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Abstract

This paper presents a digital storytelling approach that generates automatic animations for time-varying data
visualization. Our approach simulates the composition and transition of storytelling techniques and synthesizes
animations to describe various event features. Specifically, we analyze information related to a given event and
abstract it as an event graph, which represents data features as nodes and event relationships as links. This
graph embeds a tree-like hierarchical structure which encodes data features at different scales. Next, narrative
structures are built by exploring starting nodes and suitable search strategies in this graph. Different stages of
narrative structures are considered in our automatic rendering parameter decision process to generate animations
as digital stories. We integrate this animation generation approach into an interactive exploration process of time-
varying data, so that more comprehensive information can be provided in a timely fashion. We demonstrate with a
storm surge application that our approach allows semantic visualization of time-varying data and easy animation
generation for users without special knowledge about the underlying visualization techniques.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics—Animation

1. Introduction

Animation has been used extensively in visualization. Stud-
ies from both research and education have reported that users
often describe animation as fun and exciting, which elic-
its the usage of animation for effective visualization. Espe-
cially for time-varying data research, where temporal evo-
lutions are often focused, animation becomes a natural way
to represent and analyze the characteristics of data changes
across time. For example, storm surge research studies the
behavior of hurricanes and their impact on water volumes,
which are two important events over the entire duration of
the storm. It is obviously not efficient for users to analyze
data features and relationships with static visualization for
each time step. Therefore, exploring suitable ways to gener-
ate animation and incorporating animation in the interactive
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Figure 1: Example representations of narrative structures.

exploration process are valuable for time-varying data visu-
alization.

However, existing visualization systems only provide lim-
ited support to generate animations. They are often produced
with limited capabilities through adjusting rendering config-
uration, such as allowing users to record snapshots, adjust
rendering parameters, and blend time segments. It is time-
consuming for users to determine and modify all these pa-
rameters before reaching a satisfying animation result. Also,
since these rendering configurations do not imply event se-
mantics directly, current approaches can be very difficult for
non-professional users. Therefore, useful storytelling tech-
niques should be considered to describe event features in the
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Speed Path

Wind Rotation

Figure 2: An event graph for the behavior of hurricane eye.
The event is described from three feature aspects at different
scales. The orange bar inside each node represents its time
duration. The scale 0 contains a virtual root that connects
all the feature aspects. The black edges are tree links which
indicate child/parent relationships of features belonging to
the same aspect. The green edges are relation links which
describe similarities of event features from different aspects.

visualization, so that the produced animations are easy to
understand and follow. Up to now, there has not been such
an approach to connect the generation of animation with the
description of temporal events.

This paper presents an approach to generate animated vi-
sualization as digital stories, which can effectively demon-
strate temporal events by mimicking the composition and
transition of storytelling techniques. Our approach consid-
ers general tips of both storytelling and story writing. For
example, as shown in Figure 1, a good story may include a
plot with several stages, such as exposition, conflict, rising
action, climax, a falling action and final resolution [Obs].
Stories often describe a subject from different aspects and
switch topics smoothly. Similarly, our approach describes a
temporal event from different aspects and scales through the
concept of an event graph (Figure 2), which abstracts a time-
varying dataset as a graph of related event features. Anima-
tions are then generated by searching for similar narrative
structures shown in Figure 1. Our approach also allows in-
teractive generation and modification of digital stories based
on the semantics of event features.

Specifically, animations are designed for both summary
visualization and interactive exploration of time-varying
datasets. Given an event description, we first automatically
construct an event graph that abstracts event features from
the entire time duration as nodes and their relationships as
links. The event graph is built by exploring suitable seg-
mentation of event durations according to different data fea-
tures, thereby embedding a tree-like hierarchical structure.
Narrative structures are built by exploring suitable starting
points and search strategies in the event graph. We pro-
vide automatic graph search algorithms as well as interac-
tive modification methods. According to different stages of
a narrative structure, we automatically determine all the ren-
dering parameters to highlight event features and construct
story transitions. We also integrate this animation generation
approach into the interactive exploration process of time-

varying datasets, so that suitable animations can be synthe-
sized promptly to provide more comprehensive event visual-
ization. We demonstrate with a storm surge application that
our approach allows semantic visualization of time-varying
data by generating suitable animations to describe various
event features.

The main contribution of this paper is our automatic ani-
mation generation approach, which employs animation as a
summary and exploration tool to enhance time-varying data
visualization. The key concept of our approach is the event
graph, which characterizes temporal patterns from different
aspects and scales in a time-varying sequence. Closely re-
lated to the event graph, several options of constructing nar-
rative structures are explored, ranging from automatic graph
search strategies to interactive modification methods. Our
approach allows semantic generation of animations, as users
can easily produce or modify animations by selecting feature
aspects, event details, and options of digital storytelling. We
also provide a composition solution for animations by de-
termining optimal parameters automatically with a narrative
structure.

2. Related Work

This section presents the related work of animation and sto-
rytelling in visualization. Our approach is also related to
semantic visualization [RBGO07], focus+context [VFSGO06],
automatic composition [LMEO06], and movie creation meth-
ods for videos [FJS96], computer games [HMO03] and virtual
environments [FFSD04]. For clarity, we focus on the anima-
tion and storytelling issues here.

2.1. Animation in Visualization

Many visualization systems provide a certain degree of an-
imation support, ranging from recording keyframes to pro-
ducing animations automatically. For example, Akiba et
al. [AWMAO9] developed a template-based animation tool for
volume visualization. Gershon [Ger92] presented methods
for visualizing fuzzy data, including displaying a series of
blurred images in an animation loop. Viola et al. [VFSGO06]
presented a method to focus viewpoints automatically on
features of a volumetric dataset. Other types of animation
include animation of 2D steady vector fields [LJLO4], ani-
mation of orthogonal texture patterns for vector field visual-
ization [BWO0S], and 3D interactive animation in information
visualization [RCM93].

Animation has also been applied to enrich static visual-
ization. For example, Lum et al. [LSMO02] presented kinetic
visualization, which visualized animated particles over an
object surface to enhance the visual perception. Correa and
Silver [CS05] produced animations that highlighted data fea-
tures by traversing the volume along a path specified via
transfer function. Woodring and Shen [WS07] highlighted
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objects in a volume dataset by applying animations with po-
sitional motions and opacity variations. Also, Blumenkrants
et al. [BSS06] created narrative algorithm visualization with
the algorithm graph based on information like a central plot
or a story. Results of their study indicated that the narrative
visualization appeared effective.

The effectiveness of animation is closely related to the
data type. For example, Robertson et al. [RFF*08] evalu-
ated the effectiveness of animation in trend visualization
and draw the conclusion that small comparable visualiza-
tion was the most effective approach. However, Lundstrom
etal [LLPYO07] presented a different case. We believe that for
data with meaningful 3D structures, like our time-varying
datasets, animation can visualize temporal events effectively.

Different from previous approaches of animations, our
approach generates animations automatically by simulat-
ing storytelling techniques and integrates automatic compo-
sition algorithms to produce smoothly transitioned anima-
tions. Similar to the multiresolution video method [FIS96],
our approach allows animation generation with different
levels-of-detail. Our approach is also relevant to the algo-
rithm visualization method [BSS06] on building narrative
structures through tree search strategies.

2.2. Storytelling in Visualization

Storytelling technique in visualization has been seldom stud-
ied. Gershon and Page [GPO1] discussed the usage of sto-
ries in information visualization, especially for cases when
data characteristics were abstract and could not be visual-
ized in the form of a picture in a satisfying way. Wohlfart
and Hauser [WHO7] presented a method to use storytelling
to represent a volume dataset through the processes of story
authoring and story telling. They demonstrated the poten-
tial of their approach with medical visualization examples.
Similarly, our approach can also use animations to represent
data information. Different from previous approaches, our
approach exploits the automatic generation of animations for
time-varying datasets through the detection of event features
and construction of narrative structures. Our approach also
allows semantic visualizations, which are more flexible and
meaningful for domain users.

3. Our Approach

In this section, we first present the concept of event graph.
Then, we describe our approach to construct an event graph
and build narrative structures given a user-specified event.
We further present our automatic methods to determine all
the required rendering parameters and generate animations
with smooth transitions. In addition, we introduce two us-
ages of animations for time-varying data visualization.
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3.1. Event Graph

The purpose of the event graph is to abstract various features
of an event in a time-varying dataset. We choose the form
of a graph, which represents event features as nodes and
node relationships as links, since it is close to the narrative
structures used in storytelling techniques, as shown in Fig-
ure 1. With such an event graph, we can generate animations
with narrative structures built by exploring suitable starting
points and graph search strategies. Since most of our narra-
tive structures are composed of linked node pairs, which cor-
respond to semantic transitions between related event fea-
tures, we can convey different feature aspects or scales of an
event smoothly in the resulting animations.

For example, Figure 2 shows an event graph of a hurri-
cane eye in a time-varying storm surge dataset. The behavior
of the hurricane eye is described from the aspects of moving
path, moving speed, and wind rotations around the eye re-
gion. A reasonable narrative structure is to describe these
three feature aspects respectively, like introducing an event
from different viewpoints; and each aspect from scales of
low to high, like starting with an overview and gradually get-
ting into the details.

We can represent an event graph G as follows:
G = {{nodes}; {tree links}; {relation links}} (1)

where an event graph consists of three sets of information:
nodes for representing event features from several aspects
and at different scales, tree links for indicating the child and
parent relationships of nodes belonging to the same feature
aspect; relation links for indicating the similarities of time
durations of nodes from different feature aspects.

Specifically, the nodes without any children correspond
to basic events, such as a straight moving path or a constant
moving speed. The nodes with children correspond to com-
plex events which are composed of multiple basic events.
Every event graph also contains one virtual node that con-
nects all the features aspects. The number of nodes in an
event graph is related to both the event complexity and de-
tail levels according to user interest. Each node has several
components: feature aspect, time range, a score measure to
indicate the significance of this event feature, a list of tree
links, and a list of relation links.

There are two types of links: tree links and relation links.
The tree links represent the relationships of complex events
and basic events belong to the same feature aspect. The du-
ration of a parent node always contains the durations of its
children nodes. The relation links describe the temporal sim-
ilarities of nodes that are on the same scale but from different
feature aspects. Each relation link has two components: a re-
lated node and a similarity value, which uses 0 to represent
“the same", 1 to indicate that the time range of the current
node includes the related node, —1 vice versa, and the ratio
of overlapped time duration to the time range of the current
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node for other cases. To avoid confusion, we use relation
links with value O most of the time.

An important feature of the event graph is that each event
graph embeds a tree-like structure that organizes all the rel-
evant event features. As shown in the graph example in Fig-
ure 2, each feature aspect is represented as a tree branch. The
scale 0 represents a virtual node as the tree root. The scale 1
always represents event features from the entire duration of
a time-varying dataset. Starting from the scale 2, the nodes
are calculated by segmenting the time range of parent nodes
according to the characteristics of data changes. With this
tree structure, we can locate different levels of event details
according to the node scales.

3.2. Constructing Event Graphs

We construct an event graph by following the embedded hi-
erarchical tree structure. Initially, given an event and its fea-
ture descriptions, we can first build a basic tree structure with
the virtual root at scale 0 and a node for representing each
feature aspect from the entire time duration at scale 1.

Starting from scale 2, we segment the duration of each
node on a parent scale until reaching basic events. As shown
in Figure 3, the moving speed of the hurricane eye is re-
ducing constantly, therefore it is a basic event and only con-
tains one node. The river surface elevation and the wind ro-
tation of the hurricane eye contain more variation. They are
represented by a sub-tree in the event graph. Our approach
to time segmentation is through measuring the dissimilar-
ities of time steps automatically. For every feature aspect,
we compare each pair of adjacent time steps and quantify
their differences as one value, which can be shown as the
curves in Figure 3. We detect if this node describes a ba-
sic event by testing if all the dissimilarity values are below
a user-specified threshold. The segmentation process stops
when reaching a basic event; otherwise it continues to higher
scales.

The segmentation is achieved by searching for the cuts
that divide a time duration into several segments, where the
dissimilarity values are more evenly distributed. Specifically,
we calculate the gradients of dissimilarity values, smooth
them with a Gaussian operator, and apply Sobel edge de-
tection [TV98]. The locations with the maximum results are
the cuts to segment a time duration. For storytelling effects,
we limit the number of children for each node to 3, so that
we can keep an evenly distributed event graph.

For example, for the event of the hurricane eye, we first
locate the path of the eye as the weighted center of wind
magnitudes for each time step. The moving speed is mea-
sured as the shift of eye location in adjacent time steps. For
the wind rotation, we first identify a region around the hurri-
cane eye with high wind magnitudes, which is shown as the
blue region. Then we sum the wind angle at each vertex of
all the triangles within this region. Since the hurricane speed

Figure 3: (left) The temporal dissimilarity curves for moving
speed of the hurricane, river surface elevations, and wind
rotation of the hurricane eye. Our segmentation results are
shown as the red lines. Longer lines indicate segmentation
on lower scales. (right) Constructed sub-trees.

is roughly constant during the entire duration, this branch
only has a leaf on scale 1, while the moving path and wind
rotations are further divided to higher scales.

To match event features from different aspects, we com-
bine them during the construction process of the event graph.
Specifically, we determine if two nodes with the same dura-
tion, but from different feature aspects, can be segmented
jointly. We achieve this by measuring the distributions of
their dissimilarity values. The dissimilarity values from the
involved time durations are concatenated and treated as one
high-dimensional vector. We combine two feature aspects if
the dot product of their normalized dissimilarity vectors is
smaller than 10% of the time duration. We further merge
their dissimilarity values for the segmentation process. Oth-
erwise, the conclusion is that these two aspects are very dif-
ferent and should be segmented separately. For example, the
moving path and wind rotation of the hurricane eye are seg-
mented jointly on scale 2.

The relation links are constructed for each scale to de-
scribe the relationships of node durations from different fea-
ture aspects. For scale 1, since the durations of all the nodes
are the same, there is a relation link with value 0 between
every node pair. Starting from scale 2, we measure the re-
lationships of node durations and assign corresponding val-
ues. For example, there are two relation links between the
two nodes under moving path and wind rotation aspects in
Figure 2.

We also measure a significance score of each node based
on the multiplication of its temporal duration, region size
and dissimilarity variance of an event within the node du-
ration. The region size is measured as the accumulated area
that covers the event for the entire duration. For example,
in Figure 2, the moving path covers all the regions where
the hurricane passes, while the wind rotation is only related
to the small region of hurricane eye. The dissimilarity vari-
ance is calculated through the dissimilarity curve, shown in
Figure 3. For each scale, we further normalize all the scores
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Speed Path
Interactive depth-first search

Wind Rotation

Figure 4: The event graph of the hurricane eye and 2 nar-
rative structures, shown as the red links. The node with red
boundary is the starting point. The top shows the result of a
relation search algorithm on scale 1. The bottom shows the
result of a depth-first search algorithm below scale 3. Inter-
actions are also applied to skip the feature aspect of speed
and one node of wind rotation, as well as repeating the end
segment of wind rotation aspect.

by dividing the largest value, so that they can suggest the
significance portion on this scale. The virtual root is always
assigned a score value 0, meaning that this node should be
skipped. We also balance different feature aspects by multi-
plying a user-assigned scale with the dissimilarity variance.
For example, we magnify the scores of wind rotation by 10
to make them comparable to the scores of other feature as-
pects. The significance results describe the events in the ex-
ample of Figure 2 well. On scale 1, the moving path has
the highest score value, 1.0, since it describes an event that
involves the entire data region. The score value of moving
speed is the lowest, 0.1, since it has to do with details which
are not obvious when we consider the entire time duration.

Scientists often have some domain knowledge of the data
under study. For example, in the storm surge study, scien-
tists are interested in the behavior of hurricane and effects
of the hurricane on ocean and river volumes. Therefore, we
can build a set of event graphs before visualization. Figure 5
shows another example result of an event graph built from a
storm surge dataset: bumps and splats in the river.

3.3. Building Narrative Structure

A narrative structure is a plot that determines the sequence
of event features in an animation. It is built by searching for
a suitable node as the beginning and a search strategy that
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Elevation Height Splats
Relation search

Elevation Height plats

Interactive visualization

Figure 5: The event graph of bumps and splats and 2 nar-
rative structures, shown as the red links. The node with red
boundary is the starting point. The top shows the result of
relation search below scale 3. The bottom shows the result
of interactive visualization, where users first choose to visu-
alize the splat feature globally and then select the feature of
elevation height close to the end of the time range.

traverses the event graph and satisfies user-assigned story-
telling options. Several automatic schemes as well as inter-
active modification methods are explored to generate narra-
tive structures.

The starting node is preferably the most significant node
on the lowest available scale, which can serve as an overview
to introduce the major event feature. For example, for the
event of the hurricane eye in Figure 4, we compare the scores
of the three nodes on scale 1, and select the moving path
node as the starting point. This is the same beginning for
the two narrative structures built from different strategies in
Figure 4.

The path of a narrative structure traverses the rest of the
relevant nodes in the event graph. A path is composed of tree
links and relation links in a specific order. Traversing along
the tree links is identical to describing additional event de-
tails. Traversing along the relation links equals the descrip-
tion of related event features from other aspects. These two
links help us to achieve smooth semantic transitions in the
storytelling.
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To build suitable narrative structures, we design three cri-
teria for the graph search strategies.

1. An event is composed of an overview at the beginning
and smooth transitions to event details.

2. Related features are introduced sequentially according to
their score values or temporal order.

3. No node is repeated unless specified by the user.

We can utilize some existing algorithms of graph search,
such as breadth-first search and depth-first search [CLRSO01],
to generate our narrative structures. These two search algo-
rithms meet our design criterion 3 directly. If we always start
from a node on the lowest available scale, we can also meet
our criterion 1. According to criterion 2, the only addition we
make is to determine the search sequence of children nodes
given a parent node. We can choose to follow the order of
their temporal durations or the order of their score values.

Since we introduce the relation links to the event graph,
we also develop a search strategy called relation search.
Specifically, given a starting node, we follow the depth-first
search algorithm. The main difference is that if the current
node has relation links, we first traverse the nodes connected
by relation links instead of exploring tree links. This means
that we do not perform depth-first search on relation links.
Examples with the hurricane and splat events are provided
in Figures 4 and 5.

The design of our event graph allows easy user interaction
and modification on narrative structures. For example, we
provide the following interaction methods.

Selecting feature aspects Users can select different event
aspects to visualize and the branches that are not selected
are ignored in the searching process.

Selecting of level-of-details Users can adjust the levels-of-
detail of animations and only the nodes on involved scales
are traversed.

Skip Users can choose to ignore some feature aspects at cer-
tain levels (e.g., if they are already familiar with this data
portion). These nodes are not considered during the graph
traversal.

Repeat A portion of a narrative structure can be repeated
for emphasis. We add the repeated portion to the narrative
structure.

Selecting starting point Users can select the starting node.
The branch containing the starting node will be treated as
mostly important.

3.4. Automating Animation as Storytelling

To avoid unnecessary user interaction, our approach deter-
mines all the rendering parameters automatically. The pa-
rameters are calculated for each node in the narrative struc-
ture. We also provide a transition between adjacent nodes to
indicate feature changes.

Our rendering parameters include: time steps, viewpoints,

and data resolution. The other rendering settings are fixed in
an animation to avoid confusion. For example, the region-of-
interest is always highlighted in green, as shown in Figure 7.
All the other regions are visualized in the same color design:
terrain always in grey and surfaces always colored accord-
ing to their elevation levels with a blue-to-red colormap. All
these detailed rendering parameters are automatically deter-
mined based on our experiments. For professional users, an
interface is also provided for adjustments.

The number of time steps selected for each node is pro-
portional to its score value. The data loading and rendering
times for each time step are approximately the same, assum-
ing we use the same data resolution for all the time steps
belonging to this node. Therefore, the number of time steps
is linear to the allocation of time duration. To emphasize im-
portant features, a small number of time steps is used for
basic events, while a rather large number is used for ma-
jor events like the hurricane moving path. We set the max-
imum allowed number of time steps Nyqx, Which can also
be adjusted. The number of time steps for a node n with
score score(n) is calculated as Nigeq () = score(n)? X Niax,
where p is a parameter to adjust the effect of score val-
ues. We treat an event evolving gradually in each node du-
ration, so we sample time steps evenly. Assume the num-
ber of time steps contained in a node is N(n). If N(n) >=
Nigear(n), we select a time step for every Nig.q(n)/N(n)
time steps. Otherwise, we set a sleep time proportional to
Nigeal(n)/N(n) X rendering speed in the program.

Several options for viewpoints are explored for our anima-
tion: sky view, local view, dynamic view, optimal view, and
user-selected views. Generally, we prefer to put the event
close to the center of the screen and avoid having the inter-
esting region occluded by surroundings.

Sky view A sky view is often used in TV programs. It points
to the event center, is vertical to the main event moving
direction, and has a 60 degree elevation. The view zooms
into a region whose size is 1.6 times the bounding box of
the interested region in this time duration.

Local view A local view produces the effect that viewers
are standing close to the ground, which can be found by
reducing the elevation degree of the sky view to the range
of [0, 30].

Dynamic view The dynamic view follows the path of the
event and points to the object center at each time step. We
smooth the path to avoid the shaking camera effect. Sim-
ilar to the sky view, the view zooms into a region whose
size is 1.6 times of the bounding box of the interesting
region in this time step.

Optimal view The optimal view can be selected according
to the object shapes and overlap relations, such as through
maximizing data variations [LMEOQ6]. It is the same for
each event node. We simplify this step by running 2D
principal component analysis (PCA) [WEG87] on the ob-
ject center locations from the entire node duration. The
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optimal view is calculated as rotating the second axis of
PCA to an elevation of 60 degree. The view zooms in the
same way as the sky view.

Selected view Our system allows users to choose their de-
sired viewpoint by rotating and zooming the scene.

Data resolution is selected according to the performance
requirement. Low resolution is used for interactive explo-
ration. In our experiment, our machine can support a reason-
able performance (around 0.5 second per time step) when
using data contains 520114 polygons.

To provide smooth transition between adjacent nodes, we
introduce three additional renderings of the event location,
duration and graph. They are rendered automatically to pro-
vide useful information about an event feature. As shown
in Figure 7, we use the top right corner to show the loca-
tion of an event, which can be calculated with the camera
setting. The time duration is shown on the bottom of the
screen, which renders the duration of the current event node
in pink. The current time step is also specified with a red ar-
row above the time window automatically according to data
names. A simple event graph is rendered on the top with cur-
rent node or link in red. These two renderings change auto-
matically according to the node information. When the node
switches, we change the scene by linearly interpolating the
ending viewpoint of the previous node and the starting view-
point of the next node, and then start the animation for the
next node. We also blend the data from the two transiting
nodes in the rendering to produce a simultaneous rotating
and fading effect. Figure 6 provides such an example.

3.5. Animated Visualization

We provide two options of digital storytelling using anima-
tions: summary and interaction modes. The summary mode
automatically produces an animation to summarize the rele-
vant event features in a time-varying dataset, while the inter-
action mode is designed to generate and show animations in
real-time to provide more comprehensive event information
than static visualization for interactive exploration.

The summary mode does not have a performance con-
straint, and thus we can include all the nodes of an event
graph in the animation results. Any of the three searching
strategies can be used to build narrative structures. We can
also render datasets in their original resolution and utilize
any provided methods to determine our rendering parame-
ters. Figures 4 and 5 (top) provide examples of summary ani-
mations using relation search with different levels-of-details.

The interactive mode allows users to apply animations to
enrich static visualization. Instead of requiring users to se-
lect their interesting data region from every time step, we
render a time-varying dataset according to a narrative struc-
ture automatically. This setting allows users to replay an an-
imation, stop an animation anytime, and most importantly
generate a specific animation that describes their interested
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event features. Such interactive exploration provides more
relevant information to users efficiently. Since the construc-
tion of the event graph takes time, especially for large time-
varying datasets, we require users to specify the event under
exploration before interaction. The event graph of any event
only needs to be built once, therefore we can quickly col-
lect all the event graphs of major events. In the storm surge
application, the behavior of the hurricane and its impact on
the water are two important events. We also perform data
reduction before the exploration process by equally down-
sampling the grid meshes for all the wind field, terrain and
water surfaces.

The challenges of real-time animation generation are to
find a suitable starting node based on user selection and
satisfy performance requirement. During interaction, users
can specify their interesting event aspect and adjust the time
step and viewpoint to visualize a specific data portion. With
this information, we locate the matching node on the high-
est scale from the corresponding branch in the event graph.
The time range of this node should include the selected time
step and the node region covers the visualized data portion.
Among our search strategies to generate narrative structures,
we often choose the depth-first search and relation search al-
gorithms, as they provide most relevant information for user
interaction. Since a narrative structure is built very quickly,
we can start the resulting animation without any delay. To
satisfy the interactive performance requirement, we simplify
choices of rendering parameters. For example, we use sky
view, local view, and dynamic view instead of optimal view.
We also use data in lower resolutions. Figures 4 and 5 (bot-
tom) provide examples of animations under the interactive
exploration mode.

4. Results and Discussions

The time-varying datasets used in this paper are gen-
erated by a storm surge/inundation model, ADCIRC
(http://www.adcirc.org/), which has been approved for storm
surge studies by Federal Emergency Management Agency
(FEMA) and applied extensively for modeling storm surge
in the Southern Louisiana and New Orleans areas. Specifi-
cally, we use the data of hurricane Isabel to the Outer Banks
of North Carolina, USA, in 2003 [WL10]. Each dataset con-
tains 792 time steps, 520,000 triangles, and 260,000 vertices.
There are three attributes, terrain elevation, water elevation,
and wind vector on every vertex.

4.1. Example Results

The attached multimedia files provide our animation results,
which correspond to the narrative structures in Figures 4
and 5. These four examples demonstrate different automatic
narrative structures and interactive modification results. The
event graphs of two events, hurricane eye and splats, are con-
structed automatically based on event descriptions. In all the
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Figure 6: A transition example. Four snapshots are provided from the transition of wind rotation to the moving speed on scale
1, which is indicated by the red curve on the event graph on the top. During the transition, the viewpoint is smoothly rotated
and the rendered data are automatically blended to produce a rotating and fading effect.

renderings, the terrain surfaces are rendered in gray. The wa-
ter and hurricane surfaces are illustrated with a blue to red
colormap, with red corresponding to the highest elevation
value. The options of viewpoints are randomized in the gen-
erated animations to avoid uniform rendering effects. Exam-
ple snapshots are provided in Figure 7.

The narrative structure in Figure 4 (top) is generated with
the relation search strategy with the lowest details. The re-
sulting animation provides an overview of the three event
features. It first shows the moving path of the hurricane eye,
which is close to a straight line, since it is the most signifi-
cant feature. Second, the animation visualizes the wind rota-
tion around the hurricane eye, which mostly increases time
range. At the end, it introduces the moving speed, which is
constantly reduced.

The narrative structure in Figure 4 (bottom) is generated
with the depth-first search strategy. The resulting animation
provides more details of the event than the first animation.
It has the same starting point, which overviews the moving
path of the hurricane eye. The animation then visualizes each
segment of the moving path. Then, the animation overviews
the wind rotation and visualizes the second half time range
for the hurricane eye. Since the second half is nearer to the
coastal terrain, which is more important to scientists, users
can choose to skip the first half range and repeat the sec-
ond half. Different parameters are selected to provide more
comprehensive information on the wind rotation.

Our second example event is the bumps and splats in the
rivers. The narrative structure in Figure 5 (top) is generated
with the relation search strategy with middle level of de-
tails. The animation first overviews the water surface ele-
vation height, which is the dominant feature of this event.
It continues to introduce the bumps and splats in the river,
which are highlighted as green dots. Then, the animation vi-
sualizes the elevation height and splats respectively, for both
time ranges, where we can see a periodic feature during the
first time range and the effect of the hurricane during the
second part.

The narrative structure in Figure 5 (bottom) is generated
with interactive exploration. We first choose to visualize the

bumps and splats, so the animation starts with an overview
on scale 1 and continues to visualize the data from the first
and second time ranges respectively. We then choose to view
the elevation height over the second time range, and the ani-
mation locates the starting node on the scale 2 and generates
an animation with the depth-first search algorithm.

4.2. Quantitative Results

We run our algorithms on a computer with an Intel Core2
CPU 6600 at 2.40GHz and 2GB RAM. Most of the pro-
cesses in our approach, construction of the event graph, cal-
culation of rendering parameters, and data reduction, are
preprocessed before interactive visualization. The running
time for constructing an event graph depends on the selected
event features. The event graphs in Figures 4 and 5 take
around 7 minutes. We also determine parameters for the ren-
dering at this stage, which is within 5 minutes. Data reduc-
tion can be achieved within an hour and it is only required
once for a dataset.

The only operation during interactive visualization is the
generation of narrative structures. The performance of all our
search algorithms is interactive. Therefore, once an event
graph is built, our approach allows users to generate and
modify animations interactively.

5. Conclusions and Future Work

This paper presents an automatic animation approach to vi-
sualize temporal events by mimicking the composition and
transition of storytelling techniques. This is achieved with
the concept of an event graph, which abstracts event features
from different aspects and scales, and an automatic anima-
tion process with a series of event detection, time segmenta-
tion, graph search, and rendering composition methods. Our
approach also allows interactive modifications of both nar-
rative structures and parameter selections. The resulting an-
imations can be used in summary visualization as well as
interactive exploration, which provides more comprehensive
information of a time-varying dataset in a timely fashion. We
demonstrate with a storm surge application that our approach

(© 2010 The Author(s)
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moving path (s1) -> wind rotation (s1) -> moving speed (s1)
Hurricane eye - relation search (narrative structure is shown in Figure 4 (top))

moving path (s1) -> movingpath 1 (s2) -> movingpath 2 (s2) -> wind rotation (s1) -> windrotation 2 (s2) -> windrotation 2 (s2)
Hurricane eye - interactive depth-first search (narrative structure is shown in Figure 4 (bottom))

o~ = . L . [ 8
elevation (s1) -> bumps-splats (s1) -> elevation 1 (s2) -> bumps-splats 1 (s2) -> elevation 2 (s2) -> bumps-splats 2 (s2)
Bumps and splats - relation search (narrative structure is shown in Figure 5 (top))

, 3 r“ A
bumps-splats (s1) -> bumps-splats 1 (s2) -> bumps-splats 2 (s2) -> bumps-splats 1 (s3) -> bumps-splats 2 (s3)
Bumps and splats - interactive exploration - startl (narrative structure is shown in Figure 5 (bottom) marked with start1)

J o A
height 2 (s2) -> height 1 (s3) -> height 2 (s3)
Bumps and splats - interactive exploration - start2 (narrative structure is shown in Figure 5 (bottom) marked with start2)

Figure 7: Example renderings from the animation results. Each row corresponds to a narrative structure in Figures 4 or 5. The
event location of each node is illustrated on the right top corner and the node duration is rendered as the red bar on the bottom
of each snapshot. The little red triangle above the duration bar indicates the specific time step of each snapshot. The texts under
each row suggest the node sequence in each animation. Please refer to the descriptions in section 4.1 (example results) for more
details of these animations.

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.
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allows semantic visualization of time-varying data and easy
animation generation for users without special knowledge
about the underlying visualization techniques.

Our approach provides a framework to generate anima-
tions to describe various temporal events. As shown in our
example results, our approach only requires users to identify
some high level key aspects of the time-varying phenomena
and how to characterize the associated features, such as mo-
tion path, eye, and wind speed for the hurricane eye event.
This information can be obtained through discussion with
domain experts. As a result, in this case we have a structure
that can be applied to all hurricane and storm surge simula-
tions, and which also can be used to classify and correlate
these different simulated phenomena. For our storm surge
application, scientists have pointed out that the bumps and
splats are directly related to the storm modeling technique
(and may be unphysical artifacts); therefore they are very
interested in characterizing and understanding these events.
Thus we have a process to add important new features in a
straightforward manner. This overall process of developing
arich narrative framework by considering a small number of
key high level aspects can be applied generally to a range of
time-varying phenomena.

Our future work includes exploring the effectiveness of
different narrative structures of the same event given sum-
mary or interactive exploration tasks. This result can provide
useful information to design general animation techniques.
We are also interested in extending this approach to volu-
metric time-varying data visualization, where we expect to
integrate more feature tracking and data reduction methods.
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