that d ∩A is countable for each A ∈ A.

For our applications, we take ω1 as representing a subset of a space and A to be
the complements of a neighborhood of a point. Note the hypothesis however, that
no countable union of members of A can cover the set ω1. The set d represents
an ω1 subsequence that converges to the point in question. We introduce two set-
theoretic principles which remove the restriction on the family A. However we have
adopted a filter approach, sP1 for strong version and wP1 for weak version.

Definition 3.2. A filter base on a cardinal κ is said to be uniform if each member
has cardinality κ.
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(1) sP1 is the statement that whenever U is a uniform filter base on ω1 with
|U| < 2ω1 , then there is an uncountable set C ⊂ ω1 and a function ϕ : U →
ω1 such that for each γ ∈ C, the family

{U ∩ (β, γ) : β ∈ γ, U ∈ U , and ϕ(U) < γ}
has the finite intersection property.

(2) wP1 is the statement that whenever X ⊂ ℘(ω1) and |X | < 2ω1 , then there
are a uniform filter base U on ω1 so that |U ∩ {X,ω1 \ X}| = 1 for each
X ∈ X , and an uncountable set C ⊂ ω1 and a function ϕ : U → ω1 such
that for each γ ∈ C, the family

{U ∩ (β, γ) : β ∈ γ, U ∈ U , and ϕ(U) < γ}
has the finite intersection property.

We leave it as an exercise the relationship of the above principles to (ℵ1,ℵ0)
Fréchet and sequentiality.

Proposition 3.3. The principle wP1 is equivalent to the statement that each com-
pact space of weight less than 2ω1 is (ℵ1,ℵ0)-sequential. The principle sP1 is equiv-
alent to the statement that each space of character less 2ω1 is (ℵ1,ℵ0)-Fréchet.

We will need an equivalent formulation of P1 which can be found in [6, 7].

Proposition 3.4 (CH). The principle P1 is equivalent to the statement that if a
poset P is ω1-centered and each countable directed subset has a lower bound, then
for any collection D of fewer than 2ℵ1 dense sets there exists a D-generic filter on
P .

Recall that, for a poset P , and a set x, x̌ denotes the canonical name for the set
x in the extension. Also, we may assume that a name, Ẋ of a subset of ω1 (i.e.
1 
 Ẋ ⊂ ω̌1) has the following convenient form Ẋ ⊂ P × ω̌1. In addition, in the
case where P is Fn(I, 2) for any set I, we can assume that for each α ∈ ω1, there
is a countable set I(Ẋ, α) ⊂ I such that for each p ∈ P , (p, α̌) ∈ Ẋ if and only if
(p � I(Ẋ, α), α̌) ∈ Ẋ. We will use p ⊥ q to denote the relation that p and q are
incompatible in P .

We will say that a Fn(I, 2)-name of a subset of ω1 is a Fn(J, 2)-name if J ⊂ I

and for each α ∈ ω1, I(Ẋ, α) ⊂ J .

Definition 3.5. Given a P -name Ẋ of a subset of ω1 as above and a condition
p ∈ P we introduce notation for some related names. Let Ẋ[p] denote the name
{(q, α̌) ∈ Ẋ : q ≤ p}, (ω1 − Ẋ) will be {(q, α̌) : q 
 α̌ /∈ Ẋ}, and Ẋ[p⊥] = {(q, α̌) ∈
Ẋ : q ⊥ p}. Finally, in the case that P = Fn(I, 2) for some I and J ⊂ I, let
Ẋ[� J ] = {(q � J, α̌) : (q, α̌) ∈ Ẋ}.

The intended effect of Ẋ[p] and Ẋ[p⊥] should be reasonably clear. The name
Ẋ[� J ] is really just a projection of Ẋ to a Fn(J, 2)-name with the property that a
member, q, of Fn(J, 2) will force an α in Ẋ[� J ] if and only if there is a p ∈ Fn(I\J, 2)
such that p ∪ q forces α is in Ẋ.

Proposition 3.6. Suppose that Ẋ and Ẋ ′ are Fn(I, 2)-names of subsets of ω1. Let
p, q ∈ Fn(I, 2) with p ⊥ q and α ∈ ω1. Then

p 
 Ẋ = (Ẋ[p] ∪ Ẋ ′[p⊥])
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and
q 
 Ẋ ′ = (Ẋ[p] ∪ Ẋ ′[p⊥])

and
(p 
 α̌ ∈ Ẋ) iff (p � I(Ẋ, α) 
 α̌ ∈ Ẋ).

In the remainder of this section we prove the following two results. We prove
Proposition 3.7 at the end.

Proposition 3.7. If CH holds in the model M , and G is Fn(I, 2)-generic for any
index set I with |I| ≥ ℵ2, then sP1 fails in any cardinal preserving extension of
M [G].

Theorem 3.8. Assume that CH and P1 holds in the model M and that G is
Fn(I, 2)-generic over M for any set I ∈ M . Then the principle wP1 holds in
M [G].

Proof. Let X be a collection of ω2 many Fn(I, 2)-names of subsets of ω1. Since X
has cardinality ω2 and these are names of subsets of ω1, there is a subset J of I
such that each Ẋ ∈ X is a Fn(J, 2)-name. With no loss of generality then, we may
assume that J = ω2 and for each λ ≤ ω2 let Pλ = Fn(λ, 2). In fact, it is a simple
consequence of Proposition 3.6 that we may assume that I = ω2 given the nature
of the properties required in wP1.

Since 2ω1 > ω2, we will need to select a collection of ω2 many Pω2-names of
subsets of ω1 which will be closed under basic set-theoretic operations and contain
the family X . For this purpose, let θ be a sufficiently large regular cardinal and let
X be a member and subset of an ℵ2-sized elementary submodel M of H(θ) such
that Mω ⊂ M . With no loss, we may now assume that X is the set of all Pω2-
names of subsets of ω1 and (real) subsets of ω1 which are elements of M . Unless
we explicitly mention to the contrary, we intend that every name of a subset of ω1

under discussion will be a member of M .
By induction on λ < ω2, we construct a family Fλ of Pλ-names in M such that
(1) for each p ∈ Pλ and Pλ-name H ∈ X , there is a q < p and an F ∈ Fλ,

q 
 H ∈ {F, ω1 \ F};
(2) for each {Fi : i < n} ⊂ Fλ, 1 


⋂
Fi is uncountable.

We let F0 be any uniform filter which is maximal over X∩℘(ω1). If λ = α+1 and
Fα has been chosen, then F ∈ Fλ if there are H0,H1 ∈ Fα such that p 
 F = Hi

iff p(α) = i. It is easily seen that Fλ will satisfy the above conditions.
Now suppose that λ is a limit ordinal and let F0

λ equal
⋃
{Fα : α < λ}. Let

{(pξ, Xξ) : ξ ∈ ω2} enumerate all pairs (p,X) such that p ∈ Pλ and X ∈ X is a
Pλ-name of a subset of ω1.

We construct Fξ
λ by induction on ξ < ω2 and we assume, inductively, that if

{Fi : i < n} ⊂ Fξ
λ, then the canonical name for

⋂
i<n Fi is in Fξ

λ

If there is a qξ < pξ and an F ∈ Fξ
λ such that qξ 
 F ∩Xξ = ∅, then there’s really

nothing to do: Fξ+1
λ is all finite intersections from Fξ

λ ∪ ((ω1 − F )[qξ] ∪ (ω̌1[q⊥ξ ])).
Otherwise, let Fξ = (Xξ[pξ])∪ (ω1[p⊥ξ ]) and let Fξ+1

λ be the collection of all names
F ∩ Fξ for F ∈ Fξ

λ. (Note that (ω1 \ γ) ∈ F0 for all γ ∈ ω1).
We have to check that condition (2) holds in the latter case. So let {Fi : i <

n} ⊂ Fξ
λ and p ∈ Pλ, we must show that p 
 Fξ ∩

⋂
{Fi : i < n} is uncountable. It

is easily seen that this will suffice to verify condition (2) is maintained. Let F be
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the name
⋂

i<n Fi. In case p ⊥ pξ, then p 
 Fξ = ω1, hence the result follows by
induction. In case p 6⊥ pξ, then we may assume that p < pξ and the result follows
since we know that every extension of pξ forces that F ∩Xξ is uncountable.

Observation: For each F ∈ Fλ, for each α < λ and each p ∈ Pλ with dom(p)∩α =
∅,
(3.1) (F [p])[� α] = {(q � α, ξ) : p ⊂ q and q 
 ξ ∈ F} ∈ Fα .

This follows easily from the maximality condition on Fα and the inductive con-
struction of Fλ. Indeed, if there were some H ∈ Fα and a condition q ∈ Pα such
that q 
 H ∩ (F [p])[� α] is empty, then q ∪ p would force that F ∩H is empty.

For the remainder, fix a sequence G = {gλ : λ ∈ ω2} such that for each λ ∈ ω2,
gλ is a function from ω1 onto λ.

Lemma 3.9. Suppose that {Mi : i ∈ n} are elementary submodels of H(θ) such
that they all have the same transitive collapse (i.e. they are pairwise isomorphic)
and that these maps all send the pair {G,Fω2} ∈ Mi to the same object. Suppose
further that Fi ∈ Mi ∩ Fω2 for each i < n. Let δ = M0 ∩ ω1 (which also equals
Mi ∩ ω1 for each i < n). Then 1 


⋂
i<n Fi ∩ δ is not empty (and thus is cofinal in

δ).

Proof. (of Lemma 3.9) We proceed by induction on n. For n = 1 it follows by
elementarity and Proposition 3.6. Assume (and the fact that Pω2 is ccc) that
1 
 F0 ∩ δ is not empty.

Now suppose n > 1 and fix any condition p ∈ Pω2 . It suffices to show that there
is a β ∈ δ and a q < p such that q 
 β ∈ Fi for each i < n.

For each i < n, let λi be minimal such that Fi ∈ Fλi
. Also let fi be the standard

transitive collapsing function on Mi. It is well-known (see [3, III.5.9-14]) that fi is
an isomorphism and, therefore, f−1

j ◦ fi is an isomorphism from Mi to Mj which is
the identity on {G,Fω2} and on Mi ∩ ω1. Additionally, if λ ∈ Mi ∩Mj ∩ ω2, then
Mi ∩ λ = Mj ∩ λ since each is equal to gλ[δ].

The lexicographic order on ωn
1 is defined by 〈αi : i ∈ n〉 < 〈βi : i ∈ n〉 if

αi < βi where i is minimal such that αi 6= βi. Since ω1 is well-ordered, this defines
a well-ordering on ωn

1 .
We may assume that {Mi : i ∈ n} is enumerated so that f(λi) ≥ f(λj) for i ≤ j,

and we then proceed by induction on 〈fi(λi) : i ∈ n〉 in the lexicographic ordering.
For each i with 0 < i < n, let µi = sup(Mi ∩M0 ∩ λ0). Recall that Mi ∩ µi =

M0 ∩ µi.
Fix any i such that µi is maximal, and there’s no loss of generality if we assume

that i = 1 for notational convenience. We proceed in cases according to whether or
not M0 ∩ [µ1, λ0) is empty.

In case there is some µ ∈M0 with µi ≤ µ < λ0, then set H0 = (F0[p � [µ, λ0]])[�
µ]. It follows that H0 ∈M0 and that H0 is a Pµ-name, and by Equation 3.1 above,
that H0 ∈ Fω2 . Therefore, by the inductive hypotheses applied to the sequence
{H0, F1, . . . , Fn−1}, there is a q < p and a β ∈ δ such that q 
 β ∈ H0 ∩

⋂
0<i<n Fi.

Recall that we may assume that dom(q) ⊂ dom(p) ∪ I(H0, β) ∪
⋃

0<i<n I(Fi, β),
hence, in particular, we may assume that dom(q) ∩ [µ, λ0) ⊂ dom(p). Since H0 =
(F0[p � [µ, λ0]])[� µ] and q � µ 
 β ∈ H0, it follows that there is a q′ ∈ Fn(λ0 \
µ, 2) ∩M0 such that q′ ⊃ p � [µ, λ0] and q � µ ∪ q′ 
 β ∈ F0. Therefore, it follows
that q is compatible with q′ and q ∪ q′ 
 β ∈

⋂
i Fi as required.
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Now we assume that there are no elements of M0 in the interval [µ1, λ0). There-
fore, p � λ0 = p � µ1. In this case, we set F ′

0 = f−1
1 ◦ f0(F0) and note that

F ′
0 ∈ M1 ∩ Fω2 . Now the name for F ′

0 ∩ F1 is in M1 ∩ Fω2 , and we apply the
inductive hypothesis to the (n−1)-length sequence (F ′

0 ∩ F1), F2, . . . , Fn−1. Again,
fix any q < p and β ∈ δ so that q 
 β ∈ (F ′

0 ∩ F1) and q 
 β ∈ Fi for 2 ≤ n.
We finish by showing that q 
 β ∈ F0. Note that J = I(F0, β) ⊂ M0 ∩ λ0 and
so is a subset of M0 ∩ µ1. Therefore, f−1

1 ◦ f0[J ] = J , and J = I(F ′
0, β). It fol-

lows that q � J 
 β ∈ F ′
0 and, by the isomorphism f−1

0 ◦ f1 applied to each item,
q � J 
 β ∈ F0. �

Now we continue with the proof of Theorem 3.6.
We will define a poset and a family of dense sets as in Proposition 3.4. Say that

a family M of countable elementary submodels of H(θ) are pairwise compatible if
they satisfy the condition in Lemma 3.9. For a countable elementary submodel M
of H(θ), let fM denote the transitive collapsing function. We will need the fact
that fM (M), the transitive collapse, is a member of the ℵ1-sized set H(ω1) (see [3,
VI.Ex 4]).

Conditions in our poset P are pairs (Cp,Mp) where Cp is a countable subset of ω1

andMp is a countable collection of elementary submodels ofH(θ) each containing G
and Fω2 . In addition, Mp can be expressed as the union of the pairwise compatible
non-empty families Mp,δ for δ ∈ Cp where M ∩ω1 = δ for each M ∈Mp,δ. Finally,
if δ < δ′ are both in Cp and M ∈ Mp,δ, then there is some M ′ ∈ Mp,δ′ such that
M ∈ M ′. The poset P is ordered as follows: p < p′ if Cp ∩ supCp′ = Cp′ and for
each δ ∈ Cp′ , Mp,δ ⊃Mp′,δ.

It is routine to show that countable directed subsets of P are bounded below by
the condition which is basically the union. In addition, it is completely trivial that
P is ℵ1-centered since for each p ∈ P , the family

Ap = {p′ ∈ P : Cp′ = Cp and fM ′(M ′) ∈ {fM (M) : M ∈Mp} for each M ′ ∈Mp′}

is centered and Ap is determined by the element {fM (M) : M ∈Mp} of H(ω1).
For each F ∈ Fω2 and γ ∈ ω1, the set DF,γ = {p ∈ P : (∃M ∈ Mp) γ, F ∈ M}

is easily seen to be dense (given any p ∈ P , find M ≺ H(θ) such that γ, p, F ∈ M
and take (Cp ∪ (M ∩ ω1),Mp ∪ {M})).

Therefore there is a filter G ⊂ P such that G ∩ DF,γ is not empty for each
F ∈ Fω2 and γ ∈ ω1. We will set C to be the (uncountable) union of all Cp such
that p ∈ G.

The hard part to this proof was accomplished in Lemma 3.9, because that is
what will allow us to show that we can define ϕ(F ) ∈ ω1 for F ∈ U = Fω2 and have
the condition in Definition 3.2.2 holding. For each F ∈ Fω2 , set ϕ(F ) to be the
minimum δ such that there is a p ∈ G and an M ∈ Mp,δ with F ∈ M . Note that
the definition of P and the directedness of G guarantees that for each γ ∈ C\(δ+1),
there is p′ ∈ G such that M ∈M ′ ∈ Mp′,γ , hence F ∈M ′. It now follows directly
from Lemma 3.9 that wP1 will hold. �

Now we prove Theorem 3.7.

Proof. (of Theorem 3.7.) Let T denote the tree 2<ω1 as computed in the model
M . Rather than work directly with Fn(ω2, 2), we simplify notation by letting G
be Fn(T ∪ ω2, 2)-generic over M . Since CH holds in M , T has cardinality ω1. We
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fix (still in M) a collection {bξ : ξ ∈ ω2} of maximal branches of T , i.e. bξ ∈ 2ω1

for each ξ ∈ ω2.
For each ξ ∈ ω2, we define a set Xξ in M [G] as follows:

α ∈ Xξ iff G(bξ � α) = 1

and note that Xξ is an uncountable subset of ω1 whose complement is also un-
countable by the genericty of G.

Consider any finite family ξ0 < ξ1 < · · · < ξn−1 < ω2, and fix any δ ∈ ω1, such
that bξi

� δ 6= bξj
� δ for i < j < n. Let p ∈ Fn(T ∪ ω2, 2) be any condition. Note

that there is a β ∈ ω1 such that for each t ∈ dom(p) ∩ T , t ∈ 2<β . Therefore if
α ∈ ω1 is any ordinal larger than each of β and δ, p can be extended to force that
α is a member of Xξi exactly for i in any specified I ⊂ n. That is to say, the family
{Xξ : ξ ∈ ω2} is an independent family (mod countable).

Next, for each ξ ∈ ω2, set Fξ = Xξ ifG(ξ) = 1 and Fξ = ω1\Xξ ifG(ξ) = 0. Since
the family was independent mod countable, it follows that the family {Fξ : ξ ∈ ω2}
generates a filter of uncountable sets. We show that in any ccc forcing extension
M ′ of M [G], there is no uncountable C and ϕ : {Fξ : ξ ∈ ω2} → ω1 as in the
definition of sP1. Indeed, given any such M ′, ϕ and unbounded C, since it is a ccc
forcing extension over M , there is a function ψ ∈ M such that ψ : ω2 → ω1 and
ϕ(Fξ) < ψ(ξ) for each ξ ∈ ω2. Similarly, there is a cub C ′ ∈ M such that C is
cofinal in γ for each γ ∈ C ′ (see [3, VII]). Since CH holds in M , there is a t ∈ T
and a set S ⊂ ω2 of cardinality ω2, such that bξ � ψ(ξ) = t for all ξ ∈ S. Similarly,
given any γ ∈ C ′ such that ψ(ξ) < γ for all ξ ∈ S, it is easily seen that there are
ξ < η both in S so that bξ � γ = bη � γ, Fξ = Xξ and Fη = ω1 \ Xη. However,
since bξ � γ = bη � γ, it follows that Xξ ∩ γ = Xη ∩ γ. Then, since G(ξ) 6= G(η), it
follows that Fξ ∩ Fη ∩ γ is empty. Clearly then for each δ ∈ C ′ ∩ γ \ ψ(ξ), we see a
failure of the statement of sP1, completing the proof. �
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