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Abstract—Many networks nowadays contain both positive and
negative relationships, such as ratings and conflicts, which are
often mixed in the layouts of network visualization represented
by the layouts of node-link diagram and node indices of ma-
trix representation. In this work, we present a visual analysis
framework for visualizing signed networks through emphasizing
different effects of signed edges on network topologies. The
theoretical foundation of the visual analysis framework comes
from the spectral analysis of data patterns in the high-dimensional
spectral space. Based on the spectral analysis results, we present
a block-organized visualization approach in the hybrid form of
matrix, node-link, and arc diagrams with the focus on revealing
topological structures of signed networks. We demonstrate with a
detailed case study that block-organized visualization and spectral
space exploration can be combined to analyze topologies of signed
networks effectively.

Keywords—Hybrid network visualization; block-organized
visualization; signed networks; spectral analysis; visual analytics;

I. INTRODUCTION

Many networks in real-life applications are signed
networks, which can reflect a wide range of relationships,
such as like or dislike and friend and enemy. While signed
networks can be treated as special cases of multivariate net-
work visualization, such as coloring signed edges differently,
the impacts of negative edges to the network topology should
be studied and incorporated in the visual exploration process
of signed networks [19].

Our approach is built upon a theoretical foundation of
spectral network analysis, which studies spectral features of
community structures. It is known that there are intimate
relationships between the combinatorial characteristics of a
graph and the algebraic properties of its adjacency matrix [8];
however, it is often not clear how to analyze a complex
network visually with spectral analysis theories. In this work,
we concentrate on addressing two research challenges of visual
analytics: what are the important spectral patterns and how to
use them to study signed networks.

Our visual analysis framework for studying signed
networks contains two components. The spectral analysis com-
ponent starts from two example signed networks, the k-block
and k-partite networks, representing the internal and external
relationships of communities respectively. We describe the
spectral features of general signed networks for interactive
exploration. The results provide essential information for vi-
sual analysis of community structures, including identifying

the important parameter k, the k-dimensional subspace, and
visual patterns related to the community structures.

The visualization component presents a block-organized
topology visualization for signed networks. The block-
organized visualization represents network topologies as multi-
level block structures and separates the visual space to three
sections for representing communities, positive, and negative
relationships. Signed edges are visualized as curved splines
oriented to two opposite directions, representing their opposite
meanings. Taking a hybrid form of matrix, node-link, and
arc diagrams, the block-organized visualization arranges the
three representations as ordered layers consistently for building
strong visual connections.

The interactive exploration of signed networks combines
the two components - spectral space exploration and block-
organized visualization. We have developed interaction func-
tions to explore network topologies and adjust the block-
organized visualization. We use a case study to demonstrate
how complex network topologies can be interactively explored
with our approach.

The remainder of this paper is organized as follows. We
first review the related work of network visualization in
Section II. Section III presents the spectral analysis results
and Section IV describes block-organized visualization. The
interactive exploration process and case study are described
in section V. Section VI discusses the design of signed net-
work visualization, performance, and exploration experiences.
Finally, we conclude this paper and discuss future work in
Section VII.

II. RELATED WORK

A. Designs of Network Visualization

Network visualization and visual analytics have been very
active research areas for the last 30 years [13], [22], [27].
Due to the page limit, we concentrate on different designs of
network visualization, although recent work has extended to
multivariate and multimodal types [20].

Node-link diagram: The most popular network
visualization approach has been the node-link diagram. Clas-
sical layout algorithms are force-directed approaches and
spectrum-based approaches. Related to this work, Hu et al. [16]
presented a node-link layout algorithm and demonstrated the
quasi-orthogonal theorem on unsigned networks. Variations of



node-link diagrams include PivotGraph [29] with a grid-based
approach and Hive plot [21] with radially oriented linear axes.

Matrix representation: Matrix representation has also
been a popular approach to visualize networks. Ghoniem et
al. [12] demonstrated the advantages of matrices and node-link
diagrams experimentally. Variations of the matrix visualiza-
tions include the gestaltmatrix [7], where cells also contained
small graphics or glyphs; the Zoomable Adjacency Matrix
Explorer (ZAME) [10], which was designed for exploring large
scale graphs; and the Compressed Adjacency Matrices [9],
which achieved compact visualization by cutting open and
rearranging an adjacency matrix.

Arc Diagrams: It is sometimes useful to layout the nodes
of a network along a straight line and draw edges as circular
arcs [28].

Circular layout: The circular layout is achieved by posi-
tioning nodes on the circumference of a circle. Drawing edges
as curves rather than straight lines increases the readability of
the drawings [11].

Hybrid approaches: Hybrid designs have been shown
to be effective in many cases [3], [5]. For example, Topo-
Layout [2] detected subgraphs with specific characteristics
and applied an appropriate node-link layout algorithm to each
subgraph. Nodetrix [15] took advantage of node-link diagrams
for sparse networks and matrices for dense networks.

Other approaches: There are a number of interesting
ways to visualize networks. For example, a canonical visual
matrix visualization only depended on the topological infor-
mation and nodes were positioned based on computed metrics
and/or associated attributes of the nodes [13].

B. Network Visualization and Analysis of Signed Networks

According to our knowledge, signed networks have not
been systematically studied in network visualization, while
conflicts or controversy relationships in social or political
networks have been visualized. For example, Brandes et al. [6]
presented a visual summary method for bilateral conflict
structures embodied in event data. Suh et al [25] described a
model for identifying patterns of conflicts in Wikipedia articles
based on users’ editing history and relationships between user
edits. Kermarrec and Moin [18] presented a Signed LinLog
model for graph drawing.

III. SPECTRAL ANALYSIS OF SIGNED NETWORKS

We start with discussions of two example signed networks,
the k-block network with only internal edges inside k-
communities and the k-partite network with only external
cross-community edges. For each example signed network, we
provide formal definitions as well as descriptions and examples
of spectral patterns for visual exploration.

For general signed networks, we describe how the results
from the two example networks can be extended to explore
general signed networks. According to the topology structure
determined by communities, all the edges of a network, no
matter their signs, can be divided to internal or external cat-
egories. Therefore, the two special signed networks represent
the most important community structures of a signed network.

k-partite network k-block network

Fig. 1. Examples of k-partite and k-block signed networks. The top to bottom
rows show the eigenvalue curves of 50 dimensions, spectral patterns in selected
subspaces, and node-link network visualizations. Positive edges are in red and
negative edges are in blue.

A. k-partite Network

The k-partite network describes the relationships of nodes
between different communities. We first provide the definition
and then summarize the study result in [30] for completeness
of our framework for general signed networks.

Definition: A k-partite network represents a graph with k
communities such that 1) there are no links inside the com-
munities; and 2) nodes from different communities are densely
connected with the same signs. The adjacency matrix Ap can
be written in the following form with proper permutation of
the nodes:

Ap =









000 B12 · · · B1k

B21 000 · · · B2k

...
...

. . .
...

Bk1 Bk2 · · · 000









, (1)

where Bi j is the ni × n j matrix to represent the relationships
between community i and community j. We call Ap as a k-
partite matrix.

Spectral Patterns: For k-partite matrix, Wu et al. [30]
has showed the approximation forms of eigenvectors and
spectral coordinates. They proved that such a matrix shows
k orthogonal clusters when the communities have similar
densities and the first eigenvalue has a different sign with
the following k − 1 eigenvalues in magnitude. The k-partite
network with k comparable communities shows k orthogonal
clusters in the k-dimensional spectral subspace spanned by
xxxi’s of the adjacency matrix with corresponding eigenvalues
|λ1| ≥ |λ2| ≥ · · · ≥ |λk|. Furthermore, ‖λ1‖ has a different sign
with the rest k−1 eigenvalues.



An Example: The left column of Figure 1 provides an
example of the k-partite network. This network contains four
communities with 400 nodes and 100 positive internal edges
and total 36000 negative external edges added randomly. As
shown in the curve of eigenvalues, there are three very high
positive eigenvalues and one very low negative eigenvalue,
representing the four communities in the network.

B. k-block Network

Definition: A k-block signed network represents a graph
with k communities such that 1) inside each community, nodes
are densely connected with the same signs; and 2) there are
no links between different communities. The adjacency matrix
Ab of a k-block signed network can be written in the following
form with proper permutation of the nodes:

Ab =







A1 000
. . .

000 Ak






, (2)

where Ai is the ni ×ni adjacency matrix of the ith community
with ni nodes. We call Ab as a k-block matrix.

Spectral Patterns: For a k-block signed network with
k1 blocks non-negative and k2 blocks non-positive, we can
observe k eigenvalues with large absolute values. The number
of large positive eigenvalues (k1) indicates the number of
communities with dense positive internal relationships and
the number of negative eigenvalues (k2) indicates the number
of communities with dense negative internal relationships.
Specifically, a k-block network with all non-negative entries
has k large positive eigenvalues and node coordinates form
k orthogonal lines in the subspace spanned by their corre-
sponding eigenvectors. In contrast, for a k-block network with
all non-positive entries, we have a similar conclusion: node
coordinates form k orthogonal lines in the subspace spanned
by eigenvectors corresponding to k large negative eigenvalues.

An Example: The right column of Figure 1 provides an
example of the k-block network. This network contains four
communities with 100 nodes each. Two communities have
2000 positive edges and the other two have 2000 negative
edges. The curve of eigenvalues reveals two positive out-
standing eigenvalues and two negative outstanding eigenvalues,
which support our spectral analysis results.

C. Discussions for General Signed Networks

For general signed networks, communities are loosely
defined as collections of network nodes that interact unusually
frequently, including both positive and negative relationships.
The adjacency matrix A can be written in the following form
with proper permutation of the nodes:

A =



















AAA111 B12 · · · | · · · B1k

B21 AAA222 · · · | · · · B2k

...
... · · · | · · ·

...
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

...
... · · · | · · ·

...
Bk1 Bk2 · · · | · · · AAAkkk



















, (3)

where the definitions of Ai and Bi j are the same as in Formulas
1 and 2.

We have performed a brutal experiment to explore the
variations of spectral patterns. By varying the four parameters
of edge ratios, internal positive, internal negative, external
positive, and external negative, we generate synthetic networks
ranging from the two example networks, to approximate k-
block and k-partite networks for simulating general signed
networks. Due to the space limit, only example results with
the base network of 40% internal positive edges are shown
in Figure 2. Both the first 3 dimensions of spectral space
and eigenvalue curves of selected networks are presented as
example patterns.

The examples in Figure 2 demonstrate several variations of
the spectral patterns. The knowledge of the spectral patterns
can help users to select communities in the spectral space.

1) By adding external negative edges, the network grad-
ually changes to external dominated networks related to the
k-partite network. The spectral patterns change from quasi-
orthogonal lines or blocks to parallel lines along the third di-
mension. The eigenvalue curves always contain 3 outstanding
absolute values, but they change from 3 positive values to 2
positive and 1 negative value.

2) By adding internal negative edges, the network gradually
changes to the k-block networks with dominant negative edges.
The spectral patterns change from quasi-orthogonal lines or
blocks to 3 quasi-orthogonal lines crossing at the Origin of
the spectral space. The 3 outstanding eigenvalues change from
all positive to all negative.

In practice, general signed networks may contain both
complex internal and external relationships. We argue that our
spectral analysis results of the two example signed networks
can still be used to study general signed networks from the
following three aspects.

First, spectral analysis always presents the dominant com-
munity structures in the networks. Eigen-decomposition pro-
duces an indexed set of linearly independent eigenvectors,
where the first eigenvector having the direction of the largest
variance of the data. No matter how complex a network is,
the dominant community structures are always revealed on
the first several dimensions. This is consistent with the fact
that the community relationships of complex networks can be
represented as a hierarchical structure.

Second, we discuss general signed networks which contain
majority positive or negative edges. While the global com-
munity structure may be complex, it can be decomposed to
local communities with structures similar to one of the two
example networks. For example, as shown in Formula 3, the
first group of communities may appear as a k-partite network
and the second group appears as k-block networks. Also,
the edge densities between these local structures should be
much smaller than the densities inside each local community.
Otherwise, two communities with both strong internal and
external connections, no matter their signs, should be treated
as one community instead. Therefore, even though a general
signed network may contain a complex hierarchical community
structure, it can be decomposed to a number of k-block and
k-partite networks.

Third, for general signed networks with various combina-
tions of positive and negative edges. As shown in Figure 2,



External negative edges of 0%, 15%, 30%, 50%, 98% of the maximum external edges are added respectively.

Internal negative edges of 0%, 20%, 40%, 54%, 60% of the maximum internal edges are added respectively.

Fig. 2. Example variations of spectral patterns of signed networks with 40% internal positive edges and 2% external positive edges.

the patterns of node distributions in the spectral space adjust
gradually when the ratios of negative to positive edges change.
Even for the cases whose positive and negative edges are
comparable, especially when both positive and negative edges
are large enough, the spectral features of both signed and
unsigned networks can be shown. The visualization of spectral
patterns can also help users to identify similar patterns.

IV. BLOCK-ORGANIZED TOPOLOGY VISUALIZATION

The block-organized visualization is designed for general
signed networks through revealing important topology struc-
tures and visualizing the positive and negative connections in
different formats with different level-of-details.

A. Block-Organized Visualization Design

The block-organized visualization divides a 2D visual
space to three sections: blocks on the diagonal line for internal
relationships and two opposite regions for the two types
of cross-community relationships. The basic design comes
from the representation of adjacency matrix A in Formula 3,
where the k-block and k-partite networks are well presented
in this form. The block-organized visualization integrates the
following three concepts.

Block Structures: Block-organized visualization uses a
block structure to organize all the nodes in the node-link
diagram and all the rectangles in the matrix simultaneously
according to network topologies. The block structure is auto-
matically generated during an interactive exploration process
and can be adjusted for highlighting interesting communities
and connection patterns. With the overlaying of visual elements
in the same block structure, we emphasize the consistent visual
connections among all the representations.

Signed Edges: We visualize signed edges with curved
splines oriented to two opposite directions, representing their
opposite meanings. The positive connections stretch out to
the top right section and the negative connections to the
bottom left section. The different orientations help to organize
all the signed edges on the two opposite regions separated
automatically by the blocks on the diagonal line. The curved

splines also fully utilize the block spaces and provide strong
visual cues for external relationships between communities.

Ordered Layers: Block-organized visualization includes
three layers separating all the visual elements, nodes, curved
edges, and the matrix. The order of the three layers can be
adjusted for different visualization purposes. For example, the
nodes and edges can be on the top for visualizing direct
connections between communities and the matrix can be on
the top for showing the distributions of connections inside the
communities. The ordered layers ensure that block-organized
visualization can take advantage of all the visualization forms.

B. Multi-level Visualization

Multi-level visualization helps to abstract both internal
and external relationships and visualize the network topolo-
gies. The block structure is very convenient for multi-level
visualization, especially for building a hierarchical struc-
ture to visualize the nodes. The multi-level block-organized
visualization can be achieved with two options.

First, we can emphasize selected communities and visualize
them in large sizes by increasing their importance degrees.
The block structure automatically adapts to the change and re-
organize the node-link and matrix visualizations consistently.

Second, we can abstract the topology structures of commu-
nities at different level-of-details. The grids inside each block
control the abstraction level and generate “super nodes” for
simplifying the networks. The size of a super node is adjusted
by the number of nodes it represents. It is also limited by the
size of the block it belongs to.

C. Node Layout

The block-organized visualization organizes the nodes in
the network according to their block locations. The layout
algorithm can also be different or the same for all the com-
munities in the network.

To assist the visual exploration with spectral patterns, we
adopt a simple and efficient spectrum-based strategy which
allows us to combine multiple spectral dimensions. While
users browse the spectral space, they can identify dimensions



which spread out the nodes in the network. Often these are
the spectral dimensions with small absolute eigenvalues and
several dimensions can be involved for networks with multi-
ple communities. Users can specify the contributions of the
selected spectral dimensions to the X and Y node coordinates
in the block-organized visualization by adjusting linear weights
wx(xi) for X coordinates and wy(xi) for Y coordinates. The
new coordinate (x′,y′) of a node is computed for the two
dimensions respectively as follows:

x′ = ∑wx(xi)× xi

y′ = ∑wy(xi)× xi
(4)

D. Curved Splines for Signed Edges

As shown in Figure 3, both the colors and orentations of
curves are used to visualize signed edges. The shapes of the
curved splines can be adjusted by the magnitudes of edges, as
any of the examples in Figure 3 (left). The orentations can be
one of the four cases as shown in Figure 3 (right), depending
on the relative positions of two nodes and the sign of the edge.
We have all the edges stretched out to the intersection point of
the row of one node and the column of another. As the matrix
is co-organized with the node-link diagram, the orientations of
curved splines are also consistent with the directions of edge
locations on the matrix.

The width of a curve can be adjusted with node sizes in the
multi-level visualization. The transparency value is controlled
by the importance degrees of one community for internal edges
and two communities for external edges.

Fig. 3. Curved splines for signed edges. (left) The curve is controled by the
absolute edge value. (right) The four cases of curved splines depending on
the sign of the edge and relative positions of nodes.

For signed networks, as the sign of edges represents oppo-
site relationships, we can choose any complementary colors.
Generally we use a warm color for positive relationships and a
cold color for negative relationships. For overlaying the curved
edges and matrix blocks, we prefer to use two sets of colors
in similar tones, so that each layer in the block-organized
visualization can be shown well for building visual connection.
Figure 4 shows the colors used in all the results of this paper.
The node colors of communities are from the d3.js category20
function. The nodes are colored differently according to their
communities.

V. VISUAL EXPLORATION OF NETWORK TOPOLOGY

For exploring topologies of signed networks, our
visualization system combines two components, block-
organized visualization and spectral space exploration. The
visual exploration procedure includes a number of inter-
actions between the two components. The block-organized

Fig. 4. Color sets for block-organized visualization. Warm colors for positive
relationships and cold colors for negative relationships. The left color on each
set is used for curved edges and the right color is used for the matrix.

visualization system is shown in Figure 5. We use a real-life
dataset to show how the block-organized visualization system
can solve several important problems, which are essential for
understanding the topology structures of signed networks.

Fig. 5. Our visualization system encloses four panels: a block-organized
visualization (left top) and its parameter panel (left bottom), and a spectral
space projection (right top) and its parameter panel (right bottom). The
parameter panel of the spectral space shows the most significant eigenvalues
for the case study.

A. Case Study

We use the Correlates of War dataset [24] to demonstrate
the interactive exploration process. The relationships of coun-
tries from 1993 to 2001 are accumulated as a signed network,
as the relationships are relatively stable during this time range.
The positive relationships range from 1 to 3 depending on
the alliance relationships; and the negative relationships range
from -5 to -1 depending the disputation types. There are total
216 nodes and 1998 edges in this network.

Figure 6 captures the snapshots of block-organized
visualization and spectral patterns during the interactive ex-
ploration process. As the step 1 shows, we start with the
two spectral dimensions with the largest absolute eigenvalues.
We can adjust the weights of spectral dimensions for a better
separated node layout than the spectral patterns on the first two
dimensions. At this moment, the block-organized visualization
only contains one block, which is the entire network, and
neither the matrix nor the node-link shows much information
of the network topology.

Steps 2-8 demonstrate the procedure of identifying new
communities. Each time, we observe the spectral space and



step 1 step 2 step 3

step 4 step 5 step 6

step 7 step 8 step 9

Fig. 6. Interactive exploration of the Correlates of War dataset. Our interface encloses the block-organized visualization on the left and a spectral space
projection on the right (the parameter panels are provided and omitted in this Figure). The steps 1-8 show the selected node patterns and block re-organized
visualizations. The step 9 shows the grouping of two similar communities, which reveals 6 communities for the final topology structure.

search for variations of patterns ranging from clusters to line
structures. The first three communities (steps 2-4) are selected
from the initial spectral dimensions. We also switch to other
spectral dimensions for additional communities. The next four
communities (steps 5-8) are selected from different sub-spaces.
To search for these communities, we need to filter the patterns
in the spectral space; otherwise the patterns are hidden among
large community structures. Note that the spectral spaces for
these steps only show the patterns of the nodes remaining in
the blue groups. These new communities are communities with
smaller sizes (steps 5-7) or loosely connected communities
(step 8).

We can also adjust the hierarchical level of the topology
visualization by searching for sub-communities or grouping
small communities with similar and related connections. For
each identified community, we can select the community and
check the spectral patterns from different dimensions to ensure
that there are no sub-communities. The steps 5-8 can be viewed
as searching for sub-communities of the blue block in step
4. From the result of step 8, we have observed that the two
communities with red and purple nodes are similar, since they
are both densely-connected negative-dominant blocks and they
both connect to the community with brown nodes with positive
relationships. Step 9 shows the result of grouping these two
communities.

We identify step 9 reaches the right topology structure for
several reasons. First, the block-organized visualization with
only internal edges in Figure 7 (left) shows a nicely ordered
matrix visualization. Second, each community is shown as a
positive-dominant or negative-dominant block with a homoge-

neous matrix pattern. Third, the external relationships appear to
be consistent between different communities. Fourth, Figure 5
shows three large positive eigenvalues for the three commu-
nities with positive-dominant internal relationships and two
negative eigenvalues for the two communities with negative-
dominant internal relationships. Fifth, the sizes of most com-
munities are comparable to each other.

To explore the external relationships, we have observed
the connections between two groups. The first group is the
communities with red and brown nodes. We can adjust the
block visualization options to enlarge these communities at
different detail levels. As Figure 7 (middle) shows, among
the first group, there are both positive and negative exter-
nal relationships. The matrix view shows positive-dominant
external edges. This group mixes the k-block and k-partite
structures. The second group is the communities with the
orange, green, and red nodes. As Figure 7 (right) shows, All
the connections between the communities with the orange
and red nodes are through the green community. While the
size of green community is small (only 5 nodes), the role of
this community is special in the network for connecting two
densely connected k-block communities.

VI. DISCUSSIONS

A. Design of Block-Organized Visualization

Compared to the hybrid design approaches between node-
link diagrams and matrix representations [3]–[5], [14], [15],
[23], block-organized visualization is different by emphasizing
the simultaneous visualization of three representations. Note



Fig. 7. A set of block-organized visualization for summarizing the Correlates of War dataset from 1993 to 2001. (Left) The network manifests seven communities
with a noticeable block pattern (Western, Latin America, their anchor community, Islamic, African, Asia and the former Soviet Union, and countries with only
loose connections), which matches the configuration depicted in the Clash of Civilization [17]. (Middle) Multi-level visualization enlarged two communities (Latin
America and Asia) and highlighted their positive external connections. (Right) The community with nodes in green (USA, CAN, Haiti, Dominican Republic,
Argentina) is the anchor of the orange (Western) and red communities (Latin America), as all the links between orange and red communities are through the
green nodes.

that the layout algorithms for these approaches are very dif-
ferent, as matrix visualization is achieved by matrix-reordering
algorithms and node-link diagram can be generated by a num-
ber of techniques, such as force-directed algorithms. Block-
organized visualization arranges the nodes in the node-link
diagram and rectangles in the matrix visualization consistently,
which is shown to be effective on taking advantages of all
representations and is efficient as operations including both
user interaction and network visualization are controlled by
the same block structure.

The block-organized visualization is different from adja-
cency matrix, as the number of blocks or communities is often
significantly smaller than the number of nodes in a network.
Therefore, the main drawback of adjacency matrix for not
being intuitive for identifying connections is not an issue for
block-organized visualization.

The co-organized node-link diagram preserves the direct
connections for edges and separates the internal and external
connections. The internal connections can be observed by
combining the matrix and node-link diagrams, and the external
connections can be observed with the curved edges in the
multi-level visualization. We avoid the hair ball of node-
link diagram by organizing nodes in blocks and using block
structures to achieve multi-level visualization.

The block-organized visualization and spectral space explo-
ration work together well. The block-organized visualization
takes the interaction with spectral dimensions efficiently -
linear performance as shown in the performance section. The
network layout is based on our spectral analysis framework
and the visualization provides an interaction mechanism for
exploring effects of individual eigenvectors.

B. Computation Complexity

The spectral decomposition is performed with QR al-
gorithm by a reduction to Hessenberg form [26], which is
O(N2) with N as the number of nodes in the network. In our
experiment, this step only takes 0.1-0.2 second for networks

with up to 1222 nodes and 33428 edges. As we only use
the spectral dimensions with the largest absolute eigenvalues,
where k = o(N), the spectral decomposition is very efficient
for large sparse matrices as many social networks [1].

The complexity of the rendering pipeline is O(N)+O(E)
as follows. The block organization only traverses nodes once,
therefore the complexity is O(N). The generation of network
layout for each block of size n is O(k×n), therefore the total
complexity is O(N). The generation of the curved edges is
linear to the number of edges as O(E). This is a nice feature
as having a real-time interactive visualization process is crucial
to visual exploration.

C. Interactive Exploration of Complex Networks

It worths to mention that spectral analysis studies the most
significant data features in the spectral space. Many spectral
analysis approaches are designed for balanced networks, in
which the sizes of communities are comparable to each other.
In such cases, small communities are often treated as sub-
groups of large communities. We should be aware that the
order and dimensions of communities found in the study need
to be combined with prior knowledge of community sizes for
generating the correct hierarchical topology structures.

Finding the number of communities k has been a challeng-
ing problem for spectral analysis. For networks similar to the
two example signed networks, our spectral analysis framework
has provided a clear mechanism to identify them. For complex
networks, such as networks with both dense k-partite and k-
block structures, the numbers of outstanding eigenvalues are
not always the same as k. Users need to be aware of the
variations of spectral patterns, ranging from clusters to line
structures, can all suggest separate communities. For such
cases, user may need to divide the nodes in the spectral
space gradually with any “similar” spectral patterns during the
interactive exploration process. We also need to combine all
involved visualizations, spectral patterns, matrix patterns, and
node-link diagram, to determine if a community needs to be



further divided and if we have found the right k for a sucecssful
exploration result.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a study of signed networks from both
spectral analysis and visualization aspects. On the spectral
analysis aspect, we have demonstrated the quasi-orthogonal
relationships of spectral decomposition and topology structures
of signed networks. On the visualization aspect, we have
presented a block-organized approach for visualizing general
signed networks through a consistent interactive exploration
mechanism.

The impacts of negative edges should be further studied
to visualize different types of conflict relationships. We are
also interested in open-box approaches to utilize the quasi-
orthogonal spectral patterns in selected sub-spaces for more
intuitive visual exploration.
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