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This article presents a method for automating rendering parameter selection to simplify tedious user interaction and improve
the usability of visualization systems. Our approach acquires the important/interesting regions of a dataset through simple user
interaction with an eye tracker. Based on this importance information, we automatically compute reasonable rendering parame-
ters using a set of heuristic rules, which are adapted from visualization experience and psychophysical experiments. A user study
has been conducted to evaluate these rendering parameters, and while the parameter selections for a specific visualization result
are subjective, our approach provides good preliminary results for general users while allowing additional control adjustment.
Furthermore, our system improves the interactivity of a visualization system by significantly reducing the required amount of
parameter selections and providing good initial rendering parameters for newly acquired datasets of similar types.
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1. INTRODUCTION

In order to create a meaningful and aesthetically pleasing computer visualization, substantial user
effort is involved in manually adjusting the rendering parameters. Generally, each rendering approach
has its own special parameters that need to be adjusted, such as color and opacity transfer functions for
direct volume rendering. Many volume-rendering approaches also require users to choose the volume
placement and viewing direction about the display. While the free selection of these parameters does
provide a flexible environment for the user to generate various results, it also requires a significant
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amount of work and some knowledge about the applied rendering algorithm in order to obtain a satis-
fying result. As such, suitable automation of the rendering settings and parameters can simplify some
of the tedious user interaction and improve the overall usability of a visualization system. To create
such automation, a series of rendering rules must be generated to ensure appropriate placement, view
direction, and other key parameter choices.

In building our set of rules, we turn to artistic and scientific illustrations to look at the principles
that guide their selection of such parameters when creating images. Such illustrations have already
shown their expressiveness in representing various subjects, and they are widely used in science and
engineering. Furthermore, illustrators usually follow certain methodologies and procedures to effec-
tively convey important figure aspects to the viewer. A key aspect of the perceived image quality is its
composition, which usually emphasizes the focal points and achieves a coherent image structure. While
the relative beauty of an image is subjective, some heuristics used by artists to create images are shared
by general illustrative works and can be used as guidelines for the selection of rendering parameters.

Although these guidelines are difficult to apply directly in complex environments, it is possible to
render volumetric datasets automatically according to several features of volume rendering, such as
fixed object shapes and positions. We can treat volume composition as the problem of organizing a set
of objects with constant positions and sizes effectively. We then extract features to determine regions of
interest within a scene and automate the rendering parameter selection to highlight key features. While
some volume features can be extracted through image processing and statistical approaches, determin-
ing regions of interest is a subjective issue. For example, given an image of a human hand, a physician
might focus on the joints of the hand, while general viewers might be interested in the bone structure.
To account for these discrepancies, our system utilizes an eye tracker to determine what areas of the vol-
ume attract a subject’s general interest. This approach creates a high-quality rendering tuned to a user’s
regions of interest while still providing users with the flexibility to adjust parameters to their liking.

In order to determine if our automated parameter selection is effective in drawing attention to regions
of interest, we have conducted a user study in which subjects are asked to find the important/highlighted
regions of previously rendered volumes. Each of these previously rendered volumes has been automati-
cally rendered with one region of interest. Our composition rules give more illustrative emphasis to the
important areas, and as such, these areas should be discernible from other structures in the images.
Our results show that the parameters generated for different rendering styles are able to highlight
importance information for a significant portion of our subjects.

In the following, sections, we will first summarize related work on importance-based rendering, com-
position, and eye-tracker studies. Then, in Section 3, we describe the procedure for gathering importance
information from a user with an eye tracker. In Section 4, we present the procedure to process the impor-
tance information according to eye movement behaviors. In Section 5, we summarize a set of heuristic
composition rules and use them to generate a plausible general-volume visualization automatically.
Section 6 describes our user study, and the results are reported in Section 7. Finally, we discuss our
results and propose future work in Section 8.

2. RELATED WORK

2.1 Importance-Based Rendering

Illustrative renderings can be more expressive than photographs because of their ability to emphasize
important objects and simplify irrelevant details [Gooch and Gooch 2001; Strothotte and Schlechtweg
2002]. The important objects are given different meanings under different contexts, such as calculated
salience or user-specified importance information. In computer graphics and visualization, there are
several research topics that are closely related to this control of level of detail. First, importance-driven
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approaches render objects at different levels according to their importance information. For example,
Seligman and Feiner [1991] presented an automated intent-based approach using rule-based methods
and evaluators, and Viola et al. [2004] extended the cut-away views to an automatic focus, and context
display based on assigned importance values. Similarly, focus+context visualization renders objects
in focus with more obvious styles. For example, Helbing et al. [1998] used emphasized rendering to
communicate relevance and guide user focus, and Svakhine et al. [2005] presented an interactive
medical illustration system with various combinations of rendering enhancements/styles. Third, cut-
away views [Diepstraten et al. 2003; McGuffin et al. 2003] can also be included as one approach to
emphasize important objects through cutting away or distorting the less important objects in the front.
Fourth, stylization and abstraction topics emphasize important features or salience for both images and
3D objects. For example, Hamel and Strothotte [1999] used templates to describe and transfer rendering
styles to save tuning the parameters. DeCarlo and Santella [2002] used eye-tracking data to stylize
and abstract photographs into a line-drawing style with highlighted interested regions. They further
validated their approach through user studies [2004]. Design principles have also been explored for
creating effective assembly instructions based on cognitive psychology research [Agrawala et al. 2003].
Stylized focus for 3D models has also been developed to draw viewer’s gaze to an emphasized area [Cole
et al. 2006]. These approaches utilized techniques from different fields to emphasize important objects
during the rendering process, which is one important criterion we consider to develop this composition
approach.

2.2 Composition

Both interactive and automatic methods have been developed to reduce user interaction for selecting
rendering parameters. Among these methods, rule-based approaches have been developed for several
graphics and visualization applications. For example, Mackinlay [1986] developed a framework for au-
tomatic graphical presentation creation and evaluation. Beshers and Feiner [1993] designed rule-based
visualization principles that take into account the characteristics of data, tasks, and hardware capabil-
ity. Gooch et al. [2001] presented an overview of compositional principles and an approach for finding
a good composition for 3D objects. Strothotte et al. [1994] designed sketch rendering and discussed
the function of rendering choices on the perception and understanding of the viewers. Also, suitable
user interaction has been introduced to guide composition algorithms. For example, Rist et al. [1994]
argued that semiautomation was a reasonable compromise for computer-generated illustrations and it
could release users from routine subtasks. Bergman et al. [1995] presented an interactive approach to
guide the user’s selection of color maps for various visualization tasks. Kowalski et al. [2001] guided
the rendering parameter selections based on compositional needs in an interactive animation scene.
Similar to these approaches, our method is also based on composition rules and incorporate a small
amount of user interaction. The main difference is that we fully automate volume renderings according
to regions of interest collected from the user’s eye movements.

2.3 Eye-Tracker Studies

To acquire the information of regions of interest, eye tracking has been one popular approach in com-
puter graphics, human–computer interaction, and psychology. We have divided the related work into two
groups based on application type. The first group focuses on using the eye-gaze information to improve
the understanding of knowledge. Research in psychology has shown that the eye movement patterns
during complex scene perception are related to the information of the scene, as well as to the cognitive
processing of the scene [Rayner 2004]. For example, eye-tracking data can be used to extract visual
features from 2D/3D figures [Chung et al. 2004]. Comparing eye movement strategies can provide fur-
ther information for professional education training [Law et al. 2004] and 2D/3D display analysis [Tory
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et al. 2005]. Eye trackers have also been used to characterize low and high comprehenders [Bednarik
et al. 2006].

The second group of approaches focuses on using eye gaze information to improve the performance
of various systems. For example, Levoy and Whitaker [1990] let the high-resolution sweet spot follow
the user’s gaze to achieve a trade-off between the computation resource and the represented details. In
human-computer interaction, eye-based interaction has been applied to design a gaze-controlled naviga-
tor [Starker and Bolt 1990; Tanriverdi and Jacob 2000] and replace the keyboard and mouse [Majaranta
and Raiha 2002]. Eye tracking has also been used to improve the rendering speed in the simulation
of a realistic collision [O’Sullivan and Dingliana 2001; O’Sullivan et al. 2003] and natural eye contact
between users in a video conference [Jerald and Daily 2002]. In this article, we use eye tracker as a con-
venient interaction tool, and we use collected information to calculate regions of interest for volumetric
datasets.

3. ACQUISITION OF IMPORTANCE INFORMATION

To select regions of interest for composition tasks, a useful technique in visualization is to adjust
transfer functions [Bordoloi and Shen 2005; Takahashi et al. 2005]. Although transfer functions have
been shown to be powerful visualization tools, they are not necessarily intuitive for general users. Our
design principle is to develop an intuitive approach that can be used by both scientific experts and
general users. We use the eye tracker as a convenient interaction tool and calculate regions of interest
from the patterns of a user’s eye movement. A user only needs to look at their interested regions in the
volume on the screen and his/her eye movements during that time period will be automatically recorded.
In the remainder of this section, we briefly discuss eye movement theory to show the foundation of using
an eye tracker for 3D volume composition. Then, we describe our procedure of using an eye tracker to
gather importance information.

It is known that eye movements seldom perform wasted motions, and typically focus near the best
place to gather desired visual information [Sekuler and Blake 1994]. Therefore, one can determine
what regions of an object a user is interested in by analyzing eye movements. Such an analysis has been
mainly used for 2D or 2D-oriented applications, such as improving rendering speed [Levoy and Whitaker
1990; O’Sullivan and Dingliana 2001; O’Sullivan et al. 2003] and abstracting data information [DeCarlo
and Santella 2002]. There are two types of basic eye movements: saccades and fixations. A saccade is
a rapid intermittent eye movement that occurs when the eyes fix on one point after another, or for the
purpose of lubrication. A fixation is when eye movements stop and focus on a particular object. It has
been shown that fixations correspond to informative locations and the time actually spent fixating on
a particular location indicates that processing of the object is taking place [Rayner 2004]. As such, we
use the eye fixations to determine the user’s regions of interest. We then group the eye data spatially
and temporally and calculate the sets of sequential fixations. The lengths of the fixations are related to
the interest degrees of the processed information.

To collect the importance information, we have designed a simple procedure for general users. As
opposed to most 2D and 2D-oriented research with eye trackers, our objective is to gather the importance
information for the 3D voxels of a volume. Since the eye tracker returns 2D point positions on the image
plane, we need additional information to reconstruct the 3D points of the focal regions. Our approach
is to let users look at a constantly rotating volume while we gather their eye movement data. With the
rotation information, we can locate the 3D regions of interest from multiple consecutive eye data if the
user keeps looking at the same position. As previously discussed, fixations are the sources for us to locate
a user’s region of interest and fixations usually take a significantly longer time than saccades; therefore,
we can gather the importance information by rotating the observed volumes. The rotation pace is set
at 10 seconds per 360 degrees, which is slow enough for a user to observe details and fast enough to
ACM Transactions on Applied Perception, Vol. 7, No. 1, Article 4, Publication date: January 2010.
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Fig. 1. A sequence of eye movement during the volume rotation and isovalue changing. The red point indicates the position of
the eye gaze.

avoid wandering and boredom. The rotation direction can be interactively adjusted by users. During
this interaction, their eye data is discarded, as the eye movements may involve other factors due to the
interaction. This procedure ends when users feel that they have already explored the volume contents.

To measure the amount of detail from the eye-tracking data, we use the concept of visual acuity, which
is a measure of the smallest detail that an observer can resolve under ideal conditions. Reddy [2001]
summarized measure models from the vision literature into a single equation for visual acuity, H(v, e).
As shown in Equation (1), H(v, e) is computed from the contrast sensitivity G(v) and sensitivity drop-off
M (e), when having a velocity of v degrees/second and a peripheral extent e degrees. It shows that the
highest sensitivity is located centrally in the fovea and varies across the retina. We use H(v, e) as the
weight of observed information for the collected eye data, where v is the volume’s rotation speed on the
image plane and e is measured from the distance between the user to the screen and the pixel position
to the screen center.

G(v) =

⎧⎪⎨
⎪⎩

60.0, v ≤ 0.825 deg/s
57.69 − 27.78 log10 (v), 0.825 deg/s < v ≤ 118.3 deg/s
0.1, v > 118.3 deg/s

M (e) =
{

1.0, e ≤ 5.79 deg

7.49/(0.3e + 1)2, e > 5.79 deg

H(v, e) = G(v)M (e) (1)

Another challenge with 3D volumes is that all the information from a volume cannot be shown to
a user at once, as opposed to 2D images. To explore the objects in the volume, we use a standard
volume rendering approach: transparent isosurfaces. While the volume is rotating, subjects can change
the normalized isosurface values from 0 to 1. This allows the subjects to explore any of their regions of
interest in the volume. The window for adjusting the isosurface value is independent from the rendering
window. The eye tracker returns 0 when the subjects look outside the rendering window; therefore, the
eye movements for adjusting the isosurface value do not affect the gathered importance information.
Figure 1 shows a sequence of eye gaze positions that we recorded when a user traversed the isosurfaces
of a human hand dataset.

4. PROCESSING OF IMPORTANCE INFORMATION

The data collected during the acquisition phase is a list of 2D eye movement points on the image plane
and their corresponding volume rotation sequences. With this information, we reconstruct and cluster
an eye gaze volume to generate importance maps that indicate the user’s interest. We generate impor-
tance maps for both 3D space and data value space and will use them in the automatic composition
phase.
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Fig. 2. A pipeline overview of eye data process. We first collect 2D eye points when users are looking at a rotating volume. These
2D eye points are used to construct an eye gaze volume recording 3D locations of fixations. We then process and cluster this eye
gaze volume to generate a 3D importance volume. Also, from the clustering result of Section 4.2, we construct the fixations on
a 2D value space (histogram) and generate a 2D importance space in Section 4.3. Both the 3D importance volume and the 2D
importance space are used to decide visualization parameters automatically in Section 5.

4.1 Reconstruction of the Eye Gaze Volume

Eye trackers generally collect eye movements at a fixed rate (such as 60 data-points per second) during
an indicated time period. To correctly construct an eye gaze volume, we need to correspond eye move-
ments with a volume rotation sequence. Since our eye-tracking data is acquired on a separate machine,
we place a time stamp whenever we rotate the volume. This way, we can clearly link the volume ro-
tations to the eye movements by setting each volume rotation matrix to all the eye movements within
the corresponding time range.

As discussed in the previous section, we are only interested in using the fixations of the eye movements
to gather the information of regions of interest. Therefore, we remove the eye data that moves faster
than a normal fixation speed, which indicates a saccade. As Ohshima et al. [1996] suspended rendering
when the eye moves faster than 180 deg/s, we use this value as the eye velocity threshold to distinguish
saccades from fixations.

For each 2D point on the image plane, given its corresponding volume rotation matrix, it represents
a line passing through the volume. Since the eye observance is located on the image plane, we let all
the voxels projected on the same area to share its visual acuity value and use the same importance
weight for all these voxels, regardless of their depth. According to the 2D visual acuity model, each eye
data point represents that viewers received information from all the voxels that are projected on the
image plane within a small area, so each eye point corresponds to a subvolume in the 3D space. For
orthogonal views, this subvolume is a cylinder, since depth values do not affect projection positions. For
projective views, the radius of this subvolume becomes smaller as the depth increases.

When viewing a 3D volume at each time stamp, users generally focus on a 3D point instead of an
entire subvolume. Since a single 2D eye point on the image plane cannot suggest any depth information,
we use consecutive eye points to locate the focus point. This can also identify the exact 3D location when
multiple voxels are projected onto the same eye point. We cannot simply calculate the intersection of
subvolumes, since the constructed shape of a focus point will be affected by its fixation duration. The
shape of a focus point may vary from a thin line, when fixation duration is short, to a sphere, when
fixation duration is long. To better measure the importance degrees around a 3D focus point, we change
the 2D visual acuity model into a 3D model by assigning the same weight to all the voxels with equal
distance to the center. The model center is set as the intersection point between two consecutive eye
focus points. Instead of providing a visual acuity model for 3D space, we use this 3D model to remove
the artifacts of the importance map from collected viewing angles.

The process of reconstruction starts from the second eye data. For each eye point, we test the velocity
requirement, calculate the focus point with the previous point, and add the weights from the 3D visual
acuity model to the eye gaze volume. After we generate the eye gaze volume, the regions with high
ACM Transactions on Applied Perception, Vol. 7, No. 1, Article 4, Publication date: January 2010.
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values indicate higher interests or importances to the user. We then normalize the generated eye gaze
volume for the clustering procedure.

4.2 Clustering of the Eye Gaze Volume

When observing an object, human eyes often choose several suitable locations to look at the same object.
Also, the positions of fixations may indicate areas that are difficult for users to understand, instead of
a single region of interest. To combine close fixations that correspond to the same regions of interest,
we need a clustering algorithm to group focus points from the eye gaze volume.

To prepare for clustering, we first select voxels that have higher importance values above an assigned
threshold in the eye gaze volume. This helps to remove extra regions that are introduced just because
they were projected close to some eye points on the image plane. We can use these voxel locations as
a list of 3D points and input them to clustering algorithms to group fixation locations. A difficulty for
such a clustering task is that we do not know the number of clusters ahead of time. This restricts us
from using standard clustering algorithms, such as K-means. The mean shift algorithm [Comaniciu and
Meer 2002; Georgescu et al. 2003], based on the gradient direction, has been shown to be a flexible and
robust clustering algorithm. It can be used without the knowledge of cluster number and cluster shape.
We adopted the mean shift procedure to decide cluster number, cluster centers (modes) and assign each
input point to the closest cluster. We continue to merge clusters if their center distance is within the
eye-tracker accuracy range. Small clusters with the size of less than 5% of the total point number are
discarded, since they are not the main focus of the volume.

We further smooth focus regions by fitting a Gaussian model to each cluster set. All the points assigned
to a cluster are used to calculate the parameters of a Gaussian model. The valid window size is located
by including at least 90% of the points in this cluster. The cluster results are used to generate a smooth
importance map, which will be further used to determine rendering parameters.

4.3 Clustering of Value Ranges

In addition to the 3D importance map, we also generate an importance map for value space. Since data
values of focus points may indicate value ranges that users are interested in, this information can be
used to detect data features of a volume with eye movements. We use important value ranges to design
rendering parameters.

The generation process for importance map of value space is similar to the previously mentioned
process of 3D importance map. We use a common 2D histogram (voxel value and gradient magni-
tude) [Kindlmann and Durkin 1998] as our value space. We first generate an initial 2D importance
map by collecting the distribution of 3D focus points in the value space. Then, we cluster the initial 2D
importance map with the mean shift algorithm and smooth cluster results with Gaussian models. This
procedure is similar to the generation of 3D importance map and helps us produce a 2D importance map
on the value space. Each cluster is shown as one Gaussian shape on the 2D histrogram and corresponds
to one 3D object in the volume.

We use the information of value importance map to finalize the 3D importance map for segmented
and unsegmented volumes, respectively. For segmented volumes, we use the value importance map to
hit on the objects in the volume. The hit numbers are normalized as object importance values so that we
can further emphasize the regions that might not be in the user’s focus regions but share some common
features with them. For un-segmented volumes, we can use the value clusters to segment the volume
automatically by revisiting the volume with the value importance map as a transfer function. Voxels
that have data values and gradient magnitudes belong to a 2D importance cluster will be classified as
portions of the corresponding 3D object. Therefore, we can treat segmented and unsegmented datasets
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as volumes that are composed of several stable objects, and we can process these datasets in the same
way as described in the following section.

5. AUTOMATIC RENDERING SETTINGS

Based on the importance maps acquired from previous sections, we can automate the process of volume
rendering, which usually requires a user to manually adjust some rendering parameters. The main
criterion we try to follow is that a good visualization often captures object features and emphasizes
regions of interest in a manner that is not only scientifically accurate but also visually pleasing to the eye.
Here, we will concentrate on producing a computer-generated visualization with emphasized important
regions automatically. We will explore approaches for several necessary rendering parameters shared
among general-volume visualization methods. From the previous two sections, we have prepared the
following three data types to use in the automation process:

—Iv(): the importance value for each voxel (Section 4.2)

—I D(): an object ID for each voxel (Section 4.3)

—Io(): the importance value for each object (Section 4.3)

5.1 View Direction

Psychologists use “canonical view” to refer to the viewpoint that is preferred by most viewers [Blanz
et al. 1999]. The study of canonical view searches for the factors that can affect our perception and
understanding by observing the consistency across subjects, instead of locating a unique best view for
certain types of objects. There are consistent heuristics for choosing view directions from both artists
and psychology results, such as to pick an off-axis view from a natural eye height. Since most of them
match our criteria of a good visualization image, we can use the common factors of a canonical view to
guide our automatic viewpoint selection.

Canonical views have been studied for face recognition [Laeng and Rouw 2001], procedural graph-
ics [Krull et al. 2003], 3D models [Denton et al. 2004], and animation generation [Kawai et al. 1993;
He et al. 1996]. Gooch et al. [2001] chose initial viewpoint according to the proportions of projection
areas and perturbed viewing parameters guided by heuristic rules for layout. Vázquez et al. [2001] used
viewpoint entropy to compute good viewing positions and select good views for scene understanding
of polygon models. Recently, the amount of information or viewpoint entropy are also explored for se-
lecting good viewpoints for volume, time-varying, and isosurface renderings [Bordoloi and Shen 2005;
Takahashi et al. 2005; Ji and Shen 2006; Viola et al. 2006]. Most work measured the “goodness” of a
view direction in a certain way, such as designing objective functions or user experiments. For a volume,
since we do not have any specific information about the geometry shapes of the objects in the volume,
the viewpoint selection becomes more challenging. The major difference in this article from the previous
work is that we treat parameter selections as a more subjective issue, and we use an eye tracker to
acquire this information from the user, which is more intuitive than adjusting transfer functions and
does not require the knowledge of volume rendering.

Here, we briefly list the factors for viewpoint selections and describe our interpretation. We remove
the factors that are related to experiences, since these are impossible to quantize without understanding
the context of a dataset.

Salience: A view that shows the salience and significance of features is preferred by most observers.
For volume data, we use several standard values to represent data features, including the gradient
magnitude G, curvature magnitude C, and an edge detection value, E. The salience of a voxel is
represented as a weighted sum of all the feature factors.
ACM Transactions on Applied Perception, Vol. 7, No. 1, Article 4, Publication date: January 2010.
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Occlusion: Occlusion is used to avoid too many crucial features overlapping with each other. A vi-
sualization result is always rendered in a view direction that the information would be sufficient or
clear for object recognition except for special purposes. Since volume visualization can show the inside
information as well as surfaces, occlusion is a very important factor in evaluating the quality of a view
direction. We measure the occlusion by projecting voxels onto the image plane and a good view direction
should include fewer overlapping voxels that have high salience or importance values.

Stability: A view from which small rotations will not produce significant changes is preferred to avoid
ambiguities. Stability is also related to the occlusion factor, since there would be no stability problem if
any two objects/saliences were not overlapping on the image plane. We measure the variance of a view
direction within a small region as the stability factor.

Familiarity: The views that are encountered most frequently or during initial learning period are
generally preferred. Since familiarity is difficult to measure without context information, we match the
familiarity by presenting the user-interest objects closer to the eye position as an approximation. For
instance, when looking at a volume, an observer is usually interested in the facial portion of a head or
the bones of a foot.

Combining these four factors, we calculate a weight W () for each voxel v using salience, importance,
and the normalized distance to the viewer location Distance(v), as shown in Equation (2). We use equal
weights ws, wi, wd , since all the values have been normalized already.

W (v) = ws ∗
Salience︷ ︸︸ ︷

(G + C + E) ∗Io(v) + wi ∗ Iv(v) (2)

+
Familiarity︷ ︸︸ ︷

wd ∗ Iv(v) ∗ (1 − Distance(v))

To measure the occlusion degree of a view, we adopt a procedure similar to the splatting algorithm
[Zwicker et al. 2001]. We use a temporary buffer, with the same size of the image plane and initialize
all the values to be 1. Each voxel in the volume is projected onto the image plane and the corresponding
buffer values are modified with the voxel weight calculated in Equation (2). To avoid the handling of
voxel sequences, we multiply the weights of voxels and their corresponding buffer values so that the
occlusion degrees for all the views can be measured with this procedure.

O(view) =
Occlusion︷ ︸︸ ︷∑

p ∈ Image plane

∏
v ∈ Volume and v projects on p

(1.0 + W (v)) (3)

The evaluation (“badness”) function of a view direction view is calculated as the negative of the sum of
all the items in the buffer and the variances.

Evaluation(view) = −(O(view) +
Stability︷ ︸︸ ︷

Variance(O(view))) (4)

To find a minimum value of such an implicit function (caused by the variance portion), we use an
optimization process, which only requires the function values instead of the derivatives of the objective
function. Gooch et al. [2001] use the downhill simplex method, which is well behaved for the problem
with a small computational burden. Since the design of our objective function involves more calculations,
we adapt the direction set method for faster processing [Press et al. 1992]. We divide the view space into
a set of samples by tessellating a sphere. Then, we choose the initial view direction with the minimum
evaluation value from the sample set. Finally, a minimum view is searched within the divided range,
which is a much smaller space than the whole view space. This process is guaranteed to find a local
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minimum value, which is good enough to find a plausible answer. With an increase in the initial view
sampler set, we can find a near-global minimum result.

5.2 Volume Center Position

After determining the view direction, we need to locate the volume center in space. Artistic illustrations
often achieve a balanced structure, attract viewer’s attention, and avoid equal divisions of an image.
Also, most visualization systems have fixed rendering window size and always put the volume at the
center of the screen. For a practical visualization system, we keep fixed rendering window size and put
the volume on the center so that we do not need to constantly change the volume center position to fit
all the objects inside the screen while rotating the volume.

We use the golden ratio (1:1.63) as the ratio of object size to the rendering window, since it is shown
to be more appealing than others [Livio 2002]. We calculate the bounding box of important clusters on
the image plane. The volume center is located by setting the ratio of the bounding box size and the
image plane to the golden ratio.

5.3 Rendering Parameters

The rendering settings of view direction and volume center position are designed for the whole volume,
while other rendering parameters are different for each object inside the volume. After a volume is put in
a good position to observe with the first two settings, we design the rendering parameters for each object
in this section so that they can be distinguished from the surroundings and the important objects can
stand out in the results. Since rendering parameters are dependent on the specific rendering algorithms,
we concentrate on the parameters that are common to general-volume rendering approaches.

Our parameters are designed according to the relations between each pair of objects that are mea-
sured through their positions and sizes. Previously, spatial relationships are often considered using
9-intersection model [Egenhofer and Herring 1990] and the dimensional model [Zlatanova et al. 2002].
We calculate the impact factor of one object to another to approximate objects’ spatial relations, which
will be used later to decide rendering parameters. For every object, we scan the volume from front
to back to measure the overlapping area of every other object in front of it. The overlapping area is
divided by the object projection area to overcome the impact of the object size and overlapping size,
since a smaller sized object is considered to have less influence than a larger one. For objects A and
B, the impact factor Impact(A, B) is considered through the overlapping regions Overlap(A, B) on the
image plane and the distance between two objects Dis(A, B).

Overlap(A, B) = Area(A, B)
Area(B)

Impact(A, B) = Overlap(A, B) + 1/Dis(A, B) (5)

5.3.1 Rendering Elements. When a volume contains multiple objects, a visualization system usually
assigns different rendering elements to each object to distinguish them, such as with different colors or
patterns. We use the relation matrix Impact(A, B) and the importance map generated from the previous
section to assign rendering elements. For each object, we assign several rendering elements from the
aspects of distinguishing and emphasizing, assuming that users do not have any preknowledge of the
real objects. To effectively visualize a dataset, we choose different elements for each object and keep
large perception distances among them. The most effective elements will be selected for emphasizing
important objects, which are acquired from the importance map. We concentrate on color selections in
this section and show that the same procedure can be used to assign other elements, such as patterns.

Since colors play an important role in data visualization, approaches have been devoted to color-
mapping designs [Rheingans and Tebbs 1990; Rheingans and Landreth 1995; Bergman et al. 1995] and
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color representation validations [Healey 1996]. When users interactively select colors for rendering, they
generally prefer to use more distinctive colors for objects with higher importance values; therefore, we
assign colors according to their importance value distribution. To balance the effects of color luminance,
our color map is chosen from the perceptual isoluminance color map [Kindlmann et al. 2002] and the
Euclidean distance between different colors is measured in a perceptually balanced color model (CIE
LUV) [Fairchild 1998]. We use the following procedure to ensure that our color assignments satisfy
their importance value distribution. For a volume with n objects, we equally divide the color map into
n sections and randomly select one color near the center of each section. To map the color distance
and object relation information, we normalize them to the same value region, respectively. Then, we
generate all the possible assignments and the final colors are chosen by minimizing the differences
between the object relations and the color distances ColorDis(i, j ) for colors i and j .

M (i, j ) =
∑
i, j

(ColorDis(i, j ) − Impact(i, j ))2 (6)

The same procedure can be used to assign other rendering elements with predesigned sensitive values,
such as patterns. The rendering patterns can also influence the perception effects for users, as shown
in Kim et al. [2004]. We simply assign the sensitive values with the size of the pattern primitives. The
objects with higher importance values are rendered with the patterns composed of larger primitives,
while the least important object is rendered with small points. Figure 5(c, d) shows the automatically
generated results with different patch patterns.

5.3.2 Rendering Degrees. We use rendering degrees to refer to the parameters related to the level
of details or opacity values. Intuitively, a more important object will be rendered with more detail and
a higher opacity value. If we use the object importance value to assign the rendering degree for each
object directly, a problem arises when there are objects overlapping each other. The most important
object will occlude all the objects behind it and the less important object may occlude part of the more
important objects. Therefore, we use the overlapping relationships and the importance map to assign
rendering degree.

Our two basic rules are based on the overlapping relations that can affect our understanding of object
shapes and locations [Dowling 1987]. If there is no overlapping relation, the object is rendered at the
highest degree. When two objects overlap in the image plane, the object at the back is rendered with a
degree as high as possible; while the front object is rendered at a suitable degree to show part of the
back object, no matter its importance value.

We use the following procedure to calculate all the rendering degrees. Initially, the rendering degrees
RenderDegree() of all the objects are set to 1. Then, we traverse the object with positive importance
values in the decreasing order. For each object, we update the degree of the objects in front of it using
the overlapping area proportion and the importance values. Assuming object A is in front of object B,
we update the degree of A with the overlapping ratio of A on B Overlap(A, B) as a weight:

RenderDegree(A) = Overlap(A, B) ∗ f (Io(A), Io(B))
+ (1 − Overlap(A, B)) ∗ RenderDegree(A) (7)
where f (x, y) = 0, x ≤ y ; x− y

x , x > y .

The calculated rendering degree can be used to determine the rendering parameters directly for some
algorithms. For example, the degree can be used to decide the opacity values for transfer functions. We
set the opacities with Opacity(x) = 0.1 + RenderDegree(x) ∗ 0.7 according to our experiences, so that
all objects are not totally transparent, and we always show the volume inside. For the silhouette effect
of nonphotorealistic rendering (NPR), the silhouette power in Opacity(x) = (

−−−−−−→
Gradient · −−→

View)Sp(x) is
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Fig. 3. The reconstructed eye gaze volumes, segmented clusters, and our composition results for a segmented hand dataset (top)
and a foot dataset (bottom). For the hand dataset, since the bones are viewed as more important than the skin, they are less
transparent and rendered with less silhouette enhancement and a warmer color. The viewpoint is also selected for better bone
observance. For the foot dataset, although the user is more interested in the bones on the first and second toes, all the bones are
highlighted because of their value similarities.

Fig. 4. Two pairs of eye gaze volumes and composition results for a segmented feet dataset. The left pair focuses on the bones,
and the right pair focuses on the skin portion. These images show that different composite visualizations are generated according
to the user interests for best observance of objects of interest.

set as Sp(x) = 10 − 9 ∗ RenderDegree(x) so that the least important object will be rendered only with
silhouettes. Figures 3 and 4 show several automatic composition results in which colors are only selected
from the yellow to red hue range for more natural results.

It is relatively difficult for other rendering algorithms to summarize the changes of parameters
according to their desired rendering degrees. This problem corresponds to the parameter selections
of different rendering motifs [Svakhine et al. 2005]. For these approaches, the rendering degree is
used to determine the parameters on a high level, which are extracted from the input of experienced
users, while the lower-level interface is used to explicitly adjust the rendering parameters by users.
ACM Transactions on Applied Perception, Vol. 7, No. 1, Article 4, Publication date: January 2010.
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Fig. 5. The parameter selections of two illustrative rendering styles from the collected importance information. (a,b) Composition
results of hand and abdomen datasets in a stippling rendering style. The focused regions are the bones of the hand and the lungs
in the abdomen. (c,d) Composition results of foot and feet datasets in a patch-based rendering style. The focused regions are the
bones of (c) and skins of (d).

Figure 5 (a, b) shows the stipple rendering result with the high-level interfaces that use only several
0 − 1 scalar values, including a gradient slider, sharpness slider, orientation slider, distance slider, and
interior slider, to control all the required parameters in the rendering process [Lu et al. 2003].

6. EXPERIMENT DESIGN

We have performed a psychophysical experiment to evaluate the effects of different rendering styles
and parameters on user interaction. Since the parameters are designed to reflect important objects
in a voulme, we expect that these regions of interest in the volume composition results draw more
attentions from viewers. Therefore, we hypothesize that subjects shown images rendered with our
automatic parameter generation technique will be able to visually locate which area of the image was
considered to be a region of interest. This hypothesis leads us to evaluate partial effects of volume
composition results and provides some useful results for our future work. We also expect that the
effects of parameters vary from different rendering styles and have chosen three rendering styles of
both the abdomen and hand datasets in the experiment.

6.1 Apparatus

The system used in our experiment, as shown in Figure 6, consisted of a computer with an Intel Xeon
2.0 GH CPU and an ISCAN ETL-400 eye tracker. In order to acquire accurate results, subjects were
required to place their heads in a chin rest to minimize head movement. Rendering was done as a
preprocess step, and a set of static images was used for evaluation.

6.2 Subjects

Eight subjects (S1–S8) participated in the experiment. Five subjects were female. All subjects had little
to no familiarity with the datasets. All subjects had normal or corrected vision. The subjects ages ranged
from 15 to 43 years of age. No testing was performed to assess color vision impairment.

6.3 Stimuli

Two datasets were used in this experiment. They included the hand dataset and the abdomen dataset,
see Figure 7. Each dataset was rendered in three different styles and highlighted three different portions
of the data based on a predefined region of interest. The rows in Figure 7 represent each rendering
style applied to a given dataset. Each column in Figure 7 represent a particular region of interest. For
the hand dataset, one rendering highlighted the ulna, another the wrist, and the last, the thumb. For
the abdomen dataset, one rendering highlighted the liver, another the kidney opposite the liver, and the
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Fig. 6. A user participating in the eye-track study.

last, the heart. Each of the three renderings from the datasets were scaled to 700 × 700 pixels. These
renderings were then rotated and flipped to provide five different viewing angles of each image. This
created a set of 90 images.

6.4 Procedures

We tested the subject’s ability to visually determine which portion of the dataset was the region of
interest by displaying each image for 3 seconds and asking subjects to focus their attention on the
portion of the image that they determined to be “highlighted.” Prior to each experiment, a subject was
presented with a test set of images demonstrating exactly what was meant by highlighting. Subjects
were placed 320mm away from the monitor. Images were then presented in random order to each
subject. Each image was shown for exactly 3 seconds. This was followed by a black screen with a square
placed in one corner of the viewing area for 1 second to redirect the subject’s focus. The experiment
length was approximately 10 minutes including calibration time. Specifically, subjects were instructed
to search the image for what appeared to be a highlighted segment and then focus their gaze on that
segment until the the image changed to a black screen.

7. EXPERIMENTAL RESULTS AND ANALYSIS

In order to evaluate the automatic parameter generation, we analyzed the subjects’ eye gaze patterns
to determine if they were able to accurately identify areas within the image that were highlighted. We
did not measure the time which a subject took to find the highlighted area. Instead, we determined the
average time it took subjects to come to a consistent gaze location, removing all cases where subjects
failed to settle on any location. The average time was approximately 1.5 seconds to locate a region of
interest. From there, we focused only on the last 1 second of data collected, as this should be the time
in which subjects are most focused on what they consider to be the region of interest in the image.

For each subject, we considered three cases for the hand dataset: (i) the subject looks at the thumb,
(ii) the subject looks at the wrist, (iii) the subject looks at the ulna. We also consider three cases for
ACM Transactions on Applied Perception, Vol. 7, No. 1, Article 4, Publication date: January 2010.
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Table I. Summary of Subjects Able to Distinguish
Different Areas in Images

Stipple Realistic Illustrative
Hand 87.5% (7/8) 62.5% (5/8) 62.5% (5/8)

Abdomen 87.5% (7/8) 62.5% (5/8) 25.0% (2/8)

the abdomen dataset: (i) the subject looks at the image with the kidney highlighted, (ii) the subject
looks at the image with the heart highlighted, (iii) the subject looks at the highlighted liver opposite
of the kidney. For each subject, we looked at each rendering style to see if the subject could accurately
determine the highlighted object. To do this, we would compare cases (i), (ii), and (iii) to see if each case
was statistically different in each rendering style for each dataset. For each case and rendering style, the
subject looked at five images. Each image was rotated or mirrored in each of the five cases such that the
subject would not learn the exact location of the highlighted portion for the repeated trials. Each image
and the corresponding gaze locations were rotated back to a normal viewing position. The last second
for each trial was then aggregated into a single dataset such that for each case and rendering style,
we now have a dataset consisting of the last second of data for five trials. These gaze location datasets
were then analyzed in a pair-wise comparison test to determine if the subject was able to distinguish
different areas in cases (i), (ii), and (iii) of each dataset and rendering style. For example, within the
rendering style of stippling, we perform a pair-wise comparison test between the gaze locations from the
trials in which the subject looked at images with the thumb highlighted and compared these locations
to the gaze locations from the trials in which the subject looked at images with the wrist highlighted,
and so on. Under the pair-wise comparison test, we test the null hypothesis that the means of the gaze
locations for cases (i), (ii), and (iii) are equal. If the null hypothesis cannot be rejected at the 5% level,
then we have shown that the subject was not able to distinguish different areas of the image in cases
(i), (ii), and (iii) for the rendering style under question.

We analyze differences within subjects and images across highlighting areas through a Wilcoxon
Rank-Sum test to do a pair-wise comparison of cases (i), (ii), and (iii) separately. We use this test, which
is the nonparametric analog of the t-test, rather than a t-test because we believe the data are not
normally distributed, which is confirmed through visual analysis of histograms and the Shapiro-Wilk
test (p < 0.001, rejection of normal distribution). Furthermore, under the assumption that subjects
have found the area in question during the last second of viewing, it would stand to reason that the
data would not be normally distributed during this time. The results of the Wilcoxon Rank-Sum test
are summarized in Table I. Note that the location along the x-axis is tested separately from location
along the y-axis; however, only one must be significantly different for the location to be confirmed as
statistically different. For example, if between cases (i) and (ii) the mean X value was not statistically
different, but the mean Y value was, then the 2D gaze point location should be at a different location.

For the stipple hand cases, seven our of eight subjects were able to find each highlighted object
(p < .02). For the hand images rendered in the realistic style, five of eight subjects were able to find each
highlighted object (p < .04). For the hand images rendered in the illustrative style, five of eight subjects
were able to find each highlighted object (p < .04). So, from the eye-tracker results, we can see that
for the hand stipple analysis only one out of eight subjects could not identify the highlighted/important
region in the images. For the hand images rendered in the realistic style, three out of eight subjects
could not identify the highlighted/important region in the images. Particularly, this comes from subjects
having difficulty separating the ulna from the wrist. For the hand images rendered in the illustrative
style, three out of eight subjects could not identify the highlighted/important region in the images.
Here, subjects are unable to separate any of the three objects, indicating this rendering style is the
least useful for directing attention.
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From the hand images, we can argue that stippling is the most effective for guiding users to a
particular focus. This is most likely due to the fact that the detail in the other images drawing attention
away from objects. We believe it would be possible to use stippling to guide a user’s focus and then change
the rendering style to provide more detail.

These same results were confirmed in the abdomen dataset. For the stipple abdomen cases, seven
out of the eight subjects were able to find each highlighted object (p < .02). For the abdomen images
rendered in the realistic style, five out of the eight subjects were able to find each highlighted object
(p < .04). For the abdomen images rendered in the illustrative style, two out of the eight subjects were
able to find each highlighted object (p < .04). For the abdomen stipple images, we can see that only
one out of eight subjects could not identify the highlighted/important region in the images. This subject
was the same subject who had difficulty in the stipple hand images. For the abdomen dataset rendered
in the realistic style, three out of eight subjects could not identify the highlighted/important region in
the images. Two of the subjects are the same as in the hand images. Here, there is more variance in
the data due to the fact that subjects have a larger area to look at in terms of the number of distinct
objects visible in the abdomen. For the abdomen dataset rendered in the illustrative style, six out of
eight subjects could not identify the highlighted/important region in the image. Here, subjects were
unable to separate any of the three objects, again indicating that this rendering style is the worst for
directing attention.

From this experiment, we can see that the parameters generated for both stipple and realistic ren-
dering styles are able to adequately highlight importance information for over 50% of our subjects.
However, for the illustrative style, we find that our automatically generated parameters do not ade-
quately focus the user’s attention to the intended targets. This is most likely due to the inconsistency
of texture details and the importance information of the acquired regions of interest, since all the tex-
tures are just selected from two medical illustrations. Further studies will be needed for exploring the
selections of textures according to the importance information due to their complex factors.

While we have now shown that we can guide subjects to focus on different areas of the image for
different highlighting, it is also necessary to see if the focus areas were statistically significantly close
to the area of interest that was highlighted. We have plotted the mean and standard deviations of
the gaze locations for the subjects to further confirm their gaze locations. In Figure 7, each subject’s
mean gaze location (over the last second of viewing) is plotted over the image viewed. The radius of the
corresponding circle is the standard deviation. Again, we see that in the stippled images (rows 1 and 4)
subjects are more likely to find the highlighted portion of the image when compared to the illustrative
style (rows 2 and 5) and the realistic style (row 3 and 6).

Since the design of this experiment concentrates on the highlighting aspect of volume composition
results, we call it an initial user study. Also, among the three rendering styles, stippling is the easiest
to create areas of large contrast, which draw a users gaze, as opposed to other more realistic rendering
styles. A more comprehensive study should include more perception and cognition aspects to evaluate
rendering parameters and styles.

8. DISCUSSION AND FUTURE WORK

Volume composition aims to improve a practical issue of general-volume visualization systems and
reduce the repetitive and tedious user interaction. Although such a rule-based approach cannot compete
with the results generated by real users, the user interaction needed for several most common tasks can
be significantly reduced. Our interface allows users to concentrate on their specific tasks and are more
intuitive for general users, which can be used further to improve the usability of a visualization system.

To produce visualization with different concentrations, we believe that human factors should be
included in the visualization design. An eye tracker is a good tool in this case, since it provides input
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Fig. 7. Example visualization results for the user study. The focuses and variances of individual subjects are represented as
circles in the images.
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from users and is convenient to use. We show that the importance information acquired using an eye
tracker can be used to choose viewpoint, volume center, and multiple rendering parameters. We believe
that this importance information can be explored to develop automatic composition approaches for more
visualization parameters.

With an eye tracker, we have built a simple interface that can be used by both professional and
general users. Without the knowledge of the rendering approach, general users can still explore volume
data and achieve satisfying visualization results. Our initial user study demonstrates the potential
effectiveness of this automatic parameter selection method. This method is more effective for acquiring
immediate instinct reactions from users. We are planning to use an eye tracker as an additional input
and evaluation method to further simplify user interaction. There are also limitations of this approach
due to the eye movement behaviors. When several small objects are very close to each other, it may
be difficult to locate the exact object that users are looking at. We believe that more studies on the
correspondence of eye movements and cognition process will help us to improve the accuracy of this
approach.

The unoptimized composition algorithm for the results in Figures 3 and 4 takes 10 to 20 minutes,
which is mainly spent on the clustering part. Once the algorithm is done, the rendering is interactive
and the user can explore the volume based on their interests. We will develop faster algorithms to
provide more instant feedback, since our final goal is to use the eye tracker as an interactive input
method. We plan to work on more approaches to guide the parameter selections for general and specific
rendering methods.

We plan to perform future user studies to assess the effectiveness of visualization results. Beyond
our initial experiment, we plan to study the factors due to the rotation of the images, since it is possible
that the viewing direction plays a confounding role in the subjects’ ability to disseminate information,
as these images are naturally occurring scenes. We believe that it is worth a series of experiments to
evaluate rendering parameters and styles from more perception and cognition aspects.
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