
PFA(S) AND COUNTABLE TIGHTNESS

ALAN DOW

Abstract. Todorcevic introduced the forcing axiom PFA(S) and
established many consequences. We contribute to this project.
In particular, we consider status under PFA(S) of two important
consequences of PFA concerning spaces of countable tightness. In
particular we prove that the existence of a Souslin tree does not
imply the existence of a compact non-sequential space of countable
tightness. We contrast this with M. E. Rudin’s result that the
existence of a Souslin tree does imply the existence of an S-space
(and the later improvement by Dahrough to a compact S-space).

1. Introduction

In the paper [8], the authors solved Katetov’s problem by introducing
what they called the Souslin Axiom (SAω1) which is the statement that
there is a coherent Suslin tree S such that for all posets P with P × S
ccc, and any collection D = {Dξ : ξ < ω1} of dense open subsets of
P , there is a D-generic filter G ⊂ P . The (independence, and thus
solution) to the Katetov problem was established by then passing to
the generic extension by forcing with S over a model of SAω1 . In later
work, Todorcevic [15], introduced the strengthening of SAω1 (which
can be seen as a Martin’s Axiom like statement) to the PFA or proper
poset version called PFA(S). The axiom statement PFA(S)[S] has come
to mean a model obtained by forcing with with the coherent Souslin tree
S over a model of PFA(S). The interested reader can consult [15] and
[13] for a number of powerful consequences. It is generally interesting
to determine the status of many of the consequences of PFA in these
new PFA-like models. We are interested in these three consequences of
PFA:

(1) the non-existence of (compact) S-spaces (hereditarily separable
but not hereditarily Lindelof) [12,14],
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2 A. DOW

(2) the Moore-Mrowka problem: every compact space of countable
tightness is sequential [1],

(3) every countably tight perfect pre-image of ω1 contains a copy
of ω1 [7].

We mention (1) in part because of its historical close connection
with (2). For example the first consistent examples of (2) failing (the
classical Fedorchuk and Ostaszewski spaces) were primarily of interest
because they were S-spaces. In models of PFA(S)[S] it remains an
open problem if there are any S-spaces but it is shown in [15] that
there are no compact S-spaces and that (2) holds. It is also shown in
[5] that (3) holds in models of PFA(S)[S]. In models of PFA(S), there
is, of course, a Souslin tree and so there are (compact) S-spaces (M. E.
Rudin [10] constructed an S-space and M. Darough (unpublished 1979)
modified the construction to make it compact). In this note we prove
that (2) holds and (3) fails in a model of PFA(S). It is worth mentioning
that in each of these models the statement (2) can be strengthened by
asserting that such spaces also have a dense set of points with countable
character. This was shown to hold under PFA in [6] and PFA(S)[S] [15].

The method of applying PFA(S) to prove results about either PFA(S),
or the extension PFA(S)[S], is to produce a proper poset P and prove
that it preserves that the Souslin tree S remains Souslin. Such a poset
is said to be S-preserving. For a downward closed sub-tree S ⊂ ω<ω1

and ordinal α ∈ ω1 we let Sα = S ∩ ωα. The homogeneous closure of a
tree S ⊂ ω<ω1 will consist of all elements t of ω<ω1 that satisfy s∆t is
finite for each s ∈ Sdom(t). If S is a coherent Souslin tree then its homo-
geneous closure is as well. Henceforth we assume that S is a coherent
Souslin tree that is equal to its homogeneous closure. For s, t ∈ S we let
s⊕ t denote the element of S that is equal to s∪ (t � [dom(s), dom(t))).
If g is any generic filter for S and s ∈ S, then s⊕ g = {s⊕ t : t ∈ g} is
also an S-generic filter.

Definition 1.1. A tree S ⊂ ω<ω1 is coherent if s∆t = {ξ ∈ dom(s) ∩
dom(t) : s(ξ) 6= t(ξ)} is finite for all s, t ∈ S. The axiom PFA(S) is the
statement that there is a coherent Souslin tree and for all S-preserving
proper posets P and for each family D of at most ω1 dense subsets of
P there is a D-generic filter on P.

Miyamoto [9] characterized when a proper poset will preserve a
Souslin tree, but for coherent Souslin tree the following simpler condi-
tion was established in [4].

Proposition 1.2. For a proper poset P the following are equivalentproper



PFA(S) AND COUNTABLE TIGHTNESS 3

(1) P preserves that S is Souslin,
(2) P× S is proper.

2. Moore-Mrowka under PFA(S)

In this section we will prove this theorem.

Theorem 2.1. PFA(S) implies that compact spaces of countable tight- main1
ness are sequential and have a dense set of points of countable charac-
ter.

When constructing proper posets which may be of the form P ∗ Q
for some proper poset P or even when choosing the suitable family
of ω1-many dense subsets of P it is common to pass to the forcing
extension by P . In the case of working with PFA(S) we will see that it
is also useful to pass to the forcing extension by S. We will let g denote
an S-generic filter. Throughout this section we will be analyzing the
structure of a compact space K of countable tightness in a model of
PFA(S). We may assume that the base set for the space K is an ordinal.
It is useful to recall forcing with S does not add any new countable
sets of ordinals. Similarly a countably closed poset will not any new
countable sets of ordinals.

The poset Col(ω1, ω2) is the standard countably closed poset that
adds a function from ω1 onto the ground model ordinal ω2. In a model
in which CH fails, Col(ω1, ω2) is forcing isomorphic to the tree 2<ω1 .

We will speak of the space K (and some chosen subspace X) in
such forcing extensions. The convention is that the topology from the
ground model will be a base for a topology in the extension. If the
forcing poset adds no new countable ordinals then the space K in the
extension will still be countably compact. It was shown in [6] that if K
has no points of countable character then it will no longer be compact
in the forcing extension by Col(ω1, ω2). However K will continue to
have countable tightness in this extension.

Proposition 2.2 ([6]). If K is a compact space of countable tight-
ness, then K continues to have countable tightness after forcing with a
countably closed poset.

The standard proof from PFA for Theorem 2.1 could be used without
much change if forcing by S preserved countable tightness in compact
spaces. However we note the interesting fact that this is not the case.

Proposition 2.3. Forcing with a Souslin tree does not (in general)
preserve countable tightness in compact spaces (even sequential).
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Proof. Let S be a Souslin tree and let K denote the set S ∪ {∞}.
We define a topology on K. For each s < t both in S, the interval
(s, t] = {u ∈ S : s < u ≤ t} is declared to be clopen. In particular,
each set t↓ = {u ∈ S : u ≤ t} is a compact open subset of S. Using this
family as a base results in a locally countable, locally compact topology
on S. The topology on K is simply the one-point compactification.
Neighborhoods of ∞ are then simply complements of finite unions of
intervals of the form t↓ (t ∈ S). Clearly if g ⊂ S is a generic filter,
then ∞ is a limit point of g but not of any countable subset of g. On
the other hand, K has countable tightness (in fact it is Frechet) in the
ground model. To see this it suffices to suppose that every uncountable
subset of S contains an infinite antichain. This is proven to hold for
Aronszajn trees in [2]. �

Lemma 2.4 (p > ℵ1). Suppose that S is a Souslin tree and that X is
a countably compact dense subset of a compact space K of countablecanpicka
tightness. Then the following holds in the forcing extension by S ×
Col(ω1, ω2):

if z ∈ K and if Y is a countable family of subsets of X satisfying
that t(z, Y ) > ℵ0 for each Y ∈ Y, then, for any countable b ⊂ X with
z ∈ b, there is a countable set a ⊂ X such that x ∈ a ⊂ b \

⋃
Y.

Proof. Let X and z ∈ X be given. Let Sz denote the collection of all
countable sets b ⊂ X that have x in their closure. The family Sz is
unchanged by the forcing S × Col(ω1, ω2). Now fix any b ∈ Sz.

We first prove that the statement holds in the extension by S. Sup-
pose that {Ẏ` : ` ∈ ω} is a set of S-names of subsets of X and that
1 
 t(x, Ẏ`) > ℵ0 for each ` ∈ ω. For each s ∈ S and ` ∈ ω, let Ẏ [b, s, `]
denote the set of {y ∈ b : s 
 y ∈ Ẏ`}. Since X has countable tightness
and Ẏ [b, s, `] is a set in the ground model, it follows that x is not in the
closure of Ẏ [b, s, `] for each s ∈ S and ` ∈ ω. For each s ∈ S and ` ∈ ω,
let U(s, `) be an open neighborhood of x whose closure misses Ẏ [b, s, `].
For each neighborhood W of x, it follows from p > ℵ1, that there is an
infinite pseudointersection for the filter {b∩U(s, `)∩W : s ∈ S, ` ∈ ω}.
Since X is countably compact it will contain limit points of each such
pseudointersection. It follows then that there is a countable set a ∈ Sz
such that a ⊂ b ∩ U(s, `) for all s ∈ S and ` ∈ ω. Since the closure of
U(s, `) is disjoint from Ẏ [b, s, `], it follows that s does not force there
is an element of a that is also in Ẏ`.

Now we prove that this property continues to hold in the further
forcing extension by the countably closed poset P = Col(ω1, ω2). We
let g ⊂ S be a generic filter and we argue in the extension V [g]. Now we
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let {Ẏ` : ` ∈ ω} be a sequence of Col(ω1, ω2)-names and for each p ∈ P
and ` ∈ ω, let Ẏ`(p) denote the set {y ∈ X : (∃q < p) (q 
 y ∈ Ẏ`) }.
Let b0 ∈ Sz and p0 ∈ P be arbitrary and, by induction on `, choose a
sequence {b` : ` ∈ ω} ⊂ Sz and a descending sequence {p` : ` ∈ ω} ⊂ P
so that b`+1 ⊂ b`, and either t(x, Ẏ`(p`+1) ∩ b`) 6= ℵ0, or for all q < p`
and bq ∈ Sz with bq ⊂ b`, t(x, Ẏ`(q) ∩ bq) = ℵ0. Let pω ∈ P be any
lower bound of the sequence {p` : ` ∈ ω} and let b ∈ Sz be any subset
of

⋂
{b` : ` ∈ ω}. The fact that there is such a b follows as in the

choice of a in the argument for just the extension by S. The family
{Ẏ`(pω) : ` ∈ ω} is in V [g] and so either there is an a as required in the
statement of the Lemma, or there is an ` such that t(x, Ẏ`(pω)∩b) = ℵ0.
We may as well assume the latter and we fix such an `. We will finish
the proof by showing that pω does not force that t(x, Ẏ`) > ℵ0.

Note that we then have that for all q < pω and bq ∈ Sz contained in

b`+1, t(x, Ẏ`(q)∩ bq) = ℵ0. Choose any countable elementary submodel

M of a suitably large H(θ) such that x, pω, X,K, Ẏ` are elements of
M . Let {qj : j ∈ ω} be an enumeration of M ∩ {q ∈ P : q < pω}.
Recursively choose {aj : j ∈ ω} ⊂ Sz ∩M so that a0 = b and aj+1 ⊂
Ẏ`(qj)∩aj. We may do so, by elementarity, and the fact that t(x, Ẏ`(qj)∩
aj) is countable. Now we briefly return to the model V , and set Z
to be the compact subset of K that is equal to the intersection of the
sequence {aj : j ∈ ω}. Since Z has countable tightness, and therefore x
has countable π-character in Z, we may fix a sequence {Um : m ∈ ω} of
open subsets of K with the property that the family {Um∩Z : m ∈ ω}
forms a local π-base at x. That is, each neighborhood of x contains
a set from {Um ∩ Z : m ∈ ω}. Additionally, for each m, choose an
open set Wm so that Wm ∩ Z 6= ∅ and Wm ⊂ Um. We assume that
the enumeration {Wm, Um : m ∈ ω} is such that each element appears
infinitely many times.

Returning to V [g], we now we begin another recursive construction
of a sequence {jm, ym : m ∈ ω} satisfying that {qjm : m ∈ ω} is
a descending sequence and, for each m, m ≤ jm and qjm 
 ym ∈
Ẏ` ∩ Um ∩ am. Assume that qjm has been chosen and recall that ajm+1

is a subset of Ẏ`(qjm). Since ajm+1 ∈ Sz we have that Um ∩ ajm+1 is
not empty. We may choose any ym+1 ∈ Wm ∩ ajm+1 and jm+1 > m so

that qjm+1 < qjm forces that ym+1 ∈ Ẏ`. Let qω be a lower bound of the

sequence {qjm : m ∈ ω} and note that qω 
 {ym : m ∈ ω} ⊂ Ẏ`. We
complete the proof by showing that {ym : m ∈ ω} ∈ Sz. We prove this
by showing, in V , that the closure of {ym : m ∈ ω} meets Wm ∩ Z for
each m. Fix any m ∈ ω and let Lm = {` : W` = Wm and U` = Um}.
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Let xm ∈ X be any limit point of {y` : ` ∈ Lm}. It follows that
xm ∈ Wm ∩

⋂
`∈Lm

a` ⊂ Um ∩ Z. �

Let us now work in the forcing extension by Col(ω1, ω2). We still have
our compact space K of countable tightness. Since we are trying to
prove that K is sequential, we may assume that it is not and note that
then there is a point x ∈ K together with a countably compact subset
X of K \ {x} having x in its closure. This is because we can first show
that we may as well assume that K is sequentially compact (otherwise
its cardinality is greater than c and we can choose a countably compact
X and a maximal free filter which remains maximal after forcing with
S).

This is a model of ♦ so we may choose a maximal filter F of closed
subsets of X with the additional property that the separable members
of F form a base. We must actually do more and so we use instead the
forcing method from [3]. Consider the poset Q consisting of countable
sequences 〈aβ : β < δ〉 from Sz that satisfy that aγ ⊂ aβ for all β <
γ < δ, ordered simply by extension. It is shown in [3] that this is a
countably closed poset. It is well-known that, since c > ω1, Col(ω1, ω2)
is forcing isomorphic to Q. Let 〈aβ : β < ω1〉 denote a generic sequence
for Q. We let F be the filter of closed subsets of X generated by the
family {aβ : β < ω1}. Not only is F a maximal filter on X but it also
satisfies the following:

Lemma 2.5. If 〈aβ : β < ω1〉 is the generic sequence added by Q, then

for each nice S-name Ḣ of a subset of X and each s ∈ S, if for allbytightness
β < ω1, s 
 t(x, Ḣ ∩ aβ) = ℵ0, then s 
 (∀β < ω1)(∃α > β)Ḣ ⊃ aα.

Proof. Let s ∈ S and Ḣ be as in the Lemma, and assume that s 

t(x, Ḣ∩aβ) = ℵ0 for all β < ω1. Choose any s1 ∈ S that is above S (i.e.
a forcing extension). Now we work in the ground model before forcing
with Q and we fix a countable elementary submodel M with Q, Ḣ, s1

all in M . We must be careful to realize that Ḣ is actually a Q×S-name
of a subset of X. Let M ∩ ω1 = δ and let 〈aβ : β < δ〉 be any (M,Q)-
generic condition. We may also fix any sδ ∈ Sδ with s1 ⊂ sδ. It follows
that (〈aβ : β < δ〉, sδ) ∈ Q × S is an (M,Q × S)-generic condition. It
then follows, by elemenarity, that for each β ∈ δ, there is an α ∈ δ
and a bα ∈ Sz ∩ aβ such that sδ � α 
 bα ⊂ Ḣ (simply witnessing

that sδ � α 
 t(x, Ḣ ∩ aβ) = ℵ0). Choose any sequence {αn : n ∈ ω},
increasing and cofinal in δ. Let Z = X ∩

⋂
m∈ω

⋃
n>m bαn . Note that

Z ⊂ aβ for all β < δ. Similarly, if W is any closed neighborhood of

x, then Z ∩W ⊃ W ∩X ∩
⋃
n>m bαn is not empty. This implies that

there is a set aδ ∈ Sz such that aδ ⊂ Z. Now we have that sδ 
 aδ ⊂ Ḣ
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and (〈aβ : β ≤ δ〉, sδ) forces that Ḣ contains a member of the generic
sequence 〈aβ : β < ω1〉. Since s1 was an arbitrary extension of s and
〈aβ : β < δ〉 was an arbitary (M,Q)-generic sequence, this proves in
the extension by Q, we have that the set of extensions of s that force
Ḣ to contain an element of the sequence 〈aβ : β < ω1〉 is dense above
s. This completes the proof. �

Now we continue the proof of Theorem. We let F denote the filter
generated by {aβ : β < ω1}. Also, for each countable elementary sub-
model M with F ∈M , we let Tr(F ,M) =

⋂
(F ∩M). By contruction

Tr(F ,M) is an element of F . Let Y denote the set of all nice S-names,
Ẏ , of subsets of X satisfying that 1 
 t(x, Ẏ ) > ℵ0.

Lemma 2.6. If z,F , X are in M ≺ H(θ) (a countable elementary
submodel), then there is an xM ∈ Tr(F ,M) such that for all nice canpickx
S-names Ḣ ∈M for subsets of X and s ∈ S \M , if s 
 xM ∈ Ḣ, then
there is a countable a ∈M such that s 
 ǎ ⊂ Ḣ and a ∈ F .

Proof. We use Lemma 2.4 to pick our xM ∈ Tr(F ,M) so that for any
S-generic filter g, xM /∈ Y for all Y ∈ M [g] satisfying that t(x, Y ) >
ℵ0. Here is how. Recursively choose pairwise incomparable elements
{sξ : ξ < γ} ⊂ S together with a sequence {bξ : ξ < γ} ⊂ Sz so that

(1) ξ < η < γ implies that bη ⊂ bξ ∩ Tr(F ,m),

(2) sξ 
 bξ ∩ Y is empty for each Y ∈M [g] such that t(z, Y ) > ℵ0.

Suppose we have chosen {bξ : ξ < γ}. As we have seen before, we have

that
⋂
{bξ : ξ < γ} will contain members of Sz. If {sξ : ξ < γ} is not

a maximal antichain, then by Lemma 2.4 we can choose sγ and bγ as
required. Once the set {sξ : ξ < γ} is a maximal antichain, we can

choose xM to be any point in X ∩
⋂
{bξ : ξ < γ}.

Let M ∩ ω1 = δ and let s ∈ S \ M . Choose any Ḣ ∈ M and
assume that s 
 xM ∈ Ḣ. It follows that s 
 xM ∈ Ḣ ∩ F for all
F ∈ F ∩M . By our choice of xM , it follows that s 
 t(z, Ḣ ∩ F ) = ℵ0

for all F ∈ F ∩M . By elementarity, there is a β ∈ M such that s � β
also forces that t(z, Ḣ ∩F ) = ℵ0 for all F ∈ F . Now we apply Lemma
2.5 for the desired conclusion. �

Now we are ready to define our final poset. For each x ∈ X fix a
regular pair of open neighborhoods of x, Wx ⊂ Wx ⊂ Ux such that
z is not in the closure of Ux. It follows then that Ux is disjoint from
some member of F . Let W denote this indexed sequence of neighbor-
hood pairs, {Wx, Ux : x ∈ X}. Let κ denote the successor cardinal of
|P(P(X))|.
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Definition 2.7. Define the poset P by the following: a condition p ∈ P
is a function with domain Mp satisfying

(1) Mp is a finite ∈-chain of countable elementary submodels of
H(κ),

(2) {z,F ,W} ∈M for all M ∈Mp,
(3) for each M ∈ Mp, p(M) ∈ Tr(F ,M), and, for each S-name

Ḣ in M and each s ∈ S \M , if s 
 p(M) ∈ Ḣ, then there is a
countable a ∈M such that a ∈ F and s 
 a ⊂ Ḣ,

(4) for each M1,M2 ∈ Mp with M1 ∈ M2, p(M1) ∈ M2 ∩ F for all
F ∈ F ∩M1.

For a condition p ∈ P and element M of Mp, we define Wp(M) to be
the intersection of the family {Wp(M ′) : M ⊂ M ′ ∈ Mp and p(M) ∈
Wp(M ′)}. Then the ordering on P(F ,W) is given by q < p providing

(3) p ⊂ q
(4) for each Mq ∈ Mq \ Mp, if Mp \Mq 6= ∅ and Mp is the ∈-

minimum element of Mp \ Mq, then q(Mq) is an element of
Wp(Mp).

It is routine to check that for p ∈ P and M ∈ Mp, pM = p ∩M =
p � (Mp ∩M) is also in P and also that p < pM . In addition, Lemma
2.6 shows that if M ≺ H(κ) and p ∈ P∩M , then there is an extension
q of p with M ∈Mq. As usual F+ denotes the family of subsets of X
that meet every member of F . If g ⊂ S is a generic filter, then let Hg

denote the set of H ∈ F+ satisfying that t(z,H) = ℵ0.
The next lemma is the key step in proving that S×Col(ω1, ω2)∗P is

proper. The poset P is defined in the forcing extension by Col(ω1, ω2)
and we want to prove that a condition that we expect to be (M,P)-
generic condition will also be (M [g],P)-generic when g is a generic filter
for S.

Lemma 2.8. Let P be an element of a countable elementary submodel
M of H(θ) for some suitably large θ. Also let g ⊂ S be a generic filter.
If p ∈ P and M ∩H(κ) ∈Mp, then p is a (M [g],P)-generic condition.

Proof. Let D ∈ M [g] be a dense open subset of P, which just means
that there is an S-name for D in M . While D is not in M it is simply
a subset of P and so, since S is ccc, D ∩M [g] = D ∩M . By possibly
extending p we may assume that p ∈ D. Let M0 = M ∩ H(κ) and
choose any countable elementary submodel M ′ of H(κ) in M such that
pM0 = p � (Mp ∩M) ∈ M ′. Let ` be the cardinality of MP \M and
let {M0,M1, . . . ,M`−1} be the increasing enumeration of Mp \M .
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In M [g] we have the following set definable from D:

D(pM0 , `) = {q ∈ P : q < pM0 , Mq ∩M ′ =MpM0
, |Mq \M ′| = `}.

For each q ∈ D(pM0 , `) let {M q
0 , . . . ,M

q
`−1} denote the increasing enu-

meration of Mq \M ′. Similarly, for each q ∈ D(pM0 , `) and i < `, let
xqi = q(M q

i ). Let ~xq denote the `-tuple 〈xqi : i < `〉. Now we have
an associated set that is in M0[g]. Define E0

` = {~xq : q ∈ D(pM0 , `)}
and for each i < `, let E0

i = {~x � i : ~x ∈ E0
` }. For any ~x ∈ X<`

and y ∈ X, let ~x_〈y〉 denote the extension of ~x in X≤` obtained by
putting y in the last coordinate. For each i < ` and ~x ∈ E0

i , let
E0
i+1(~x) = {y ∈ X : ~x_〈y〉 ∈ E0

i+1}.
Define H ∈M[g] to be those members of F+ that have the property

that they contain a countable set whose closure is in F . Next, by a
descending recursion on i ≤ `, we define E1

i . First E1
` = E0

` and, for
i < `,

E1
i = {~x ∈ E0

i : {y ∈ E0
i (~x) : ~x_〈y〉 ∈ E1

i+1} ∈ H}.

For convenience, we let E1
i+1(~x) equal {y ∈ X : ~x_〈y〉 ∈ E1

i+1} for
all ~x ∈ E1

i . Of particular interest is the set E1
0 which is either empty

or has the empty sequence as its only possible element. We prove by
induction on i < ` that ~xp � i ∈ E1

i , which will show that the empty
sequence is an element of E1

0 .
For each i < `, ~xpi is an element of Mp

i and so E1
i+1(~xp � i) is also in

Mp
i [g]. Using elementarity and the fact that xpi ∈ E1

i+1(~xpi ), we deduce
that E1

i+1(~xp � i) is in H. It then follows that ~xp � i ∈ E1
i .

Now that we have that E1
1(∅) ∈ H ∩ M [g], we select a countable

a0 ∈ M that is contained in E1
1(∅) and whose closure is an element

of F . Of course this implies that xp0 is in the closure of a0 and so
there is a y0 ∈ a0 ∩Wp(M0). By recursion suppose i < ` and we have
selected {yj : j < i} ⊂ Wp(M0) ∩M such that 〈yj : j < i〉 ∈ E1

i . We
choose ai ⊂ E1

i+1(〈yj : j < i〉) just as we did a0 and similarly choose
yi ∈ ai ∩Wp(M0). Once we have chosen 〈yi : i < `〉 ∈ E0

` , we choose
q ∈ D(pM0 , `) ∩M so that ~xq = 〈yi : i < `〉 and it is routine to check
that q ∈ D ∩M is compatible with p. �

3. Perfect preimages of ω1 and copies of ω1

It has been shown to be a consequence of each of PFA [7] and
PFA(S)[S] [5, Theorem 3.8] that any perfect preimage of ω1 that has
countable tightness will itself contain a topological copy of ω1. On the
other hand, the existence of a coherent Souslin tree implies that that
there is a 2-to-1 perfect preimage of ω1 that contains no copy of ω1.
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Theorem 3.1. If there is a coherent Souslin tree S, then there is an
uncountable locally compact locally countable ℵ0-bounded space X that
contains no copy of ω1. In addition, there is a continuous closed map-
ping from X onto ω1 such that each fiber contains exactly two points.

Proof. Let Λ denote the set of limit ordinals in ω1. Let {sα : α ∈ Λ} ⊂
S be chosen so that sα ∈ Sα for each α ∈ Λ. We define a coloring
e : S → 2 that we will use to define a topology on ω1 × {0, 1}.

We define e(s) = 0 if s is on a successor level of S and also, if s = sα
for some α ∈ Λ, then e(s) = 0. By recursion on α ∈ Λ we define e(s)
for s ∈ Sα as follows:

(1) if α = β + ω for some β ∈ Λ, then e(s) = 0 if and only if either
(a) |(s∆sα) \ β| is even and e(s � β) = e(sα � β), or
(b) |(s∆sα) \ β| is odd and e(s � β) 6= e(sα � β),

(2) if Λ∩α is cofinal in α and β ∈ Λ∩α minimal so that s∆sα ⊂ β,
then e(s) = 0 if and only if e(s � β) = e(sα � β).

Fact 1. If s, t ∈ Sα for some α ∈ Λ and if s∆t ⊂ δ ∈ α ∩ Λ, then
e(s) = e(t) if and only if e(s � δ) = e(t � δ).

Proof of Fact 1. We prove this by induction on α ∈ Λ. The base case
when α = ω is vacuous. If α = β+ω for some β ∈ Λ, then the two sets
(s∆sα)\β and (t∆sα)\β will be equal since s and t are assumed to agree
on the set [δ, α) for some limit δ ≤ β. By induction, e(s � β) = e(t � β)
if and only if e(s � δ) = e(t � δ). Of course |(s∆sα) \ β| is the same as
|(s∆sα) \ β|. This means that if e(s � δ) = e(t � δ), then e(s) = 0 iff
e(t) = 0. Similarly, if e(s � δ) 6= e(t � δ), then exactly one of e(s) or
e(t) will be 0.

Now assume that Λ ∩ α is cofinal in α. Let γ ∈ Λ be minimal such
that s∆t ⊂ γ. We proceed by induction on γ. Naturally γ ≤ δ. Next
let βs ∈ Λ be minimal such that s∆sα ⊂ βs and similarly define βt ∈ Λ.
We may assume that βt ≤ βs and now note that βs ≥ γ since as soon
as s and t disagree with each other, one of them disagrees with sα. If
βs > γ, then βs = βt, and in this case, each of e(s) and e(t) will equal
0 if and only if e(s � βs) = e(sα � βs). If βs = γ, then it follows that
e(s) = e(sα) if and only if e(s � γ) = e(sα � γ). If βt is also equal to γ,
then the same is true of e(t) = e(sα) and so we may assume that βt < γ.
We finish by applying the induction hypothesis to the pair t and sα.
Indeed, we have that e(t) = e(sα) if and only if e(t � γ) = e(sα � γ). �

Fact 2. If E ⊂ ω1 is uncountable, then there is a cub C ⊂ ω1 such that
for each δ ∈ C and each γ < δ, there are α0, α1 ∈ E ∩ δ \ γ so that
e(sδ � α0) = 0 and e(sδ � α1) = 1.
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Proof of Fact 2. Let B be the set of s ∈ S such that there are no
members of {sβ : β ∈ E} above s. The minimal elements of B is an
antichain, and is therefore countable. Choose any γ so that all the
minimal elements of B are on a level less than γ. Let α be any element
of E \ γ. Since no minimal member of B is above sα, it follows that
every member of S above sα is below some member of {sβ : β ∈ E}.
Again using that S is ccc, there is a cub C ⊂ ω1 such that for all
β ∈ E \ δ, s = sβ � δ satisfies that {β ∈ E ∩ δ : sβ < s} is cofinal in δ.

Now choose any δ ∈ C and limit β < δ and any s ∈ Sδ such that
there is some β′ ∈ E \ δ with s < sβ′ . Choose any t ∈ Sβ+ω such that
s � β < t and (t∆(s � (β+ω) ) )\β is odd. It follows from clause (1) in
the definition of e that e(t) 6= e(s � β+ω). Since S is coherent, t1 = t⊕s
is in Sδ and by Fact 1, e(s � α) 6= e(t1 � α) for all β + ω ≤ α ≤ δ. Fix
β1 ∈ Λ ∩ δ so that β + ω ≤ β1 and s∆sδ ⊂ β1. By possibly switching
the labelling of s and t1, we may assume that e(s) = 0 and e(t1) = 1.
Note that we then have, by Fact 1, that e(sδ � α) = e(s � α) for all
α ∈ Λ ∩ δ \ β1. Similarly e(sδ � α) 6= e(t1 � α) for all α ∈ Λ ∩ δ \ β1.
Choose any α0 ∈ E ∩ δ \ β1 so that sα0 < s and similarly choose
α1 ∈ E ∩ δ \ β1 so that sα1 < t1. Naturally, e(s � α0) = e(sα0) = 0, and
so e(sδ � α0) = 0. Similarly e(t1 � α1) = 0 and so e(sδ � α1) = 1. �

Now we are ready to construct our topology on ω1 × {0, 1}. Each
point in the set (ω1 \Λ)× {0, 1} is isolated. For each limit δ we define
a clopen partition, {W (δ, 0),W (δ, 1)}, of (δ + 1)× {0, 1} where

W (δ, 0) = {(α, e(sδ�α)) : α ∈ Λ∩(δ+1)}∪
⋃

β∈Λ∩δ

(β, β+ω]×{e(sδ�β+ω)}

and therefore W (δ, 1) is equal to

{(α, 1−e(sδ � α)) : α ∈ Λ∩(δ+1)}∪
⋃

β∈Λ∩δ

(β, β+ω]×{1−e(sδ � β+ω)}.

Clearly W (δ, 0) \ (W (α, 0) ∪W (α, 1)) is clopen for all α < δ in Λ; and
similarly, so is W (δ, 1) \ (W (α, 0) ∪W (α, 1)).

Fact 3. For each ω < α < δ ∈ Λ and i ∈ {0, 1}, if (α, i) ∈ W (δ, 0), then
there is a β < α in Λ such that W (α, i)\(W (β, 0) ∪W (β, 1)) ⊂ W (δ, 0).

Proof of Fact 3. Since we are assuming that (α, i) ∈ W (δ, 0), it follows
that e(sδ � α) = i. If α = β + ω for some β ∈ Λ, then it is clear that
W (α, i) \ (W (β, 0) ∪W (β, 1)) ⊂ W (δ, 0) as required. Now suppose
that Λ∩ α is cofinal in α and choose any β ∈ Λ∩ α so that sα∆(sδ�α)
is contained in β. By Fact 2, we have that either i = 0 and e(sα �
ξ) = e(sδ � ξ) for all ξ ∈ Λ ∩ (β, α), or i = 1 and e(sα � ξ) 6=
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e(sδ � ξ) for all ξ ∈ Λ ∩ (β, α). In either case, we then have that
W (α, i) \ (W (β, 0) ∪W (β, 1)) is contained in W (δ, 0) as required. �

Since the proof of Fact 4 is the same we omit the proof:

Fact 4. For each ω < α < δ ∈ Λ and i ∈ {0, 1}, if (α, i) ∈ W (δ, 1), then
there is a β < α in Λ such that W (α, i)\(W (β, 0) ∪W (β, 1)) ⊂ W (δ, 0).

Fact 3 and Fact 4 prove that for each δ ∈ Λ such that Λ∩ δ is cofinal
in δ, and each i ∈ {0, 1}, the family {W (δ, i)\(W (β, 0) ∪W (β, 1)) : β ∈
Λ ∩ δ} is a clopen neighborhood base for the point (δ, i). This means
that for all α ∈ Λ and i ∈ {0, 1}, the family {W (α, i)\([0, β]× {0, 1}) :
β < α} is a clopen neighborhood base for (α, i). Let X denote the space
with this topology on ω1×{0, 1}. It is now a routine exercise to prove
that the map sending each two element set {α} × {0, 1} to the ordinal
α is a continuous and closed mapping from X onto ω1.

We finish the proof by showing that there is no copy of ω1 in the
space X. Assume that X0 is such a copy of ω1 and let h be the home-
omorphism from X0 onto ω1. Choose i ∈ {0, 1} so that E = {β ∈ ω1 :
(β, i) ∈ X0} is uncountable. Let C be a cub as described in Fact 2.
By simply choosing an unbounded closed subset of C we can assume
that for any δ ∈ C, h−1([0, δ)) is a subset of [0, δ) × {0, 1} and that
h(β, i) < δ for all β ∈ E ∩ δ. But now, let δ be any point of C such
that C ∩ δ is cofinal in δ. It follows from the definitions of W (δ, 0) and
W (δ, 1) that they each meet (E∩(β, δ))×{i} for all β < δ. This means
that each of h[X0 ∩W (δ, 0)] and h[X0 ∩W (δ, 1)] is cofinal in δ, which
also implies that each (δ, 0) and (δ, 1) are in X0 and are each mapped
to δ. This contradicts that h is a homeomorphism. �
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