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1. INTRODUCTION

Rendering and exploring features in scientific datasets is important
to many research areas, including medicine, biology, and archaeol-
ogy. Traditionally, direct volume rendering and isosurfacing tech-
niques have been used for visualization and exploration of these
datasets. However, these traditional techniques alone are not suf-
ficient to highlight important features in datasets or deemphasize
unimportant detail. These techniques also lack the flexibility to
add additional information and detail into the resulting visualiza-
tion for educational and explanatory uses. Therefore, inspired by
the effectiveness of scientific and medical illustration, researchers
have started to render their scientific datasets in an illustrative way
by simulating certain scientific illustration techniques, including
small primitives [Saito 1994], hatching [Nagy et al. 2002], and stip-
pling [Lu et al. 2003]. Most recently, Owada et al. [2004] presented
an interactive system for designing and browsing volumetric illus-
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trations through 2D synthesized textures. Many of these illustrative
techniques, however, require specific rendering approaches for each
primitive and can use large amounts of storage for the primitives.
We have, therefore, developed a system based on the 3D extension
of Wang Tiles [Cohen et al. 2003], Wang Cubes, to provide enriched
illustrative volume detail, compact storage, and interactive render-
ing of scientific datasets for more expressive rendering, education,
and training applications.

1.1 Motivation

As with previous work in illustrative visualization, our work is in-
spired by the ability of illustrations to succinctly convey features,
remove visual clutter and unimportant detail, and enrich the visual
representation with textural detail. As shown in Figure 1, many il-
lustrators apply patterns and textures to objects to add structural
and textural detail for more informative communication. Since the
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Fig. 1. Patterns and textures are commonly employed in scientific illustrations. The two example illustrations come from Atlas of Human Limb Joints [1990]
and Sobotta Atlas of Human Anatomy [1990], respectively.

resolution of volumetric datasets is currently too low to allow for
the capture of such textural details, it could be useful to have a com-
puter graphics rendering method that allows for enriching acquired
volumetric datasets with simulated detail. For example, Figure 1
(left) shows the human limb joints of the right wrist [Guyot 1990].
In this black and white image, bones (C, H, 1MC, 5MC, R, S, T, TR,
TZ, U) are drawn with stipples, tendons (7, 10, 11, 16) with wide
line patterns, and muscles and ligaments with thin line patterns. The
right image shows the thoracic viscera of an adult human after re-
moval of the anterior thoracic wall [Staubesand and Taylor 1990].
Almost all the structures, including the heart, lung, skin, vessels,
diaphragm, etc., are all rendered with different colored textures.

In scientific illustrations, although the patterns and textures are
usually chosen to simulate the shape and color of the real objects,
they do not have to be exactly the same. Sample textures or even
simple repeated point and line patterns are also commonly used
in many illustrations [Hodges 1989]. By applying specific patterns
or textures to objects, the human eye can easily pick out the ob-
jects within an image even when several objects or parts overlap.
This fact demonstrates the great potential for using patterns and tex-
tures in volume rendering, which can show more internal structure
than surface geometry alone. Scientific illustrators [Hodges 1989]
also point out that almost every rendering technique or style has
its advantages and disadvantages. For example, points are perfect
to illustrate surfaces, while lines are good for silhouettes. There-
fore, different results may be achieved when an object is rendered
in various styles. The choice of rendering primitives plays an im-
portant role in reflecting the textures and properties of objects. In
many applications, one single rendering technique is not sufficient.
Instead, patterns composed of various primitives are widely used
in scientific illustrations as shown in Figure 1. In nonphotorealis-
tic rendering (NPR), the patterns are usually evenly, randomly, or
nonperiodically distributed to achieve artistic effects. Compared to
the artistic work of scientific illustration, there have been no com-
petitive direct volume rendering techniques that are as rich in their
choices of textures and rendering styles.

For a visualization system, the advantages of using primitive and
pattern-based rendering must be weighed against the storage and
running time requirements of an interactive visualization system.
Many NPR techniques need to store the positions of all the primi-
tives (e.g., points, lines) to render an object. When constraints from
adjacent regions are added, a local search is needed for every primi-
tive, such as when distributing points in a volume evenly or extend-
ing a long line segment on an object. Since the primitives are usually
assigned per-voxel to achieve these effects, extra space and time are
needed. These disadvantages can be overcome by using a set of pat-
terns which saves time and space, gives the closest appearance to
real objects, and provides the capability of various rendering styles.

1.2 Texture and Pattern for Shape Perception

Illustration techniques are very effective at providing appropriate
visual cues to understand three-dimensional objects, their shape,
and their spatial relationships. Research efforts in both computer
graphics and visual perception have explored shape perception by
textures or patterns. Healey et al. [2004] present a nonphotorealistic
visualization method based on brush strokes, which uses the results
from psychophysics that many properties of a texture (e.g., color,
orientation, size, and contrast) are detected by the low-level visual
system and can be used to encode information. It has been widely
accepted that “shape perception can be enhanced by the addition
of appropriate texture under generic viewing and shading condi-
tions” [Kim et al. 2004]. Various aspects of shape perception from
texture have also been studied [Interrante et al. 2002; Kim et al.
2003; Zaidi and Li 2002; Li and Zaidi 2000; Knill 2001; Todd et al.
1997; Rosenholtz and Malik 1997; Ware and Knight 1995; Wanger
et al. 1992]. These research results show that general patterns and
textures can affect human perception and understanding. Therefore,
as in scientific illustrations, appropriate usage of patterns and tex-
tures could be more effective than traditional visualization methods
that use a uniform color or colormaps to render an object.
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Fig. 2. The system diagram. The left column shows our techniques to generate various 3D patterns and textures which are then sent to the volume rendering
framework. By using Wang Cubes, users can interactively adjust transfer functions and select objects of interest for rendering without redesigning the patterns
or textures for any volume. The 3D patterns and textures can be used to achieve multiple illustrative styles and provide additional information compared to
traditional renderings with color transfer functions.

1.3 Our New Approach

Based on these advantages of textures for efficient and illustrative
visual perception and object detection, we have developed a new in-
teractive volume illustration system using textures/patterns to effec-
tively illustrate volumetric datasets. Using textures provides not only
enriched illustrative visualizations but also enables multiple render-
ing styles within the visualization, providing the flexibility needed
for illustrative visualization. The majority of NPR techniques are
designed for one or two specific rendering styles, although several
papers have achieved multiple styles by successfully using textures
(e.g., image analogies [Hertzmann et al. 2001] and real-time hatch-
ing [Praun et al. 2001]).

To provide the advantages and flexibility of illustrative volume
visualization while meeting the requirements of compact storage,
little preprocessing, and interactive rendering, we use Wang Cubes
to tile the patterns throughout space. We explore both isotropic and
anisotropic cube design with small sets of Wang Cubes. The cubes
can be filled with geometric primitives, patterns, and textures to
generate a large number of 3D patterns. The design of the cubes and
the cube tiling guarantee a consistent pattern over the whole volume
and saves storage. All the cube contents and cube tilings are quick
to generate, and special care is taken to ensure their temporal and
spatial coherence. Our framework, shown in Figure 2, can be inte-
grated with arbitrary transfer function and feature selection methods
to select features in a volume and to assign the patterns and styles
for the features during interactive rendering and exploration. We
have developed two systems to effectively render object features:
a geometry-based system that renders OpenGL geometry primi-
tives and a texture-based system that is implemented in a fragment
program. In this article, we show that Wang Cubes are a convenient
tool to add various illustrative nonperiodic details to volume datasets
with both compact storage and very little preprocessing.

We begin by summarizing previous work in Wang Tiles, NPR, and
volume illustration. In Section 3, we extend the Wang Tile stochastic
tiling algorithm [Cohen et al. 2003] to 3D cube tilings and modify
it for multipurpose tilings. In Section 4, we discuss three kinds of
isotropic pattern generation which have similar properties over the
entire volume. By using information from a dataset (volume data,

curvature direction, and tangent orientation) in Section 5, we auto-
matically generate cubes with anisotropic patterns which utilize the
features of a volume. In Section 6, we extend the definition of Wang
Cubes into a set of different sized cubes to provide multiresolution
renderings. The issues of direct volume rendering with Wang Cubes
are discussed in Section 7. Finally, we discuss the advantages and
disadvantages of using Wang Cubes in volume rendering.

2. RELATED WORK

Wang Tiles [Wang 1961, 1965] are square tiles used to generate a
plane tiling. They are placed on a plane according to their face color
rules to compose the desired pattern. Analogous to Wang Tiles,
Culik and Kari [1995] introduced Wang Cubes with colored faces.
Several researchers have used Wang Tiles to generate patterns in
computer graphics. Stam [1997] employed 16 Wang Tiles to simu-
late water-like surfaces. Neyret and Cani [1999] used triangles with
homogeneous textures to tile surfaces. Cohen et al. [2003] presented
a stochastic method to design sets of Wang Tiles with different tile
numbers and generated nonperiodic images automatically with sam-
ple textures. They also indicated that Wang Cubes could be used for
three-dimensional applications in the future. More recently, Sibley
et al. [2004] performed video synthesis and geometry placement by
using Wang Cubes, and Lagae and Dutré [2005] proposed gener-
ating procedural object distribution functions using Wang Tiles. In
this article, we propose using Wang Cubes to compose 3D textures
for direct volume visualization.

In addition to Wang Tiles, other methods are used to gener-
ate patterns or textures for image synthesis and object rendering.
Many methods try to obtain a Poisson disc distribution to randomly
and uniformly place primitives for rendering. Hiller et al. [2003]
use a user-controllable relaxation of a Voronoi tessellation to ad-
just the distribution of stipples and arbitrary shapes to render
two-dimensional images, taking into account object boundaries. In-
terrante [1997] effectively uses patterns and curvature directions
to illustrate surfaces within a volume dataset. Patterns and textures
are also used to achieve better visual effects in volume rendering,
such as glyphs in vector fields or flow visualizations [Wittenbrink
et al. 1996]. Kirby et al. [1999] utilized concepts from paintings to
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Fig. 3. (a) A set of 8 Wang Tiles designed with face colors (NSWE) and 2 colors for each edge. (b) A nonperiodic 5 × 10 tiling. (c) The 4 tile edge directions.

combine multiple data values in an image for 2D flows. As opposed
to these studies, our patterns and textures are generated for gen-
eral volumes without knowledge of the exact geometric mesh or
shape.

Using NPR techniques in volume rendering has been shown to be
effective in the visualization of three-dimensional (volume) data by
highlighting portions of data, improving three-dimensional structure
and shape cues, focusing viewer attention, and reducing visual clut-
ter. Ebert and Rheingans [2000] combined nonphotorealistic render-
ing and volume rendering techniques to enhance important features
and regions. Treavett et al. [2001] implemented artistic procedures in
various stages of the volume-rendering pipeline. Lum and Ma [2002]
implemented a combination of NPR methods at interactive frame
rates for large datasets with a parallel hardware-accelerated render-
ing technique. Hadwiger et al. [2003] combined nonphotorealistic
techniques to effectively render segmented datasets with high qual-
ity on consumer graphics hardware. The usage of silhouettes and
contours has also been explored by several researchers [Csébfalvi
et al. 2001; Kindlmann et al. 2003; Burns et al. 2005].

3. WANG CUBES

As shown in Figure 2, our framework first generates 3D patterns
and textures in the preprocessing phase, then feeds these volumetric
patterns and textures into the interactive rendering phase to illustrate
a volume dataset. During the rendering phase, transfer functions or
feature extraction methods are used to control the rendering prop-
erties of the selected 3D patterns and textures to form the shape
and appearance of the volumetric objects (the details are discussed
in Section 7). To save texture space and processing time, we use a
mathematical tool called Wang Cubes to generate various 3D pat-
terns and textures, which is the 3D extension of 2D Wang Tiles
[Cohen et al. 2003]. A set of Wang Cubes can quickly fill any sized
volume by following certain rules, making the rendering of arbitrary
volume datasets more convenient. Two key components are gener-
ated for a set of Wang Cubes: a cube tiling and the cube contents.
The cube tiling mainly determines the repetitive property of the
3D patterns or textures, while the cube contents determine the type
(primitive, size, opacity, color, etc.) of the 3D patterns or textures.
Different cube tilings and cube contents are combined to generate a
large number of 3D patterns and textures, providing many choices
for the rendering phase.

In the following, we briefly review Wang Tiles and then explain
the general rules of Wang Cubes and the cube tilings. In later sec-
tions, the generation of isotropic cube contents and the generations
of anisotropic cube tilings and cube contents are discussed.

3.1 Wang Tiles

Wang Tiles [Wang 1961, 1965] are square tiles used to generate
a plane tiling. Each edge of the square tile is assigned a constant
parameter (color) that is used to determine how they can be placed
together to tile a plane; they are placed in the plane edge-to-edge only
if the adjacent edges share the same color. Figure 3(a) shows an ex-

ample Wang Tile set with 8 tiles. The edges along North(N)/South(S)
and West(W)/East(E) each use exactly two colors. Figure 3(b) shows
a 5×10 tiling created using this tile set. Wang Tiles are not allowed
to be rotated; therefore, the edges in the same direction should share
the same color set, while the colors in different directions are totally
independent.

For practical usage in computer applications, Cohen et al. [2003]
presented a stochastic tiling procedure to generate the tile patterns
automatically. This stochastic tiling procedure guarantees that the
generated tilings are nonperiodic, which is usually more visually
pleasing than simple repeated patterns.

When designing 2D patterns and textures to fill each tile, the
patterns and textures along the same colored edge should be the same
to satisfy the tiling procedure. Therefore, new larger nonperiodic
patterns or textures can be easily generated by putting the pattern or
texture of each tile into the corresponding position of the tiling.

3.2 Wang Cube Tiling Procedure

Wang Cubes are a 3D extension of 2D Wang Tiles. As with Wang
Tiles, Wang Cubes are cubes with colored faces in the sense that two
cubes can be put together only if the adjacent faces have matching
colors, as shown in Figure 4. Similarly, we denote the cube faces
as North(N), South(S), West(W), East(E), Front(F) and Back(B).
Similar to Wang Tiles, Wang Cubes are not supposed to be rotated.
Therefore, two faces in the same direction (NS, WE, and FB) must
share one set of colors to ensure that they can be put together, while
the face colors on different directions are independent.

We extend the stochastic nonperiodic tiling process of 2D Wang
Tiles [Cohen et al. 2003] to 3D Wang Cubes. Without loss of gen-
erality, we fill the volume from West-to-East, from North-to-South,
and from Front-to-Back. Apart from the cubes on the boundary of
the volume, each position has three constraints (each cube must have
N, W, and F faces that match the S, E, and B faces already placed).
To determine how to tile the space, we assume each face has n pos-
sible colors; therefore, the NWF faces create n3 cases. As long as
there is at least one cube in the cube set for each NWF case, a valid
tiling of a volume exists. We can start from the NWF corner, use the
2D tiling process to tile the first slice in the volume by treating the
NSWE face colors as the edge colors in Wang Tiles, and then tile
the rest of the slices from Front-to-Back by adding the additional
constraint that the front color of the cube should match the back
color of the cube in the same position of the previous slice.

As long as there is one cube for each NWF case, the previous
cube tiling process can be guaranteed to compose a valid tiling.
The cube face colors at each direction need to be larger or equal
to 2 to generate nonperiodic cube patterns. When there are at least
2 cubes for each NWF case, every step in the cube tiling process
has at least 2 valid choices and a solution can be randomly chosen
from them. Analogous to Wang Tiles, this process is similar to the
random process of a coin flip; therefore, the cube tiling is guaranteed
to be nonperiodic. Assuming m cubes are generated for each NWF
case, m × n3 cubes are needed. Under our cube tiling process, the
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Fig. 4. (a) shows the face directions for flattened cube faces, and the sequence of cube face directions. (b) shows a set of 16 Wang Cubes with colored face
where each face has 2 colors. The color numbers for the 6 faces are shown below each cube in the sequence shown in (a) (bottom). (c) shows a truncated volume
with a nonperiodic tiling.

minimum number of cubes is 16, which requires 2 colors for each
face and 2 cubes for each NWF case.

3.3 Reducing the Repetitive Appearance

After deciding the number of cube face colors and the number of
cubes for each NWF case, we need to design the face colors for ev-
ery cube. One common problem with the tiling generated by Wang
Tiles and Wang Cubes is the repetitive appearance. Since the tiling
is generated with a finite set of samples, the same composite pattern
may repeat itself in different locations of the entire tiling, resulting
in a local repetitive appearance. Even though the tiling is nonperi-
odic on the whole, the repetitive appearance may reduce the image
quality. Kari [2000] has proven that the repetitive appearance is in-
evitable with any finite tile sets. Larger sets of cubes generally have a
less repetitive appearance since there are more cubes/samples in the
composed patterns. However, they require more storage space and
memory swapping; therefore, they are not desirable for applications
where storage is limited.

Although we cannot fundamentally avoid this problem, we can
reduce the repetitive appearance by properly designing the colors for
the cubes. To ensure that the set of the cubes can produce nonperiodic
patterns with our tiling process, we need to assign the NWF colors
of the cubes in a way that has at least two cubes for each NWF case.
For a set of 16 cubes, there are exactly two cubes for each NWF
case. Under this restriction, we choose the SEB colors to meet two
criteria to ensure an even distribution of the cubes in a volume. First,
the SEB colors should cover all the color cases. Second, for every
color on each of the NWF faces, the NS/WE/FB pairs in the cube set
should have both the same and opposite colors. If the latter cannot
be satisfied, we favor the cubes whose opposite faces have different
colors because they are less likely to produce repetitive patterns.

We also reduce the repetitive appearance by adding varying prob-
abilities for each cube. Initially, each cube has an equal chance of
being selected as long as its face colors match the existing cube
patterns. During the tiling procedure, we use a small count table
to gather the local occurrence for every cube. The probability for
selecting each cube changes according to the surrounding cube com-
binations: it is decreased if the cube appears more than the average
frequency (total cube number divided by the observing window
size) and increased if it appears less than the average frequency.
We normally use the tiling procedure with varying probabilities for
smaller volumes and without varying probabilities for larger vol-

umes since, if the volume is large enough, every cube in the set will
have an equal occurrence. But locally, as shown for 83 volumes,
the average standard deviation of the cube set from the tiling with
varying probabilities is 1/2 of the deviation from the tiling without
varying probabilities. Therefore, the cube patterns are more evenly
distributed.

Another application of varying the probability for the Wang Cubes
is by generating cube patterns with preferences. With the local prob-
ability control, we can favor some cubes in the set more than others
and, at the same time, guarantee the nonperiodic property of the
cube pattern. We can also arrange the cube patterns according to a
predefined probability field to smoothly vary the generated pattern.
Figure 5(b)-(d) show the results of varying probabilities. Figure 5(b)
and (c) show two 32×32×1 results for controlling average cube oc-
currences. Figure 5(d) shows the result for generating cube patterns
for a 32 × 64 × 1 predefined field pattern.

4. ISOTROPIC PATTERN DESIGN

After tiling the Wang Cubes in a volume, the 3D space is filled with
empty cube frames that are nonperiodically distributed. We still
need to generate the cube contents to fill in the tiling so that we can
compose a 3D pattern or texture to use in the final volume rendering.
An essential point of using Wang Cubes is that the cube face colors
are only used to generate the cube tiling, while the cube contents can
be filled with arbitrary patterns or textures. The cube tiling procedure
ensures the nonperiodic property, while the cube content design also
plays a key role in the quality of the final composed 3D pattern.

Since multiple cube pattern designs can provide flexibility to ren-
der a volume with different styles, we propose two types of cube
pattern generation techniques: isotropic design and anisotropic de-
sign. In this section, we discuss isotropic patterns, which have the
same properties over the entire volume, such as a point volume with
equal densities. In the next section, we use anisotropic patterns to
match certain data features, and we generate them with additional
constraints during the tiling process. With various pattern choices,
the users have the flexibility to choose the patterns for different pur-
poses. Simulating scientific illustrations, we usually choose patterns
that can be visually distinguished from the surroundings or possess
the closest appearance to a specific real object.

For isotropic cube design, our goal is to create a large number
of illustrative patterns and textures with as small a set of cubes
as possible. Therefore, we only need a small storage overhead to
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Fig. 5. (a) A set of Wang Cubes generated interactively from our system. (b) A uniform distribution where all the cubes in (a) have an equal chance. (c) A
distribution favoring darker cubes. The darkness of a cube is calculated as the sum of the 6 face color values, which are 1 if the face has a point on it, 0 otherwise.
(d) A tiling generated by a predefined field (a CUBE pattern) with the restriction changing from strict to loose from left-to-right. Therefore the right side has
more random patterns according to the predefined field than the left side.

Fig. 6. The cube synthesis procedure. (Left) Wang Tile generation process:
each tile is synthesized with four sample diamonds. (Middle) The octahedron
for the W cube face. The cube generation process is a 3D extension of the
2D tile synthesis. (Right) The cube face directions.

provide many pattern choices for the final volume rendering. In
Section 3.2, we showed that 16 is the minimum number for a cube
set to generate nonperiodic cube tilings under the stochastic tiling
procedure. We use a 16 cube set to generate all of our isotropic
patterns and textures. Depending on what is inside the cubes, our
methods for designing the cube contents can be divided into two
types namely, texture cubes and primitive cubes.

4.1 Texture Cubes

After the texture cubes are designed, they are used to compose new
large 3D textures using the tiling process. We generate texture cubes
with both an interactive drawing program and an automatic texture
synthesis approach.

For texture generation in our system, the user can interactively de-
sign cubes by manually drawing the cube contents using our drawing
program with a brush model such as a 2D or 3D sample. Figure 5(a)
shows an interactive design example. The patterns are drawn along
a vertical plane within the cubes.

The cubes can also be automatically generated from 3D sample
textures, extending the 2D tile method [Cohen et al. 2003] into 3D
cubes. For 2D Wang Tiles, Cohen et al. [2003] select four sample
diamonds that correspond to the edge colors of the tile as shown
in Figure 6 (left). Then, each tile is constructed by finding cutting
paths to combine these four sample diamonds. We extend the 2D
tile generation to 3D cubes by using an octahedron to correspond
to a face color and synthesize a cube with 6 octahedra. Figure 6
(middle) shows the octahedron for the west cube face. When the N/S
cube faces have n colors, n octahedra are selected from the sample
textures, each corresponding to a face color. Similarly, n octahedra
are selected for each of the W/E and F/B directions. Next, we put
these subvolumes to every cube according to the face colors of the
cube. Finally, a corner-to-corner synthesis process is proceeded to
quilt the adjacent octahedra together by finding the cutting plane

between them. Figure 17(a) shows an example of 16 cubes (each has
83 voxels) which are synthesized from a filtered noise volume [Perlin
and Hoffert 1989].

4.2 Primitive Cubes

Since a large number of primitives are used in scientific illustra-
tions and NPR, we design cubes filled with geometric primitives.
The primitives in illustration examples are usually distributed in a
pleasant way, and NPR methods simulate this effect by distributing
the primitives uniformly in the rendering. Therefore, we design an
automatic method to fill the cubes uniformly with geometric primi-
tives. Before we discuss the primitive cube design, we address three
common problems for nonphotorealistic volume rendering that put
some requirements on the pattern design.

—To achieve different shading and density effects at varying reso-
lutions, we need to design the cube patterns at multiple levels.

—To provide temporal coherence during rendering, the higher-level
representations should include all the primitives of the lower lev-
els. For example, point drawing [Deussen et al. 2002; Lu et al.
2003] always draws the prefix of the point lists, while hatch-
ing [Praun et al. 2001] uses line patterns at several levels. Using
the same idea, our geometry-based rendering draws the prefix
of the geometry lists per-voxel and our texture-based rendering
draws the cubes at several levels.

—To improve the visual quality of the image and simulate a Poisson
distribution, an even distribution of primitives is needed. Cohen
et al. [2003] use Lloyd’s method to optimize pre-generated point
positions among Wang Tiles, and Praun et al. [2001] hierarchi-
cally select the best-fitting line from a pool of candidates. Our
method is derived from the combination of these two methods.

The tiling process of Wang Cubes ensures that the cube patterns
are nonperiodic, therefore, we concentrate on the connectivity of
the cubes and the even and random distribution of the primitives at
multiple levels. We next discuss cube design for points, lines, and
general primitives, respectively.

4.2.1 Points. We use an iterative procedure to generate the point
(stipple) patterns. For point patterns, we recursively divide the vol-
ume of a cube into 8 candidate subregions based on a predefined
depth. We also maintain an octree structure to store the number of
points contained in the corresponding candidate region. Points are
iteratively added to each cube by the following process, illustrated
in Figure 7. For each point primitive to be added, we hierarchically
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Fig. 7. The process of point generation. (a) An empty cube. (b) The first subregion is selected. (c) The second subregion is selected. (d) A point is randomly
generated within the selected region and the octree is updated.

Fig. 8. 16 cubes with points and four 83 volumes with densities of 1 to 4. The volumes achieve roughly uniform point distributions. In the right image, the
density of points per-voxel is calculated to show the lighting effect on a sphere. The rendering process will be discussed in Section 7.

calculate the probability of the nodes in the octree from top-to-
bottom, select a best leaf (discussed later), randomly generate a
point inside the corresponding region of the leaf, and update the
octree. The probability is calculated by the weighted sum of the
following two factors.

The first factor is the point density, which is the number of points
contained in a region. Let d1 be the density of the current region
and d2 be the density sum of the 26 adjacent regions. To generate
a uniform point distribution, we need to consider all the possible
combinations from the cube tilings according to the face colors;
therefore, adjacent regions from other cubes and their occurrence
frequencies are also considered.

The second factor is based on several 3D restrictions. Different
from 2D pattern generations, the appearance of a 3D pattern is the
projection on the image plane, and thus it may look quite different
from different viewing directions. Therefore, we need the points in
the cubes to overlap with each other as little as possible to achieve
the overall best effect for all the viewing directions. Our approach
uses simple geometric relations: no three points should be in the
same line, and no four points should be in the same plane. From the
center of the selected region, we calculate the two following values
for the final candidate probability:

(1) point-line distance d3 (the average from the center to any line
by any other two points in the near region)

(2) point-plane distance d4 (the average from the center to any
plane by any other three points in the near region).

The probability of each region is then calculated as p =
− ∑4

i=1 wi di , w1,2 ≥ 0, w3,4 ≤ 0, where the weights, wi , can be
interactively adjusted. For instance, weights of 100, 2, −10, −10 are
used in Figure 8 and 3 is used for the octree depth. A region with the
maximum probability is considered a best region. If multiple best
regions exist, we randomly choose one. If a varying point size is
used, the point size should be proportional to the probability value.

Larger points are allowed when the local point density is relatively
low.

We generate one point at a time for each cube and repeat the
process until the desired number of points is reached. Gener-
ally, we use cubes with 4–20 points, and the whole process takes
place in several minutes. Compared to point distribution techniques
[Cohen et al. 2003], we do not need to redistribute the points after the
generation. Compared to line distribution techniques [Praun et al.
2001], we do not need to generate a candidate pool. Finally, during
rendering, we draw the cubes at different levels (corresponding to
varying point numbers), and we always draw from the beginning
of the point lists. Therefore, our method yields an approximately
uniform distribution as shown in the cubes in Figure 8.

4.2.2 Lines. Patterns composed of lines, strokes, and cross-
hatchings are often used in scientific illustrations. To generate line
patterns, we use the following four user-specified parameters: pri-
mary line direction, direction range, maximum line length, and
length range. Different combinations of these four parameters al-
low us to generate various line patterns. The parameters are very
intuitive and thereby easy to adjust. We will discuss the line genera-
tion for two cases: lines within one cube and lines spanning multiple
cubes.

For lines within one cube, we first select a best point for a line
to pass through, using the same method as for points. Then we
randomly generate a line direction by the two direction parameters
(primary line direction and direction range) and search for the best
length of the line in both directions. We favor longer lines over
shorter lines by using normalized probabilities along the line seg-
ment,

∑l
i=1 pi/ l, in choosing the best line length l [Praun et al.

2001], where pi is the probability for each sample point along the
line segment.

The lines spanning multiple cubes are generated by manually
assigned length, corresponding to the number of cubes to cross.
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Fig. 9. The top four images show line patterns with different settings (den-
sity and direction). The bottom images show three kinds of lines: various
length, infinite lines, and lines with assigned length n.

Instead of selecting the best point inside the cube, we choose the best
point on the colored faces since we need to guarantee the connections
of the lines when they are put together by their face colors in 3D.
The best point on the faces is also selected according to the current
primitive densities using the two factors from the previous section
for any colored face. A line segment is then added for all the cubes
with this colored face. According to the assigned length, we divide
the line generation into four cases.

—Length Two. A face-inside line segment is added to the cube. One
end point is the face point, the other is inside the cube.

—Various Lengths. We connect as many face points as possible. If
a single point remains, we generate a face-inside line segment.

—Infinite Length. We generate an equal number of points for the
corresponding faces and connect them into face-face lines.

—Assigned Length n (n > 2). All the lines cross n cubes. Following,
we discuss two methods for this case.

For lines of length n (n > 2), we can add transition colors for
all the related faces to transfer the connecting points as shown in
Figure 9 (bottom right). The number of additional cubes depends on
the line direction. If the line direction is near, but not parallel to the
X , Y , or Z -axis, many transition points are needed and, therefore,
many cubes. Another method is to divide a big cube into smaller
cubes. This method might need more cubes than the first method,
but it does not need to calculate transition colors.

We can generate cross-hatching using a similar method by choos-
ing the center position and the line length along each line direction.
One example pattern generated by our system is shown in Figure 9
(top right).

4.2.3 General Primitives. Since the structure of many geomet-
ric primitives can be expressed as points (center) and lines (center
with direction), we use the center point or center line to determine
their position. We randomly choose other properties of the primi-
tives, such as rotation, to make the results look more random and
more visually pleasing. One remaining problem is that general prim-
itives have thickness which may cause them to exceed the boundary
of the cubes. If we render using geometry, we draw the primitives at
their center location; if we use 3D texture-based rendering, we need
to treat the oversized primitives as face primitives and add them to
all the cubes that have the matching colored face. Examples of il-
lustrative renderings with various primitives are shown in Figure 14
and Figure 16.

Since the cube contents and cube tiling are totally independent,
we can use one set of cubes to generate multiple sets of cube con-
tents. All of the new composed patterns and textures can share the

same cube tiling during rendering, since the cube tiling is only con-
trolled by the cube face colors. Therefore, we can interactively select
patterns or textures during the rendering by loading different cube
contents.

5. ANISOTROPIC PATTERN DESIGN

Isotropic patterns are designed without the knowledge of any data
values from a dataset. Different from isotropic patterns, this section
discusses the design of anisotropic patterns, which utilize different
data values, such as voxel values or gradient direction. Our basic
idea is to use a user-specified data field as an additional restriction
to compose the 3D pattern for rendering. The patterns composed for
each dataset will be different even when a same set of cubes is used.
Therefore, suitable anisotropic patterns may reflect the features of
an object.

Anisotropic patterns have been designed for both 2D images
[Cohen et al. 2003] and 3D models [Gorla et al. 2003]. Compared to
these previous approaches, the main difference with our approach
is that we try to generate anisotropic patterns with a set of cube
samples instead of generating the patterns for specific voxels in the
volume. Therefore, our approach is generally faster and we need
to control the trade-off between the storage issue and final effects.
We explore three methods to design anisotropic patterns by using
volume data value, curvature direction, and tangent orientation, re-
spectively. These methods can be used for other data values with
similar types.

5.1 Volume Data: The General Corner Problem

Instead of coloring the faces of Wang Cubes, we can also color the
corners. Coloring the cube corners was called the corner problem
when originally introduced for Wang Tiles by Cohen et al. [2003].
The face colors and corner colors can be used to generate a tiling
either separately or jointly.

For the corner problem of Wang Cubes, we assume each corner
has n possible colors, and we can use transfer functions to map
the volume data values into n colors. The tiling process for the
corner problem of Wang Cubes is almost the same as the process
for original Wang Cubes except that corner colors will be used to
select the qualified cubes instead of cube face colors. Since all the
corners from the N, W, and F faces need to be matched, a total of
7 corners are required, and there are n7 combinations. Since we
associate the volume data values with the corner colors, all the 8
corners need to be matched with the corresponding volume data
value. Therefore, we need to consider all n8 combinations.

Different corner colors may be used to represent different prim-
itive densities or different kinds of primitives. To generate the pat-
terns for the cubes, we add a density field for each voxel of every cube
according to the corner colors. This density field gi is calculated by
the trilinear interpolation of the designed densities from each corner
of a cube. It is organized in the same octree structure as the cube and
used to modify the first factor in Section 4.1: wi

′ = gi wi , i = 1, 2.
A new primitive will be generated inside a region with the maxi-
mum probability. For example, we design the point densities (line
lengths) on a scale from 0 to 2, where 0 corresponds to no point
(line) and 2 corresponds to maximum point density (line length).
Figure 10(a) shows 4 cube designs. The left two-cubes have differ-
ent point densities with the green color indicating density scale 2
and the red color indicating density scale 1. The two right cubes
are examples of different primitives. For point densities, the green
color indicates scale 2 and the red color indicates scale 1. For line
lengths, the green color indicates scale 0 and the red color indicates
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Fig. 10. (a) Primitive distributions by corner colors. The left two show points with different densities, the right two show hybrid distributions of points and
lines. (b) The 256 cases distribution of (c) shows most occurrences are at case 0 and case 255. (c) Volume rendering of a foot dataset by point patterns with
2 corner colors. The yellow and white regions are cases 0 and 255, respectively (each case is rendered with 16 isotropic cubes), the red color represents the
cases 1-254 (each case is rendered with 1 anisotropic cube). The function at the right-bottom corner is designed to color normalized volume data. The point
densities for the two corner colors are: color 0 has 4 points and color 1 has 8 points. Although each of the cases 1-254 contains only 1 cube, the point patterns
are random enough to simulate a manmade drawing.

scale 2. The user can freely design a transfer function to divide the
whole data range into n colors. For example, one color may repre-
sent normal data ranges, and the others represent emphasized data
ranges.

However, many cubes are required. Two colors yield 256 cases,
and with more than two colors, the number of cases becomes insup-
portable. If we consider the face colors and corner colors at the same
time, there will be at least 8 × 256 cases. As with coloring faces,
we need to have 2 cubes for each case to assure that the patterns are
nonperiodic. By statistically examining the cube occurrence for each
case, the most frequent cases are 0 (all the corners are 0) and 255
(all the corners are 1), as shown in Figure 10(b). Since other cases
occur based on object properties and only occur at some isosurfaces,
they do not significantly generate periodic patterns. However, if we
only color corners, cases 0 and 255 will generate a large number
of repeated patterns. Therefore, for geometry-based rendering, we
use 16 isotropic cubes for each of the two special cases and 1 cube
for each of the rest. The corner cases are calculated on-the-fly, and
we can reuse the isotropic cube tiling for the two special cases. An
example with 2 corner colors is shown in Figure 10(c).

5.1.1 Similar Corner Problem with Marching Cubes. The
Marching Cubes algorithm renders polygons to approximate iso-
surfaces according to the volume data at the corners of each
cell [Lorensen and Cline 1987]. All the corners are divided into
either inside or outside the isosurface according to the isovalue of
the surface. From this corner classification, each cell is classified
into a case of the surface intersecting the voxel with predesigned
polygon intersection placements.

With Wang Cubes, if we draw only the cubes corresponding to
cases 1 to 254, the result is similar to an isosurface but generated by
3D patterns. In the sense of coloring corners, the Marching Cubes
algorithm divides voxels into two groups, while the Wang Cubes
algorithm divides the volume with transfer functions. Moreover, the
Marching Cubes algorithm renders polygons, while Wang Cubes
can render various patterns and textures in addition to polygons.
These correlations demonstrate that there are similarities between

the Marching Cubes algorithm and the corner problem of Wang
Cubes.

As with isotropic patterns, we can use Wang Cubes to nonperi-
odically texture the isosurface with at least 2 texture samples. An
example is shown in Figure 11. We use fixed vertex positions in-
stead of interpolated values for speed in rendering, but this does not
produce any obvious artifacts and image quality can improved be
by adding more cubes. The representation fidelity and nonperiodi-
cal textures can both be achieved by a mixed rendering approach,
which uses the interpolated vertex positions from Marching Cubes
and maps the textures from Wang Cubes to each corresponding
polygon.

5.2 Curvature Direction with Wang Cubes

Curvature direction plays an important role in conveying the shape
of objects [Gorla et al. 2003]. We calculate the curvature direction
by using the eigenvector method from Kindlmann et al. [2003]. An
intuitive way to generate Wang Cubes from curvature information
is to use quantized directions to color corners, but this requires too
many cubes (n8). Instead, we use connecting points on cube faces
to generate line patterns.

Assume n connecting points are selected from 6 cube faces. We
allow all the combinations for the connecting points: every point
can be connected or disconnected. Therefore, there are 2n cases. For
each case, we randomly design m cubes to connect the connecting
points; therefore, m×2n cubes are generated. The tiling process is the
same as the process of cube tiling generation in Section 3. Generally
for each position, we choose the cube which matches the existing
connecting points on the N, W, and F faces and contains the closest
line direction to the curvature direction from the processed voxel.
Figure 12 uses the 6 center points of cube faces as the connecting
points and has 2 cubes for each case, totaling 128 cubes representing
8 different directions. The tiling process takes about 5 seconds for
a 1283 volume.

Using the same idea, we can also generate patterns which align
to other directions, such as gradient directions and vector fields.
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Fig. 11. An isosurface of a 643 engine block dataset rendered by polygons. 256 × 4 cubes are generated from the left 4 triangle textures to nonperiodically
tile the surface. An enlarged region is shown in the left.

Fig. 12. The geometry of the ears of a bunny dataset (left) and the connected line patterns (right).

The original direction information is approximately embedded in
the designed line patterns.

5.3 Tangent Orientation with Wang Cubes

Tangent orientation is commonly used in volume rendering. We can
also generate cubes based on preprocessed tangent orientations to
emphasize the gradient information. First, the 3D normalized vector
space is quantized into n gradient directions. For each cube, we align
the flat primitives orthogonally to the assigned quantized direction
and randomly rotate them in the other free directions. If the cubes
contain 3D textures, we need a total of 16n cubes. If we render
geometry, we use only n cubes to indicate the placement of the
flat primitive and use the point or line positions from the isotropic
patterns as the skeleton of the primitives. In Figure 14 (d), we use
small, different-shaped polygons aligned with the tangent plane to
simulate a Pointillist drawing.

6. MULTIRESOLUTION CUBE DESIGN

Wang Cubes are cubes of the same-size, and all the previous sections
discuss same-sized cubes. However, in volume rendering, we need to
render datasets and different features at varying image resolutions.
The introduction of multiresolution cubes brings three advantages to
Wang Cubes. First, we can emphasize certain portions in a dataset
and direct the user’s attention to these more detailed features as
illustrators do. Second, processing time is saved when we render
more distant objects or surrounding features at a coarser scale. Third,

since most scientific data has a fixed resolution, there will not be
enough detail when a portion of the object is excessively enlarged.
We can use multiresolution cubes to provide a method to continually
add the necessary nonperiodic details during zooming.

We use eight small cubes in an octree to represent a large cube.
By represent, we mean that both the textures and six face colors are
matched from the small cubes to the large cube. If there existed a set
of cubes which represents themselves, we could implement infinite
resolutions by continuously representing the cubes. Unfortunately,
by counting face colors, we know that it is impossible for a set of
cubes with general 3D textures to represent itself.

However, if we only consider the colors of the cube faces, it is
possible to find a set of cubes which can face-represent, themselves.
By face-represent, we mean only the six face colors are matched
from the small cubes to the large cube. For each cube in the set, we
consider it as a 23 volume with face colors to see whether it can be
filled. If every cube can be filled with the cubes in the set, then the set
of cubes is self-face-representing, as shown in Figure 13(a). Usually
there exist multiple mappings to self-face-represent a cube. For each
cube, we choose one mapping which contains the largest number
of different cubes. Therefore, for all the scales in the rendering, we
reuse one set of face colors and one set of mappings. The cube tiling
is generated at the coarsest scale, and we use the mapping to find the
cube index for finer scales. The cube tiling may appear less random
because only one mapping for each cube is used, but additional
cubes can be added to alleviate this problem. We will now discuss
two methods to generate the contents of the self-face-representing
cubes.
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Fig. 13. (a) A sample set of self-face-representing cubes with face colors WENSFB. (b) A sample pattern on different scales. The finer scale (red) includes
more details than the coarser scale (blue). (c) The mappings of the cube face colors from a coarser scale to a finer scale we use for (a), where a coarser face
color is represented by 4 finer face colors. (d) The bones of the foot are rendered with the finer scale, while the skin uses the coarser scale. (e) The bones are
on the coarser scale, while the skin is on the finer scale. (f) Both are on the finer scale.

One method is to generate one set of cubes and blend the cubes on
the adjacent scales during rendering. In this way, infinite nonperiodic
resolution can be achieved by continually blending the cubes of the
current scale and the next finer scale. Another method is to use
one set of cubes for each scale. First, we design the textures for
the cubes of the finest scale. Then, we use the mapping to copy the
textures of the smaller cubes into the larger cubes. Therefore, the
connections of cubes are guaranteed across multiple scales, and
the cubes can smoothly transfer from one scale to another without
any manipulation. Generally for every isotropic pattern, we use two
scales and 16 cubes for each scale. Figure 13(b) shows a sample
pattern on two adjacent scales.

The volume data on the coarser scale is 1/8 of that on the finer
scale; therefore, the running time significantly improves. The foot
dataset in Figure 13(d) renders about 2 times faster than (f) when
both features are rendered at the finer scale. It also keeps the exact
shape of the bones and shows the position of the skin.

7. VOLUME RENDERING WITH WANG CUBES

With our cube tiling generation and cube design methods, we can
generate various 3D nonperiodic patterns and textures for volume
rendering. The flexibilities of Wang Cubes make these patterns and
textures very convenient for rendering volume datasets. They oc-
cupy much less storage than traditional rendering methods, and
they are very quick to compose any sized volumes once the sample
cubes are generated. We will first generally discuss the rendering
issues involved with Wang Cubes. Then, we will concentrate on our
geometry-based system and our texture-based system. At the end,
we will specifically discuss the storage and running time of this new
volume rendering method.

To ensure the temporal coherence during rendering, we store the
cube contents and the cube tilings for the volume so that, for every
pattern, each voxel (or cell) in the volume has its fixed corresponding
cube location. The shape of an object is achieved through rendering
each position at different levels. Specifically, we change the number
of primitives to draw for geometry-based rendering and the opacities
for texture-based rendering. The rendering levels can be controlled
for each voxel with arbitrary feature extraction and transfer func-

tions, two common approaches in volume rendering. The voxel-level
calculation is generally very accurate in preserving sharp data fea-
tures. Since Wang Cubes provide a large number of patterns and
textures, users can choose suitable patterns or textures according
to the visualization purposes. The settings (primitive, density, size,
and opacity) of these patterns can also be interactively assigned
for each feature to achieve various styles. In Figure 14, 15, and
16, independent patterns and settings are used to simulate different
styles. Specifically, the shapes and sizes of the primitives are de-
signed to simulate the form of an artistic brush, and the opacities
and color schemes are designed to simulate the properties of the
brush. We use the feature extraction methods and color calculation
from Lu et al. [2003], and we choose the patterns which are visually
distinguishable from surroundings or which have the closest appear-
ance to the real objects. Our framework can be used to effectively
explore the features in a volume dataset and render them in various
styles.

The user is provided with a toolbox of patterns and is given
a tool to design new patterns by our proposed design methods.
These 3D patterns are composed in real-time from the cube con-
tents and cube tilings. The cube contents only need to be computed
once, and generally it takes from seconds to a few minutes ac-
cording to the pattern type and can be used for all size volumes.
One isotropic cube tiling and selected anisotropic cube tiling will
be generated for each volume before rendering which is within a
dozen seconds. To switch patterns and textures during the render-
ing, users just need to select a pattern type from a pop-up menu.
Our system will automatically switch to the corresponding render-
ing by changing the cube contents and cube tiling. Therefore, the
main user effort throughout the rendering is for common visualiza-
tion purposes such as adjusting transfer functions and rotating the
volume.

We use the same color set of cubes for all the isotropic tilings be-
cause the face color design of the cubes is independent of the com-
ponents inside the cube. Since we have 16 cubes for each isotropic
pattern, 4 bits are needed for each cube tiling. The size of each
cube depends on the primitives inside and their densities. We will
discuss this issue for geometry-based rendering and texture-based
rendering, respectively.
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Fig. 14. An iron protein dataset rendered with different patterns and settings. (a) is rendered with 2D transfer functions and used for comparison with our
illustrative results. The other three images simulate the following styles, respectively: (b) stipple for illustrating data shape, (c) stroke for highlighting gradient
field, and (d) particles for emphasizing tangent orientation.

Fig. 15. A foot dataset rendered with different patterns and settings. Similar to the results in Fig. 14, these rendering styles can be used to render all the volume
datasets. (a) is rendered with 2D transfer functions and used for comparison with the illustrative results. The other images simulate the styles of (b) stipple, (c)
stroke, and (d) watercolor.

7.1 Geometry-Based Rendering

Geometric cubes usually require little storage space. For exam-
ple, a cube with eight-3D float points costs 96 bytes (8(points) ×
3(x, y, z axis) × 4(float type)). Therefore, we can create various
cube patterns within a limited storage requirement. The variety of
the cube patterns provides the possibility to simulate different ren-
dering styles. When there are multiple objects in the volume, the
user can choose suitable cube patterns, such as the closest appear-
ance to a real object, to more effectively render each object. In our
geometry-based system, we use 16 cubes for each isotropic cube
set at each level, and we use several sets of cubes: 2 for points (one
sparse, one dense), 3 for lines (along three orthogonal directions),
and 1 for cross-hatching. For anisotropic cubes, we have 254 extra
cubes for the corner pattern, 128 for directions, and 40 for tangent
planes, for a total of no more than 1000 cubes. All the user-selected
isotropic and anisotropic cubes and the isotropic cube tilings are gen-
erated and stored before rendering. For the anisotropic cube tilings,
while the directions and tangent orientations need to be generated
for each dataset, the cube tiling for the corner problem is calculated
on-the-fly.

The rendering process is similar for all the geometric cubes. We
traverse the volume and calculate the rendering level for each voxel.
For the voxels with positive rendering levels, we use the cube tiling
and the calculated value to decide which cube at which level to draw.
To avoid pattern “popping,” we draw the integer part of the value in
full color and the fractional part semitransparent [Lu et al. 2003].

7.2 Texture-based Rendering

Our 3D texture-based system is developed on a physically-based
multifield weather data visualization system [Riley et al. 2003]. One
3D texture is generated for each object in the volume, and they are
rendered with a hardware-accelerated program that slices through
the volume. The weather data contains several data components,
such as cloud, rain, ice, and graupel. Similar to the minimum cube
number in the geometry-based system, a set of 16 isotropic cubes
is generated for each of these fields using the automatic method
discussed in Section 4. All the cube textures are combined into one
texture unit. The cube indices are divided by 16 to reduce them to the
texel value range of [0,1), and the cube tiling is stored in a free com-
ponent in a texture unit with the volume data. During the rendering,
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Fig. 16. Illustrations of a segmented hand dataset, a human foot from a posterior view, a colonoscopy dataset, and a bonsai tree dataset. Different patterns and
settings (size, density, opacity, and color) are used in the rendering to distinguish each object in the volume.
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Fig. 17. (a) 16 cubes generated from a noise volume. (b) Cloud rendered without Wang Cubes. Low-resolution volume model results in a very smooth cloud.
(c) Cloud rendered with Wang Cubes showing more detail. Enlarged regions are shown in the top-right corner.

the closest texel determines into which cube the current fragment
maps, given a set of coordinates. We translate texture coordinates
to coincide with an actual voxel for the uninterpolated cube index.
We then translate the global texture coordinates into the local coor-
dinates of the chosen Wang Cube and sample the cube patterns. The
patterns are used to modulate opacity per data component, and all
fields are blended according to their overall contribution. As shown
in Figure 17, the cloud with Wang Cubes contains richer details than
the cloud without, and voxel artifacts near the volume boundary are
reduced.

To emulate example illustration styles, we develop an approach
to generate 3D textures from 2D illustration examples and volume
samples [Lu and Ebert 2005], as shown in Figure 18. We use the
illustrative 3D textures to render volume datasets directly with seg-
mentation information and/or transfer function selections. Similar
to the usage of Wang Cubes in other renderings, we can provide
additional information, enhancing the rendering of the original data
and saving storage. Because of the ability to emulate example il-
lustrations, this method requires much less user interaction in the
rendering process.

7.3 Storage Requirement

We now specifically discuss the storage requirements for using
Wang Cubes and also compare Wang Cubes with other rendering
approaches. To use Wang Cubes in volume rendering, we first need
to store all the cube contents. We also store a cube tiling that has the
same size as the volume so that the composed volume patterns and
textures are fixed to keep the temporal coherence of the rendering.
Let’s assume that the cube set has NC cubes, each cube takes MC
bytes, each cube tiling takes MT bytes, and a volume’s size is NT .
The size of each cube depends on the primitive type and densities.
To generate a nonperiodic pattern or texture without Wang Cubes,
we need to store a cube content for every voxel in the volume, which
takes MC × NT bytes. Therefore, the ratio of the storage with Wang
Cubes and the storage without Wang Cubes is shown in Equation
(1).

p = Mwith

Mwithout
= MC × NC + MT × NT

MC × NT
. (1)

Fig. 18. A direct volume rendering of a segmented hand dataset [Lu and
Ebert 2005]. It is rendered with recolored textures using their respective
example illustrations. The three small images are cropped from the corre-
sponding example regions and show the textures of fat, vessel, and bone,
respectively. The silhouette colors are also selected from the examples and
shown as the box colors around the samples.

When we use a set of 16 isotropic cubes, it only requires 4 bits
for each voxel to store the cube tiling. We will use a 1283 volume
as an example. For geometry-based rendering, if we use 8 geometry
points (3D floats) for each cube, MC = 96 bytes and p = 1/191.7.
For texture-based rendering, if we use a 83 volume for each textured
cube, MC = 2048 bytes and p = 1/3855.1.

When there are multiple objects in the volume, we usually use
different cube contents to distinguish them from each other. Since
the same cube set is used to generate all the cube contents, the
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Table I. The Additional Storage Requirements Beside the Volume Data and Gradients. (The data is
collected based on 8 geometry points, 83 textured cubes, and a 16 cube set. The data for the

geometry-based Wang cubes, texture-based Wang Cubes, and texture-based rendering without wang
cubes are collected as Equation (1) and (2).)

Original Geometry-based Texture-based Texture-based Rendering
Dataset Stippling Wang Cubes Wang Cubes without Wang Cubes
Name Dimension (bytes) (bytes) (bytes) (bytes)

iron 643 3,164,928 132,608 163,840 536,870,912
abdomen 1283 201,326,592 1,050,112 1,081,344 4,294,967,296
feet 1283 20,698,560 1,050,112 1,081,344 4,294,967,296
hand 2562 × 128 805,306,368 4,195,840 4,227,072 17,179,869,184

content sets can share the same cube tiling. Assuming there are NO
objects in the volume, the ratio of the storage with Wang Cubes to the
storage without Wang Cubes is shown in Equation (2). Therefore,
the saving with Wang Cubes is even greater.

p
′ = Mwith

Mwithout
= NO × MC × NC + MT × NT

NO × MC × NT
. (2)

In real applications, the storage requirements are different for
geometry-based rendering and texture-based rendering. In our
geometry-based rendering, the storage of the cube contents is usu-
ally negligible compared to the storage of the cube tiling so the vol-
ume size is the major factor. In our original stipple-rendering [Lu
et al. 2003], we save some storage by eliminating voxels that won’t
be used in the rendering based on transfer function settings. The
average storage improvement is around 20 times in the original
stipple-rendering system. In our current illustration system using
Wang Cubes, p = 1/192 for the example of 8 geometry points.
In the texture-based rendering, the cube tiling is stored in the same
texture with the scalar value so that it does not occupy additional
space. The size of each textured cube becomes the major factor. For
83 cubes, p = 1/4096. Table I provides the actual storage compar-
ison for several datasets. From these statistics, it is clear that Wang
Cubes can provide nonperiodic patterns and textures with much
less texture space. This comparison is made for the nonperiodic
case. Although an arbitrary 3D pattern or texture can provide more
flexibility, the generation time and storage requirement make them
impractical present for real applications at without using a technique
such as Wang Cubes.

7.4 Running Time

The geometry-based Wang Cube rendering has different running
times according to the geometry type and size, such that points
are faster than the other primitives. Since the rendering with Wang
Cubes only requires an additional indexing operation, our original
stipple rendering and the stipple rendering with geometry Wang
Cubes have roughly the same running times. The texture-based ren-
dering has the same running time for same-sized volumes. Since we
need additional calculations for each fragment to locate the cube
content and the cube tiling texels, the rendering with Wang Cubes
is slower than the rendering without Wang Cubes. Table II pro-
vides a detailed running time comparison that was collected on a
NVidia GeForce 6800 Ultra graphics card. Figure 17 is rendered
with the texture-based system, and it is slower than the renderings
in Figure 15 because of the additional memory accesses and texel
position calculations.

The major factor that affects the running time is the number of
objects that users select. When multiple objects are specified from

Table II. The Recorded Running Time for the 643 Iron Protein
Volume and 1283 Feet Volume

Iron Image Rendering Running Time (frames per second)

Figure 14 (b) points 66.0
Figure 14 (c) textured lines 61.5
Figure 14 (d) patches 35.2

Feet Image Rendering Running Time (frames per second)

Figure 16 (b) points 6.6
Figure 16 (c) textured lines 6.6
Figure 16 (d) patches 6.3

transfer functions, our implementation traverses all the selected pat-
terns for every object at each voxel for geometry-based rendering
and at each fragment for texture-based rendering. Therefore, the
running time is proportional to the object number. For geometry-
based rendering, a second factor is the proportion of actual rendered
voxels to the volume size. The higher proportion takes longer run-
ning time. This factor does not affect our texture-based rendering
since all the fragments are calculated in the same way.

The additional operations for handling cube-based textures are the
accesses of corresponding cube tiling and cube contents and several
float type calculations. Since these operations are independent of
the size of the cube set, the running time does not change much as
long as all the storage can be fitted in the memory.

7.5 Discussions

The main effort of this article is to generate various 3D patterns
and textures and utilize them in volume visualization. Most cur-
rent volume rendering approaches use single colors or colormaps
to visualize data with transparent or opaque regions except texture-
based flow visualization. It is the storage and generation problems of
general 3D textures that have limited their usages in volume visual-
ization. As we have shown in the storage section, several general 3D
textures take 4GB memory for a 1283 volume, which is currently too
expensive for an interactive rendering algorithm. Procedure textures
do not require much storage space, however, they need the abstrac-
tion of mathematical equations and thereby may not be available
for every texture type. The generation of 3D textures is another im-
portant factor which limits the usage of general textures in volume
rendering. Since the generation process is usually time-consuming,
it is not practical if the textures need to be repeatedly generated for
different sized volumes. We show in this article that Wang Cubes is
a convenient tool for applying various 3D patterns and textures in
volume visualization that can overcome both storage and generation
problems.
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Fig. 19. An abdomen dataset rendered with different 3D textures that are composed by Wang Cubes [Lu and Ebert 2005].

The main difference between our proposed approach and con-
ventional volume rendering approaches is the use of 3D patterns
and textures. Since we use the original volume data at voxel levels
for geometry-based rendering and at fragment levels for texture-
based rendering, this approach achieves the same accuracy as other
general volume rendering approaches. Our main motivation of the
Wang Cube-based rendering is to enrich the visual representation
capability of volume renderings by simulating the usages of textures
in scientific and artistic illustrations (Figure 19). With various pat-
terns and textures generated from Wang Cubes, users are allowed to
choose suitable ones according to their major focus. For example,
the textures synthesized from high-resolution data can be used to
enrich the visualization of similar type volumes. More illustrative
patterns can be used to emphasize certain object geometry features.
Or different textures can be combined as an additional approach to
differentiate one object from the others.

While the patterns and textures can be used to achieve better
visual representations, we also realize that inappropriate usages may
do harm to the visualization compared to the conventional volume
rendering approaches. First, some textures may suggest unwanted
patterns and create confusion. Second, overuse of textures in one
rendering may be difficult for the user to visualize in each single
object. Third, if the spatial frequency of the texture is lower than the
real data, the accuracy of the object representation may be degraded.
Therefore, the patterns and textures should be carefully selected to
avoid these potential issues.

8. CONCLUSION AND FUTURE WORK

We have developed a 3D pattern and texture generation method
using Wang Cubes that provides an interactive volume illustration
system. Our cube tiling method produces uniform cube distribution
and can be used for multipurpose tiling. To generate different style
patterns, we automatically design three types of cubes: isotropic
cubes, anisotropic cubes, and multiresolution cubes. The design of

the pattern is per-voxel, therefore, it is accurate in conveying the
shape of objects. Our method for automatically distributing geom-
etry primitives in isotropic cubes is simple and flexible and can
also distribute hybrid objects or primitives with different densities
in the corner problem of Wang Cubes. We have developed both a
geometry-based system and a 3D texture-based system to show that
Wang Cubes provide various styled nonperiodic details for volume
rendering. Our system is an interactive feature exploration tool that
effectively renders the features of a volume with different patterns,
textures, styles, and resolutions.

Wang Cubes have several advantages for volume illustration.
First, Wang Cubes use little storage to provide various nonperi-
odic patterns and textures, which are more visually pleasing than
the repetition of a single texture. Second, each cube is quick to gen-
erate and once the cubes are pregenerated, the filling of the textures
for a whole volume is very quick, and the size of the volume can be
arbitrarily large. Third, Wang Cubes can be extended to multiresolu-
tion cubes to provide continuous and necessary details to scientific
datasets. With these 3D patterns and textures, rendering styles and
volume transfer functions can be changed interactively by using our
framework.

We believe that volume illustration is an effective way to dis-
tinguish different features in scientific datasets. Wang Cubes, with
their great capability to generate various textures at a small cost, pro-
vides a large variety of choices for the rendering. Various textures
can effectively convey the properties of an object and distinguish
it from surrounding objects. Our method is a useful supplement
to traditional volume rendering and has advantages for educational
and artistic purposes. Initial feedback from a medical illustrator is
positive and encouraging.

Our future work includes further exploration of Wang Cubes as
a general 3D texture-based method. We would also like to combine
our rendering with methods such as light fields to improve the per-
formance. Although Wang Cubes are not supposed to be rotated,
it would be useful to apply the case-counting method of Marching
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Cubes to decrease the cube numbers. Also, we would like to ex-
plore effective approaches to further evaluate the usage of different
patterns and textures.
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